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INTRODUCTION

Typical multiple criteria optimization methods aggreg#te individual out-
comes with some scalarizing functions to generate a setiisfaefficient solution.
The scalarizing functions may have various constructions@operties depend-
ing on the specific approach to preference modeling appfieskveral methods.
Nevertheless, most scalarizing functions can be viewesvasstage transforma-
tion of the original outcomes. First the individual outc@aee rescaled to some
uniform measures of achievements with respect to sevdtatiarand preference
parameters. Thus, the individual achievement functioesbarlt to measure ac-
tual achievement of each outcome with respect to the caynetipg preference
parameters. In particular, in the Reference Point Methd@MRthe strictly mono-
tonic partial achievement functions are built to measudividual performance
with respect to given reference levels. Similar constandiappear in fuzzy ap-
proaches where the membership functions for various fuamets are such indi-
vidual achievement measures scaled to the unit intervat goal programming
where scaled deviations from targets may be consideredidiugil achievements.
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Having all the outcomes transformed into a uniform scale rafividual
achievements they are aggregated at the second stage tafanigue scalar-
ization. The aggregation usually measures the total (tleeage) or the worst
individual achievement. While several techniques andstémi better modeling of
preferences with partial achievement functions are deeeld3], the aggregation
itself is much less studied. The RPM is based on the so-callgthented (or reg-
ularized) max-min aggregation. Thus, the worst individagthievement is essen-
tially maximized but the optimization process is additibhaegularized with the
term representing the average achievement. The max-mne@ajgpn guarantees
fair treatment of all individual achievements by implemegtan approximation to
the Rawlsian principle of justice.

The max-min aggregation is crucial for allowing the RPM togmte all ef-
ficient solutions even for nonconvex (and particularly dise) problems. On the
other hand, the regularization is necessary to guarantgeotily efficient solu-
tion are generated. The regularization by the average \athient is easily im-
plementable but it may disturb the basic max-min model. Alyuthe only con-
sequent regularization of the max-min aggregation is tkiedgraphic max-min
(nucleolar) solution concept where in addition to the waidtievement, the sec-
ond worst achievement is also optimized (provided that tbestwemains on the
optimal level), the third worst is optimized (provided ttihe two worst remain
optimal), and so on. Such a nucleolar regularization is thlg max-min regu-
larization satisfying the addition/deleting principleithmaking the corresponding
nucleolar RPM not affected by any passive criteria. Therepeogress in opti-
mization methods of ordered averages allows one to implethemucleolar RPM
quite effectively. The paper analyzes both the theoretindlpractical issues of the
nucleolar RPM.

1. SCALARIZATIONS OF THE RPM

In this paper, without loss of generality, it is assumed #ihthe criteria are
maximized (that is, for each outcome ‘more is better’). Henge consider the
following multiple criteria optimization problem:

max{(fl(x),fQ(x),...,fm(x)) : XGQ} (l)

wherex denotes a vector of decision variables to be selected wilti@rfeasible
set@ C R", andf(z) = (f1(x), fa(x), ..., fm(x)) is a vector function that maps
the feasible sef) into the criterion spac®&™. Note that neither any specific form
of the feasible sef) is assumed nor any special form of critefigx) is required.
We refer to the elements of the criterion space as outcom@engecAn outcome
vectory is attainable if it expresses outcomes of a feasible saiptie.y = f(x)
for somex € Q.



REFERENCE POINT METHOD WITH LEX MIN-ORDERING 157

Model (1) only specifies that we are interested in maximmabf all objec-
tive functionsf; fori € I = {1,2,...,m}. Thus it allows only to identify (to
eliminate) obviously inefficient solutions leading to dortied outcome vectors,
while still leaving the entire efficient set to look for a sédictory compromise so-
lution. In order to make the multiple criteria model opevatl for the decision
support process, one needs assume some solution conceptiwsted to the DM
preferences. This can be achieved with the so-called aagisiicing approach to
multiple criteria decision problems. The best formaliaatof the quasi-satisficing
approach to multiple criteria optimization was proposed developed mainly by
Wierzbicki [20] as the reference point method. The refeeepaint method was
later extended to permit additional information from the @Nd, eventually, led
to efficient implementations of the so-called aspiratiesdérvation based decision
support (ARBDS) approach with many successful applicat{ér21].

The RPM is an interactive technique. The basic concept ofittezactive
scheme is as follows. The DM specifies requirements in tefmsference levels,
i.e., by introducing reference (target) values for severdividual outcomes. De-
pending on the specified reference levels, a special sdalgrachievement func-
tion is built which may be directly interpreted as expregsirility to be maxi-
mized. Maximization of the scalarizing achievement fumttgenerates an effi-
cient solution to the multiple criteria problem. The congulefficient solution is
presented to the DM as the current solution in a form thatallocomparison with
the previous ones and modification of the reference levelsdéssary.

While building the scalarizing achievement function thiéoiwing properties
of the preference model are assumed. First of all, for aniyimhgal outcomey;
more is preferred to less (maximization). To meet this negmént the function
must be strictly increasing with respect to each outcomeo®#& a solution with
all individual outcomesy; satisfying the corresponding reference levels is pre-
ferred to any solution with at least one individual outconmse (smaller) than its
reference level. That means, the scalarizing achieventibn maximization
must enforce reaching the reference levels prior to furim@roving of criteria.
Thus, similar to the goal programming approaches, theenter levels are treated
as the targets but following the quasi-satisficing apprahei are interpreted con-
sistently with basic concepts of efficiency in the sense thatoptimization is
continued even when the target point has been reached alread

The generic scalarizing achievement function takes theviahg form [20]:

. £
Sly) = 121§nm{3i(yi)} +— Z; si(yi) 2)
wheree is an arbitrary small positive number and: R — R,fori =1,2,...,m,

are the partial achievement functions measuring actuaestment of the individ-
ual outcomegy; with respect to the corresponding reference levels.al efenote
the partial achievement for thith outcome ¢; = s;(y;)) anda = (a1, as, ..., am)
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represent the achievement vector. The scalarizing aghienefunction (2) is, es-
sentially, defined by the worst partial (individual) ackéevent but additionally
regularized with the sum of all partial achievements. Tlgularization term is
introduced only to guarantee the solution efficiency in tasecwhen the maxi-
mization of the main term (the worst partial achievemeng)lts in a non-unique
optimal solution. Due to combining two terms with arbithaismall paramete,
formula (2) is easily implementable and it provides a diiatgrpretation of the
scalarizing achievement function as expressing utilitheWaccepting the loss of
a direct utility interpretation, one may consider a limiticase witte — 0. which
results in lexicographic order applied to two separate $eofrfunction (2). That
means, the regularization can be implemented with the sklemel lexicographic
optimization [14]. Therefore, RPM may be also considerethadollowing lexi-
cographic problem ([13] and references therein):

m

lexmax { (1Lni<n ai,z a;) : a; =si(fi(x)) Vi, x€Q} (3)

i °
=1

The following two properties of the lexicographic model ¥ crucial for the
RPM methodology:
P1: The aggregation is strictly monotonic in the sense thakimee of any partial
achievement; leads to a preferred solution.
P2 For any given target valug, the solution generating all partial achievements
equal top (a; = p Vi) is preferred to any solution generating at least one partia
achievement worse than
Property P1 guarantees that while using strictly increpgiartial achievement
functions s;, every generated solution is efficient. Property P2 guaemnthat
while using partial achievement function allocating thensavalue on achieving
the reference level, the solution reaching all the refexdexcels is preferred to any
solution failing achievement of at least one referencelleve

Various functionss; provide a wide modeling environment for measuring par-
tial achievements [21,8]. To take advantages of propeRiesnd P2 they need
to be strictly increasing and to allocate the same value aohiag the reference
level. The basic RPM model is based on a single vector of fieearce levels, the
aspiration vector®. For the sake of computational simplicity, the piecewiaedir
functionss; are usually employed. In the simplest models, they takera @frtwo
segment piecewise linear functions:

M i), for y; >rf
si(yi) = { A (yi — ), for y; <rf (4)

whereAj and);” are positive scaling factors corresponding to underaehients
and overachievements, respectively, foriimeoutcome. Note that for any outcome
reaching the corresponding aspiration leyglk= r{ one getss;(r{") = 0. Hence,
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when using the RPM (3) with partial achievement functionstf#e solution reach-
ing all the aspiration levels is preferred to any solutioitirfg achievement of at
least one aspiration level. It is usually assumed tq+a1is much larger thar;".
Actually, even linear functions

si(yi) = Ni(yi — 1) (5)

with positive scaling factors; represent simplified (but still valid) partial achieve-
ment functions in the sense that while used in the lexicdgcaRPM scheme (3) it
guarantees the propem2. Nevertheless, the differentiation of the scaling facsor i
important to enforce the preferences of achieving moreasmn levels rather than
overstep the others, especially in the analytic RPM (2)ufdd. depicts how differ-
entiated scaling affects the isoline contours of the aitabgalarizing achievement
function. Certainly, introducing lexicographic two-léygartial achievements op-
timization would be a better way to model the aspiration prtps [11] but also
more complicated.

(@) (b)

§ 

Figure 1: Isoline contours for the analytic scalarizingiaedment function (2):
(a) with partial achievements (5), (b) with partial achiexamnts (4)

Real-life applications of the RPM methodology usually dedh more com-
plex partial achievement functions defined with more thamrfierence point [21]
which enriches the preference models and simplifies theaictige analysis. In
particular, the models taking advantages of two referermdovs: vector of as-
piration levelsr® and vector of reservation levet$ [5] are used, thus allowing
the DM to specify requirements by introducing acceptabbkraquired values for
several outcomes. The partial achievement functjazan be interpreted then as a
measure of the DM’s satisfaction with the current value dtome theith crite-
rion. Itis a strictly increasing function of outcomgwith valuea; = 1if y; = r¢,
anda; = 0 for y; = r7. Thus the partial achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfactionioder functions can be
built meeting those requirements. We use the piece-wisallipartial achievement
function introduced in an implementation of the ARBDS syster the multiple
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criteria transshipment problems with facility locatiorb]1

v (yi—rp)/(rd —rl), for y; <7y
si(yi) = (yi —17)/(rg —1]), for ri <y <rf (6)
a (yi—rd)/(rd —r))+1,  for y; >rf

wherea and~ are arbitrarily defined parameters satisfyilig< o < 1 < +.
Parameterx represents additional increase of the DM’s satisfactioer dsvel 1
when a criterion generates outcomes better than the comdspy aspiration level.
On the other hand, parameter> 1 represents dissatisfaction connected with
outcomes worse than the reservation level.
S
1

<

/7‘{ ré Yi

Figure 2: ARBDS partial achievement function

For outcomes between the reservation and the aspirati@is)ethe partial
achievement functios; can be interpreted as a membership functipfor a fuzzy
target. However, such a membership function remains congith value 1 for all
outcomes greater than the corresponding aspiration lamdlwith value O for all
outcomes below the reservation level (Fig. 2). Hence, theyfmembership func-
tion is neither strictly monotonic nor concave thus not esenting typical utility
for a maximized outcome. The partial achievement functérc&n be viewed as
an extension of the fuzzy membership function to a stricthnotonic and concave
utility. One may also notice that the aggregation scheme tgsbuild the scalariz-
ing achievement function (2) from the partial ones may atsoterpreted as some
fuzzy aggregation operator [21]. In other words, maximaabf the scalarizing
achievement function (2) is consistent with the fuzzy mdttogy in the case of
not attainable aspiration levels and satisfiable all regemv levels while modeling
a reasonable utility for any values of aspiration and resem levels.

2. NUCLEOLAR RPM

The crucial properties of the RPM are related to the max-rggregation of
partial achievements while the regularization is onlyadticed to guarantee the
aggregation monotonicity. Unfortunately, the distribatiof achievements may
make the max-min criterion partially passive when one g$jgeaichievement is
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relatively very small for all the solutions. Maximizatio the worst achievement
may then leave all other achievements unoptimized. In tkiedgraphic RPM
defined by (3) the regularization term is then optimized agbcond level thus
preventing one from selection of any inefficient solutiorevirtheless, the selec-
tion is then made according to linear aggregation of theleg@ation term instead
of the max-min aggregation, thus destroying the preferenodel of the RPM.
This can be illustrated with an example of a simple discretblpm of 7 alter-
native feasible solutions to be selected according to @rait Table 1 presents
six partial achievements for all the solutions where theiglaachievements have
been defined according to the aspiration/reservation m@ehus allocating 1
to outcomes reaching the corresponding aspiration levauti®n S7 is the only
inefficient alternative. Solution S1 to S5 oversteps theraspn levels (achieve-
ment values 1.2) for four of the first five criteria while failj to reach one of them
and the aspiration level for the sixth criterion as well agement values 0.3).
Solution S6 meets the aspiration levels (achievement sdlu@ for the first five
criteria while while failing to reach only the aspiratiorvéd for the sixth criterion
(achievement values 0.3). One may easily notice that thie pettial achievement
(and the corresponding criterion) is constant for the salemnatives under con-
sideration. Hence, one may expect the same solution seéledide taking into
account this criterion or not. If focusing on only five firstteria, then the RPM
(either lexicographic (3) or analytic (2)) obviously satesolution S6 as reaching
all aspiration levels which results in the worst achievemeahue 1.0. However,
while taking into account all six criteria all the solutiogenerate the same worst
achievement value 0.3 and the final selection of the RPM digpen the total
achievement (regularization term). Actually, either t&graphic RPM (3) or its
analytic version (2) will select then one of solutions S1 50aS better than S6.

Table 1: Sample achievements with a passive criterion

Soln.| a; a2 a3 a4 a5 ag| min Z?:l min Z?:l

i=1,...6 i=1,..5
S1 03 12 1.2 12 1.2 0.1 0.3 5.4 0.3 5.1
S2 1.2 03 12 12 1.2 0.1 0.3 5.4 0.3 5.1
S3 1.2 1.2 03 12 1.2 0.1 0.3 5.4 0.3 5.1
S4 1.2 1.2 12 03 1.2 0.1 0.3 5.4 0.3 5.1
S5 1.2 12 12 12 0.3 0.1 0.3 5.4 0.3 5.1
S6 1.0 1.0 1.0 1.0 1.0 0.1

0.3 5.3 1.0 5.0
S7 03 10 03 10 0.6 0.3 0.3 3.5 0.3 3.2

O—C00—C0—C0—Co—Co—Co

In order to avoid inconsistencies caused by the regul@izathe max-min solu-
tion may be regularized according to the Rawlsian princagflgustice. Formal-
ization of this concept leads us to the lexicographic mamr-ordered or nucle-
olar solution concept. The approach has been used for ddmerar program-
ming multiple criteria problems [1,7] as well as for speizi@tl problems related to
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(multiperiod) resource allocation [6]. In discrete optmation it has been con-
sidered for various problems including the location-adkimn ones [10]. The
lexicographic max-min approach can be mathematically &izad as follows.
Within the space of achievement vectors we introduce @ap (61,62, ..,6.,)
which orders the coordinates of achievements vectors inndeweasing order,
i.e.,0(ay,as,...,ay) = (61(a),b2(a),...,0,(a)) iff there exists a permutation
7such thav;(a) = a,(; foralliandf(a) < f2(a) < ... < 6,,(a). The standard
max-min aggregation depends on maximizatio@f) and it ignores values of
a; for ¢ > 2. In order to take into account all the achievement valuesowaie for
a lexicographic maximum among the ordered achievemenbrsect

Note that the lexicographic RPM model (3) can be expresséea®llowing
problem:

lexmax { (A1(a), Z 0i(a)) : a; =si(fi(x)) Vi, xeQ}
i=2

thus, in the case of two criterian{ = 2), representing exactly the lexicographic
max-min aggregation. For larger number of criteria & 2) model (3) only ap-
proximates the lexicographic max-min as all the lower ftjoobjective terms
are aggregated at the second priority level. One may cangiddexicographic
max-min approach applied to the partial achievement fanst(7) as a basis for a
corresponding nucleolar RPM model

lexmax { (61(a),02(a),...,0n(a)) : a;=s;(fi(x)Vi,xe@} (7)

We will use the name nucleolar RPM to avoid any possible ndetstandings
when referring to the lexicographic RPM. The nucleolar RiP\liements a con-
sequent max-min aggregation thus resulting in much betteteting of the refer-
ence levels concept.

Table 2: Ordered achievements values

Solution | 64 (a) 0o (a) 03 (a) 94(&) 05 (a) O (a)

S1 0.3 0.3 1.2 1.2 1.2 1.2
S2 0.3 0.3 1.2 1.2 1.2 1.2
S3 0.3 0.3 1.2 1.2 1.2 1.2
S4 0.3 0.3 1.2 1.2 1.2 1.2
S5 0.3 0.3 1.2 1.2 1.2 1.2
S6 0.3 1.0 1.0 1.0 1.0 1.0
S7 0.3 0.3 0.3 0.6 1.0 1.0

One may easily notice that the nucleolar RPM is not affecte@ry adding or
eliminating any passive criterion. While applying the raatar RPM the ordered
achievement are lexicographically minimized and theefarour example solu-
tion S6 is selected for six criteria as it was selected for @xiteria (Table 2).
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Actually, the lexicographic max-min is the only regulatipa of the max-min ap-
proach satisfying the reduction (addition/deleting) pifite [2]. Namely, if the
individual achievement of an outcome does not distinguigh golutions, then it
does not affect the preference relation:

(ah,....a},a% aj,q,... a0) = (af,...,af,a" a}\q, ... a7) & d =d"
(8)

Due to strictly monotonic individual achievement functothe reduction princi-
ple is also satisfied in the original outcome space. More®wece the aggregation
is impartial with respect to partial achievements, it dejgeanly on distribution
of achievements independently from their order. Hencentloteolar RPM works
also properly if the max-min optimization becomes passigspite one cannot
identify any passive original criterion. This can be ilased with data from Ta-
ble 3 which differ from those of Table 1 only due to permutetiiacements of
solution S7. This alternative is no longer dominated andstki criterion is no
longer passive. Nevertheless, as the distributions ofemehient values remain
the same, the max-min optimization remains passive andtémelard forms of
the RPM select solution S1 to S5 according to regularizatom. Similarly, the
ordered values of achievements remain the same as in Tahl@lZhe nucleolar
RPM still selects solution S6 as the best matching the d@gpirkevels.

Table 3: Sample achievements with passive max-min criterio

Solution| a1 ay a3 a1 a5 ag

S1 03 1.2 12 12 12 0.3
S2 1.2 03 1.2 1.2 1.2 0.3
S3 1.2 12 03 1.2 1.2 0.3
S4 1.2 12 1.2 03 1.2 0.3
S5 1.2 12 12 1.2 03 0.3
S6 10 10 10 10 1.0 0.3
S7 03 03 03 10 06 1.0

The following assertions shows that the nucleolar RPM m@dQetatisfies the ba-
sic requirements for the RPM approaches. Namely, modelu@jamtees the effi-
ciency of solutions (Theorem 1) and it is possible to gemeafitefficient solutions
using nucleolar RPM by appropriately choosing the refezarector (Theorem 2).

Theorem 1 For any strictly increasing partial achievement functiongy; ), if x
is an optimal solution of the problem (7), tharis also an efficient solution of the
corresponding multi-criteria problem (1).

Proof. Supposex optimal to (7) is dominated by som€ € Q. Thus, due to
strictly increasing partial achievement functions onesget= s;(f;(%)) < a} =
si(fi(x')) V 4, with at least one inequality strict. Hendg,(a) <;., #;(a’) which
contradicts optimality to (7). d
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Theorem 2 For any x efficient solution, if the reference level are defined as
r; = fi(X) and strictly increasing partial achievement functionstaking the
same value at the reference levelg(f;) = o V i) are used, thex is an optimal
solution of the corresponding nucleolar RPM problem (7).

Proof. Note thata; = s;(fi(X)) = oV i. If there exista; = s;(f;(x')) forx’ € @
such that; (a) <., 6;(a'), thena; =< a} V i with at least one inequality strict.
This contradicts the efficiency . d

Note that all typical partial achievement functions, intgadar piecewise lin-
ear functions of the form (4), (5) or (6) are strictly incriegsand they assign the
same value at the reference levels. Thus, Theorem 2 jugtifiesontrollability of
the nucleolar RPM in the sense that for any @ efficient solution to multiple
criteria problem (1) there exists the reference veefosuch thatx is an optimal
solution of the corresponding nucleolar RPM problem (7)rdefiwith this refer-
ence vector.

3. IMPLEMENTATION ISSUES

An important advantage of the RPM depends on its easy impitatien as an
expansion of the original multiple criteria model. Actyaltven more complicated
partial achievement functions of the form (6) are strictigreasing and concave
(under the assumption that< o < 1 < =), thus allowing for implementation
of the entire RPM model (2) by an LP expansion [15]. The orderhievements
optimized in the nucleolar RPM (7) are, in general, hard tplement due to the
pointwise ordering. Let us consider cumulated achievestith) = >, 6;(a)
expressing, respectively: the worst (smallest) achiewgrtae total of the two
worst achievements, the total of the three worst achievesnetc. Within the
lexicographic optimization a cumulation of criteria doed affect the optimal so-
lution. Hence, the nucleolar RPM model (7) can be expresseddris of the
lexicographic maximization of quantitiés(a):

lex max { (01(a),02(a),...,0,(a)) : a; =si(fi(x)Vi,xcQ} (9)

This simplifies dramatically the optimization problem singuantitiesd; (a) can
be optimized without use of any integer variables. Firgtutenotice that for any
given vectora, the cumulated ordered valékg(a) can be found as the optimal
value of the following LP problem:

Oc(a) =min {> aug: Y wip =4k, 0<uy<1 Vi} (10)
i=1 i=1

Uik

The above problem is an LP for a given outcome veatarhile it becomes non-
linear fora being a vector of variables. This difficulty can be overcoméaking
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advantage of the LP dual to (10). Introducing dual variapleorresponding to the
equationy_;" , w;; = k and variablesi;;, corresponding to upper bounds op,
one gets the following LP dual of problem (10):

O(a) = max {kty — > dig 1 a; >ty —dgg, dp >0 Vi} (11)

ey dik s
Due the duality theory, for any given vectarthe cumulated ordered coefficient
0x(a) can be found as the optimal value of the above LP problemlltt¥s from
(11) thatfy(a) = max {kt, — >, (tx — a;)+} Where(.); denotes the non-
negative part of a number ang is an auxiliary (unbounded) variable. The latter,
with the necessary adaptation to the minimized outcomeaciation problems, is
equivalent to the computational formulation of thecentrum model introduced
by [17]. Hence, formula (11) provides an alternative prathat formulation.

Taking advantages of both (9) and (11), the nucleolar RPMbmaformu-
lated as a standard lexicographic optimization. Moreavethe case of concave
piecewise linear partial achievement functions (as tylsiassed in the RPM ap-
proaches), the resulting formulation extends the origomalstraints and criteria
with linear inequalities. In particular, for strictly ineasing and concave partial
achievement functions (6), it can be expressed in the form:

lex max (z1,22,...,2m)
st xeQ, y; = fi(x) Vi
Zk:ktk_z d;x; vk
i=1 (12)
aiztk—dik, dzkzo Vi,k‘
a; <y(yi — i)/ (rf —r7) Vi
a; < (yi —r{)/(rf —r7) Vi

aj < aly; —ri)/(rf —r{) +1 Vi

Thus, the nucleolar RPM can be effectively applied to variowltiple criteria
optimization problems including the discrete ones.

Model (12) provides us with an easily implementable sedakalgorithm to
generate efficient solutions according to the nucleolar Riféerence specifica-
tion. However, it does not introduce any explicit scalamizachievement function
which could be directly interpreted as expressing utiliybe maximized. In or-
der to get such an analytical form (or rather approximatafrthe nucleolar RPM
one needs to replace the lexicographic (preemptive) opditioin of the ordered
achievements in (7) with its weighting approximation. Ntitat the weights are
then assigned to the specific positions within the orderbteaements rather than
to the partial achievements themselves, thus represetiieigo-called Ordered
Weighted Averaging (OWA) aggregation. With the OWA aggtegaone gets the
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following RPM model:
max { > vifi(a) : a; = s;(fi(x) Vi, x€Q} (13)
=1

wherev; > vy > ... > v, > 0are positive and strictly decreasing weights. When
differences among weights tend to infinity, the OWA aggregeapproximates the
leximin ranking of the ordered outcome vectors [22]. Thaanms as the limiting
case of (13), we get the nucleolar RPM model (7). Actuallg skandard RPM
model with the analytic scalarizing achievement functidhdan be expressed as
the following OWA model:

max { (1 + %)Hl(a) + % ZQi(a) a;=si(filx) Vi, xeQ}
i=2

Hence, the standard RPM model exactly represents the en@lyitity) form of
the OWA aggregation (13) with strictly decreasing weigitshie case ofn = 2
(v1 = 14¢/2 > vy = £/2). Form > 2 it abandons the differences in weighting of
the second largest achievement, the third largest onegte (.. = v, = ¢/m).
The OWA aggregation is obviously a piecewise linear funcmce it remains
linear within every area of the fixed order of arguments. fimization can be
implemented by expressing in terms of the cumulated ordechikvements

max { Z wifi(a) @ a; = s;(f;(x))Vi; x€Q}
i=1

wherew; = v; — v;41 for i = 1,...,m — 1, and taking advantages of the LP
expression (11) of; [16]. This leads to a single level computational model samil
to (12).

max Zwkzk s.t. zk:ktk—z dig Vk
k=1 =1
X €Q, yi = fi(x) Vi
a; >ty — dig, di; >0 Vi k (14)
ai <y(yi —r])/(rd — i) Vi
ai < (yi —r])/(r¢ —r}) Vi

a; < afy; —rf)/(rf —ri) +1 Vi

For some special sequences of the OWA weighthis solution concept can
easily be defined without any need to order outcomes thusotbéan procedure
may be quite simple. From the properties of the Gini's meaoklbe difference
[12] it follows that

m m m 1
Z Zmin{ai,ak} = Zai b

i=1 k=1 i=1 %

m

> lai — ag| = _[2(m — i) + 1)6;(a)

m
=1 k=1 i=1
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Hence, the OWA aggregation given by the decreasing sequémoeightsy; with
a constant step; — v;1.1 = A can be directly expressed as

ZZ:; vi#i(a) = U7 min a; + % Z Z min{a;, ax } (15)

1<i<m ‘
- i=1 k=1

wherev; = v; — A(2m — 1)/2. Note that formula (15) defines a piecewise linear
concave function which guarantees its LP computability mumaximized.
The following extension of the analytic RPM model (2)

m

. € S .
max { 1I§1}1§nmai—|—m Z; ;mm{ai,ak} sa; = si(fi(x)) Vi, x€Q} (16)

due to (15), represents the OWA aggregation given by thesdsitrg sequence of
weights withv; = 1 + (2m — 1)e and the constant steg — vi1 1 = 2¢/m?.
Certainly, such an analytic model is only rough approxioratio the nucleolar
RPM. Nevertheless, when applying (16) to our sample prolftem Table 1, the
solution S6 is selected. For strictly increasing and coaqgaartial achievement
functions (6) the model can be expressed as:

c m m
max Q—l-—zz Ztik
mTi =
st xe€ @, yi = fi(x) Vi
aiZQ Vi (17)
a; > tig, ap > tik Vi, k
a; <y(yi — 1)/ (r{ —rf) Vi
a; < (yi —r)/(rf —17) Vi

ai < afy; —rf)/(rf —r)) +1 Vi

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the nucleolar RPM performances leanalyze the mul-
ticriteria problem of information system selection. We sidler a billing system
selection for a telecommunication company [19]. The deniss based on 7 crite-
ria related to the system functionality, reliability, pessing efficiency, investment
costs, installation time, operational costs, and warrpetyod. All these attributes
may be viewed as criteria, either maximized or minimizedldd presents all the
criteria with their measures units and optimization dimts. There are also set
the aspiration and reservation levels for each criterion.

Five candidate billing systems have been accepted for taédelection pro-
cedure. All they meet the minimal requirements defined bydiservation levels.
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Table 4: Criteria and their reference levels for the samjlliadp system selection

f1 f2 I3 fa fs fo fr
Function- Relia-  Effi- Invest. Install. Oprnl. Warranty
ality bility  ciency cost time cost period
Units #modules 1-10 CAPS min. PLN months min. PLN years
Optimization max max max min min min max
Reservation 4 8 50 2 12 1.25 0.5
Aspiration 10 10 200 0 6 0.5 2

Table 5 presents for all the systems (columns) their caitealuesy; and the corre-
sponding partial achievement valugs The latter are computed according to the
piece-wise linear formula (6) withh = 0.1.

Table 5: Criteria valueg; and individual achievements for five billing systems

System A | System B | System C| System D| System E
i Yi Qg Vi a Yi Yi Vi a
1 9 0.83| 10 1.00 8 067, 6 0.33 8 0.67
2| 10 1.00 9 050{ 10 1.00f 9 050, 10 1.00
31200 1.00| 100 0.33| 170 0.80| 90 0.27| 150 0.67
4 1 050| 0.3 0.85| 0.8 0.60{ 0.2 0.90| 0.5 0.75
5| 10 0.33 3 1.05 6 1.00, 8 0.67 5 1.02
6 1 0.33 1 0.33] 0.6 0.87|0.2 1.04 1 0.33
7 2 1.00 2 1.00 1 033 2 1.00| 1.5 0.67

Table 6 presents for all the systems (columns) their paatihlevement values
ordered from the worst to the bekta). Examining rowd; (a) one may notice that
except of system D all the other systems have the same wdrstvament value
min; a; = 0.33. Selection among systems A, B, C and E depends only on the regu
larization of achievements aggregation used in the RPMaogmbr: Comparing the
second worst achievements (réy(a)) one can see that according to the nucleolar
RPM (7) system E is the best selection guaranteeing atle&shachievement lev-
els for six criteria. These selection cannot be done if utiegclassical RPM with
regularization based on the total achievements. Actuatlgprding to row) . a;
either lexicographic RPM (3) or its analytic version (2) vdklect system C as
better than all the others. However, according to doy) ", min{a;, a;} even a
rough approximation to the nucleolar RPM given by the aimlyiodel (16) turns
out to be strong enough to identify system E as the best smlect

CONCLUSIONS
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Table 6: Ordered achievements for five billing systems

A B C D E
t1(a) 0.33] 0.33] 0.33| 0.27| 033
02 (a) 0.33| 0.33| 0.60| 0.33| 0.67
05(a) 0.50| 0.50| 0.67| 0.50| 0.67
04(a) 0.83| 0.85| 0.80| 0.67| 0.67
05(a) 1.00| 1.00| 0.87| 0.90| 0.75
06(a) 1.00| 1.00| 1.00| 1.00| 1.00
0:(a) 1.00| 1.05| 1.00| 1.04| 1.02

.a; 4.99| 5.06| 5.27| 471] 511
S, 3, min{a;,a} | 27.33| 27.75| 29.91| 25.10| 30.27

The reference point method is a very convenient techniquiatieractive anal-
ysis of the multiple criteria optimization problems. It pides the DM with a tool
for an open analysis of the efficient frontier. The interaetnalysis is navigated
with the commonly accepted control parameters expressiiegance levels for the
individual objective functions. The partial achievemamtdtions quantify the DM
satisfaction from the individual outcomes with respecth® given reference lev-
els. The final scalarizing function is built as the augmemeck-min aggregation
of partial achievements which means that the worst indalidichievement is es-
sentially maximized but the optimization process is addaily regularized with
the term representing the average achievement. The regtian by the average
achievement is easily implementable but it may disturb #gmdmax-min aggre-
gation. In order to avoid inconsistencies caused by thdaggation, the max-min
solution may be regularized according to the Rawlsian fplaof justice leading
to the nucleolar RPM model.

The nucleolar RPM implements a consequent max-min aggoegaking into
account also the second worst achievement, the third wordes@a on, thus re-
sulting in much better modeling of the reference levels ephc The nucleolar
regularization is more complicated in implementation dwu¢he requirement of
pointwise ordering of partial achievements. Neverthelegdaking advantages of
piecewise linear expression of the cumulated ordered asmients, the nucleo-
lar RPM can be formulated as a standard lexicographic opditioin. Actually, in
the case of concave piecewise linear partial achievemeuwtiuns (typically used
in the RPM), the resulting formulation extends the origicahstraints and crite-
ria with simple linear inequalities thus allowing for a qu#fficient implementa-
tion. The nucleolar RPM can be also approximated with théytindorm using
the ordered weighted averaging thus introducing explmatiarizing achievement
function to be interpreted as utility.

The paper is focused on nucleolar refinement of the referposd method.
Nevertheless, the same methodology can easily be applieatitius multiple cri-
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teria approaches requiring some fair (equitable) aggi@uat In particular, to the
fuzzy goal programming models.
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