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LEXICOGRAPHIC MIN-ORDERING OF
INDIVIDUAL ACHIEVEMENTS ∗

INTRODUCTION

Typical multiple criteria optimization methods aggregatethe individual out-
comes with some scalarizing functions to generate a satisfactory efficient solution.
The scalarizing functions may have various constructions and properties depend-
ing on the specific approach to preference modeling applied in several methods.
Nevertheless, most scalarizing functions can be viewed as two-stage transforma-
tion of the original outcomes. First the individual outcomes are rescaled to some
uniform measures of achievements with respect to several criteria and preference
parameters. Thus, the individual achievement functions are built to measure ac-
tual achievement of each outcome with respect to the corresponding preference
parameters. In particular, in the Reference Point Method (RPM) the strictly mono-
tonic partial achievement functions are built to measure individual performance
with respect to given reference levels. Similar constructions appear in fuzzy ap-
proaches where the membership functions for various fuzzy targets are such indi-
vidual achievement measures scaled to the unit interval or in goal programming
where scaled deviations from targets may be considered individual achievements.
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Having all the outcomes transformed into a uniform scale of individual
achievements they are aggregated at the second stage to forma unique scalar-
ization. The aggregation usually measures the total (the average) or the worst
individual achievement. While several techniques and tools for better modeling of
preferences with partial achievement functions are developed [3], the aggregation
itself is much less studied. The RPM is based on the so-calledaugmented (or reg-
ularized) max-min aggregation. Thus, the worst individualachievement is essen-
tially maximized but the optimization process is additionally regularized with the
term representing the average achievement. The max-min aggregation guarantees
fair treatment of all individual achievements by implementing an approximation to
the Rawlsian principle of justice.

The max-min aggregation is crucial for allowing the RPM to generate all ef-
ficient solutions even for nonconvex (and particularly discrete) problems. On the
other hand, the regularization is necessary to guarantee that only efficient solu-
tion are generated. The regularization by the average achievement is easily im-
plementable but it may disturb the basic max-min model. Actually, the only con-
sequent regularization of the max-min aggregation is the lexicographic max-min
(nucleolar) solution concept where in addition to the worstachievement, the sec-
ond worst achievement is also optimized (provided that the worst remains on the
optimal level), the third worst is optimized (provided thatthe two worst remain
optimal), and so on. Such a nucleolar regularization is the only max-min regu-
larization satisfying the addition/deleting principle thus making the corresponding
nucleolar RPM not affected by any passive criteria. The recent progress in opti-
mization methods of ordered averages allows one to implement the nucleolar RPM
quite effectively. The paper analyzes both the theoreticaland practical issues of the
nucleolar RPM.

1. SCALARIZATIONS OF THE RPM

In this paper, without loss of generality, it is assumed thatall the criteria are
maximized (that is, for each outcome ‘more is better’). Hence, we consider the
following multiple criteria optimization problem:

max { (f1(x), f2(x), . . . , fm(x)) : x ∈ Q } (1)

wherex denotes a vector of decision variables to be selected withinthe feasible
setQ ⊂ Rn, andf(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that maps
the feasible setQ into the criterion spaceRm. Note that neither any specific form
of the feasible setQ is assumed nor any special form of criteriafi(x) is required.
We refer to the elements of the criterion space as outcome vectors. An outcome
vectory is attainable if it expresses outcomes of a feasible solution, i.e.y = f(x)
for somex ∈ Q.



REFERENCE POINT METHOD WITH LEX MIN-ORDERING 157

Model (1) only specifies that we are interested in maximization of all objec-
tive functionsfi for i ∈ I = {1, 2, . . . ,m}. Thus it allows only to identify (to
eliminate) obviously inefficient solutions leading to dominated outcome vectors,
while still leaving the entire efficient set to look for a satisfactory compromise so-
lution. In order to make the multiple criteria model operational for the decision
support process, one needs assume some solution concept well adjusted to the DM
preferences. This can be achieved with the so-called quasi-satisficing approach to
multiple criteria decision problems. The best formalization of the quasi-satisficing
approach to multiple criteria optimization was proposed and developed mainly by
Wierzbicki [20] as the reference point method. The reference point method was
later extended to permit additional information from the DMand, eventually, led
to efficient implementations of the so-called aspiration/reservation based decision
support (ARBDS) approach with many successful applications [5,21].

The RPM is an interactive technique. The basic concept of theinteractive
scheme is as follows. The DM specifies requirements in terms of reference levels,
i.e., by introducing reference (target) values for severalindividual outcomes. De-
pending on the specified reference levels, a special scalarizing achievement func-
tion is built which may be directly interpreted as expressing utility to be maxi-
mized. Maximization of the scalarizing achievement function generates an effi-
cient solution to the multiple criteria problem. The computed efficient solution is
presented to the DM as the current solution in a form that allows comparison with
the previous ones and modification of the reference levels ifnecessary.

While building the scalarizing achievement function the following properties
of the preference model are assumed. First of all, for any individual outcomeyi

more is preferred to less (maximization). To meet this requirement the function
must be strictly increasing with respect to each outcome. Second, a solution with
all individual outcomesyi satisfying the corresponding reference levels is pre-
ferred to any solution with at least one individual outcome worse (smaller) than its
reference level. That means, the scalarizing achievement function maximization
must enforce reaching the reference levels prior to furtherimproving of criteria.
Thus, similar to the goal programming approaches, the reference levels are treated
as the targets but following the quasi-satisficing approachthey are interpreted con-
sistently with basic concepts of efficiency in the sense thatthe optimization is
continued even when the target point has been reached already.

The generic scalarizing achievement function takes the following form [20]:

S(y) = min
1≤i≤m

{si(yi)} +
ε

m

m
∑

i=1

si(yi) (2)

whereε is an arbitrary small positive number andsi : R → R, for i = 1, 2, . . . ,m,
are the partial achievement functions measuring actual achievement of the individ-
ual outcomesyi with respect to the corresponding reference levels. Letai denote
the partial achievement for theith outcome (ai = si(yi)) anda = (a1, a2, . . . , am)
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represent the achievement vector. The scalarizing achievement function (2) is, es-
sentially, defined by the worst partial (individual) achievement but additionally
regularized with the sum of all partial achievements. The regularization term is
introduced only to guarantee the solution efficiency in the case when the maxi-
mization of the main term (the worst partial achievement) results in a non-unique
optimal solution. Due to combining two terms with arbitrarily small parameterε,
formula (2) is easily implementable and it provides a directinterpretation of the
scalarizing achievement function as expressing utility. When accepting the loss of
a direct utility interpretation, one may consider a limiting case withε → 0+ which
results in lexicographic order applied to two separate terms of function (2). That
means, the regularization can be implemented with the second level lexicographic
optimization [14]. Therefore, RPM may be also considered asthe following lexi-
cographic problem ([13] and references therein):

lexmax { ( min
1≤i≤m

ai ,
m

∑

i=1

ai) : ai = si(fi(x)) ∀ i, x ∈ Q } (3)

The following two properties of the lexicographic model (3)are crucial for the
RPM methodology:
P1: The aggregation is strictly monotonic in the sense that increase of any partial
achievementai leads to a preferred solution.
P2: For any given target value̺, the solution generating all partial achievements
equal to̺ (ai = ̺ ∀i) is preferred to any solution generating at least one partial
achievement worse than̺.
Property P1 guarantees that while using strictly increasing partial achievement
functions si, every generated solution is efficient. Property P2 guarantees that
while using partial achievement function allocating the same value on achieving
the reference level, the solution reaching all the reference levels is preferred to any
solution failing achievement of at least one reference level.

Various functionssi provide a wide modeling environment for measuring par-
tial achievements [21,8]. To take advantages of propertiesP1 and P2 they need
to be strictly increasing and to allocate the same value on reaching the reference
level. The basic RPM model is based on a single vector of the reference levels, the
aspiration vectorra. For the sake of computational simplicity, the piecewise linear
functionssi are usually employed. In the simplest models, they take a form of two
segment piecewise linear functions:

si(yi) =

{

λ+
i (yi − ra

i ), for yi ≥ ra
i

λ−
i (yi − ra

i ), for yi < ra
i

(4)

whereλ+
i andλ−

i are positive scaling factors corresponding to underachievements
and overachievements, respectively, for theith outcome. Note that for any outcome
reaching the corresponding aspiration levelyi = ra

i one getssi(r
a
i ) = 0. Hence,
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when using the RPM (3) with partial achievement functions (4), the solution reach-
ing all the aspiration levels is preferred to any solution failing achievement of at
least one aspiration level. It is usually assumed thatλ+

i is much larger thanλ−
i .

Actually, even linear functions

si(yi) = λi(yi − ra
i ) (5)

with positive scaling factorsλi represent simplified (but still valid) partial achieve-
ment functions in the sense that while used in the lexicographic RPM scheme (3) it
guarantees the propertyP2. Nevertheless, the differentiation of the scaling factor is
important to enforce the preferences of achieving more aspiration levels rather than
overstep the others, especially in the analytic RPM (2). Figure 1 depicts how differ-
entiated scaling affects the isoline contours of the analytic scalarizing achievement
function. Certainly, introducing lexicographic two-level partial achievements op-
timization would be a better way to model the aspiration properties [11] but also
more complicated.
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Figure 1: Isoline contours for the analytic scalarizing achievement function (2):
(a) with partial achievements (5), (b) with partial achievements (4)

Real-life applications of the RPM methodology usually dealwith more com-
plex partial achievement functions defined with more than one reference point [21]
which enriches the preference models and simplifies the interactive analysis. In
particular, the models taking advantages of two reference vectors: vector of as-
piration levelsra and vector of reservation levelsrr [5] are used, thus allowing
the DM to specify requirements by introducing acceptable and required values for
several outcomes. The partial achievement functionsi can be interpreted then as a
measure of the DM’s satisfaction with the current value of outcome theith crite-
rion. It is a strictly increasing function of outcomeyi with valueai = 1 if yi = ra

i ,
andai = 0 for yi = rr

i . Thus the partial achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfaction. Various functions can be
built meeting those requirements. We use the piece-wise linear partial achievement
function introduced in an implementation of the ARBDS system for the multiple
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criteria transshipment problems with facility location [15]:

si(yi) =







γ (yi − rr
i )/(r

a
i − rr

i ), for yi ≤ rr
i

(yi − rr
i )/(r

a
i − rr

i ), for rr
i < yi < ra

i

α (yi − ra
i )/(ra

i − rr
i ) + 1, for yi ≥ ra

i

(6)

whereα and γ are arbitrarily defined parameters satisfying0 < α < 1 < γ.
Parameterα represents additional increase of the DM’s satisfaction over level 1
when a criterion generates outcomes better than the corresponding aspiration level.
On the other hand, parameterγ > 1 represents dissatisfaction connected with
outcomes worse than the reservation level.

-
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Figure 2: ARBDS partial achievement function

For outcomes between the reservation and the aspiration levels, the partial
achievement functionsi can be interpreted as a membership functionµi for a fuzzy
target. However, such a membership function remains constant with value 1 for all
outcomes greater than the corresponding aspiration level,and with value 0 for all
outcomes below the reservation level (Fig. 2). Hence, the fuzzy membership func-
tion is neither strictly monotonic nor concave thus not representing typical utility
for a maximized outcome. The partial achievement function (6) can be viewed as
an extension of the fuzzy membership function to a strictly monotonic and concave
utility. One may also notice that the aggregation scheme used to build the scalariz-
ing achievement function (2) from the partial ones may also be interpreted as some
fuzzy aggregation operator [21]. In other words, maximization of the scalarizing
achievement function (2) is consistent with the fuzzy methodology in the case of
not attainable aspiration levels and satisfiable all reservation levels while modeling
a reasonable utility for any values of aspiration and reservation levels.

2. NUCLEOLAR RPM

The crucial properties of the RPM are related to the max-min aggregation of
partial achievements while the regularization is only introduced to guarantee the
aggregation monotonicity. Unfortunately, the distribution of achievements may
make the max-min criterion partially passive when one specific achievement is
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relatively very small for all the solutions. Maximization of the worst achievement
may then leave all other achievements unoptimized. In the lexicographic RPM
defined by (3) the regularization term is then optimized on the second level thus
preventing one from selection of any inefficient solution. Nevertheless, the selec-
tion is then made according to linear aggregation of the regularization term instead
of the max-min aggregation, thus destroying the preferencemodel of the RPM.
This can be illustrated with an example of a simple discrete problem of 7 alter-
native feasible solutions to be selected according to 6 criteria. Table 1 presents
six partial achievements for all the solutions where the partial achievements have
been defined according to the aspiration/reservation model(6) thus allocating 1
to outcomes reaching the corresponding aspiration level. Solution S7 is the only
inefficient alternative. Solution S1 to S5 oversteps the aspiration levels (achieve-
ment values 1.2) for four of the first five criteria while failing to reach one of them
and the aspiration level for the sixth criterion as well (achievement values 0.3).
Solution S6 meets the aspiration levels (achievement values 1.0) for the first five
criteria while while failing to reach only the aspiration level for the sixth criterion
(achievement values 0.3). One may easily notice that the sixth partial achievement
(and the corresponding criterion) is constant for the sevenalternatives under con-
sideration. Hence, one may expect the same solution selected while taking into
account this criterion or not. If focusing on only five first criteria, then the RPM
(either lexicographic (3) or analytic (2)) obviously selects solution S6 as reaching
all aspiration levels which results in the worst achievement value 1.0. However,
while taking into account all six criteria all the solutionsgenerate the same worst
achievement value 0.3 and the final selection of the RPM depends on the total
achievement (regularization term). Actually, either lexicographic RPM (3) or its
analytic version (2) will select then one of solutions S1 to S5 as better than S6.

Table 1: Sample achievements with a passive criterion

Soln. a1 a2 a3 a4 a5 a6 min
i=1,...,6

∑6
i=1 min

i=1,...,5

∑5
i=1

S1 0.3 1.2 1.2 1.2 1.2 0.3 0.3 5.4 0.3 5.1
S2 1.2 0.3 1.2 1.2 1.2 0.3 0.3 5.4 0.3 5.1
S3 1.2 1.2 0.3 1.2 1.2 0.3 0.3 5.4 0.3 5.1
S4 1.2 1.2 1.2 0.3 1.2 0.3 0.3 5.4 0.3 5.1
S5 1.2 1.2 1.2 1.2 0.3 0.3 0.3 5.4 0.3 5.1
S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 5.3 1.0 5.0
S7 0.3 1.0 0.3 1.0 0.6 0.3 0.3 3.5 0.3 3.2

In order to avoid inconsistencies caused by the regularization, the max-min solu-
tion may be regularized according to the Rawlsian principleof justice. Formal-
ization of this concept leads us to the lexicographic max-min ordered or nucle-
olar solution concept. The approach has been used for general linear program-
ming multiple criteria problems [1,7] as well as for specialized problems related to
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(multiperiod) resource allocation [6]. In discrete optimization it has been con-
sidered for various problems including the location-allocation ones [10]. The
lexicographic max-min approach can be mathematically formalized as follows.
Within the space of achievement vectors we introduce mapΘ = (θ1, θ2, . . . , θm)
which orders the coordinates of achievements vectors in a nondecreasing order,
i.e.,Θ(a1, a2, . . . , am) = (θ1(a), θ2(a), . . . , θm(a)) iff there exists a permutation
τ such thatθi(a) = aτ(i) for all i andθ1(a) ≤ θ2(a) ≤ . . . ≤ θm(a). The standard
max-min aggregation depends on maximization ofθ1(a) and it ignores values of
āi for i ≥ 2. In order to take into account all the achievement values, welook for
a lexicographic maximum among the ordered achievement vectors.

Note that the lexicographic RPM model (3) can be expressed asthe following
problem:

lexmax { (θ1(a),

m
∑

i=2

θi(a)) : ai = si(fi(x)) ∀ i, x ∈ Q }

thus, in the case of two criteria (m = 2), representing exactly the lexicographic
max-min aggregation. For larger number of criteria (m > 2) model (3) only ap-
proximates the lexicographic max-min as all the lower priority objective terms
are aggregated at the second priority level. One may consider the lexicographic
max-min approach applied to the partial achievement functions (7) as a basis for a
corresponding nucleolar RPM model

lexmax { (θ1(a), θ2(a), . . . , θm(a)) : ai = si(fi(x)) ∀ i, x ∈ Q } (7)

We will use the name nucleolar RPM to avoid any possible misunderstandings
when referring to the lexicographic RPM. The nucleolar RPM implements a con-
sequent max-min aggregation thus resulting in much better modeling of the refer-
ence levels concept.

Table 2: Ordered achievements values

Solution θ1(a) θ2(a) θ3(a) θ4(a) θ5(a) θ6(a)

S1 0.3 0.3 1.2 1.2 1.2 1.2
S2 0.3 0.3 1.2 1.2 1.2 1.2
S3 0.3 0.3 1.2 1.2 1.2 1.2
S4 0.3 0.3 1.2 1.2 1.2 1.2
S5 0.3 0.3 1.2 1.2 1.2 1.2
S6 0.3 1.0 1.0 1.0 1.0 1.0
S7 0.3 0.3 0.3 0.6 1.0 1.0

One may easily notice that the nucleolar RPM is not affected by any adding or
eliminating any passive criterion. While applying the nucleolar RPM the ordered
achievement are lexicographically minimized and therefore in our example solu-
tion S6 is selected for six criteria as it was selected for fivecriteria (Table 2).
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Actually, the lexicographic max-min is the only regularization of the max-min ap-
proach satisfying the reduction (addition/deleting) principle [2]. Namely, if the
individual achievement of an outcome does not distinguish two solutions, then it
does not affect the preference relation:

(a′1, . . . , a
′
i, a

∗, a′i+1, . . . , a
′
q) � (a′′1 , . . . , a

′′
i , a

∗, a′′i+1, . . . , a
′′
q ) ⇔ a′ � a′′

(8)
Due to strictly monotonic individual achievement functions, the reduction princi-
ple is also satisfied in the original outcome space. Moreover, since the aggregation
is impartial with respect to partial achievements, it depends only on distribution
of achievements independently from their order. Hence, thenucleolar RPM works
also properly if the max-min optimization becomes passive despite one cannot
identify any passive original criterion. This can be illustrated with data from Ta-
ble 3 which differ from those of Table 1 only due to permuted achievements of
solution S7. This alternative is no longer dominated and thesixth criterion is no
longer passive. Nevertheless, as the distributions of achievement values remain
the same, the max-min optimization remains passive and the standard forms of
the RPM select solution S1 to S5 according to regularizationterm. Similarly, the
ordered values of achievements remain the same as in Table 2,and the nucleolar
RPM still selects solution S6 as the best matching the aspiration levels.

Table 3: Sample achievements with passive max-min criterion

Solution a1 a2 a3 a4 a5 a6

S1 0.3 1.2 1.2 1.2 1.2 0.3
S2 1.2 0.3 1.2 1.2 1.2 0.3
S3 1.2 1.2 0.3 1.2 1.2 0.3
S4 1.2 1.2 1.2 0.3 1.2 0.3
S5 1.2 1.2 1.2 1.2 0.3 0.3
S6 1.0 1.0 1.0 1.0 1.0 0.3
S7 0.3 0.3 0.3 1.0 0.6 1.0

The following assertions shows that the nucleolar RPM model(7) satisfies the ba-
sic requirements for the RPM approaches. Namely, model (7) guarantees the effi-
ciency of solutions (Theorem 1) and it is possible to generate all efficient solutions
using nucleolar RPM by appropriately choosing the reference vector (Theorem 2).

Theorem 1 For any strictly increasing partial achievement functionssi(yi), if x̄

is an optimal solution of the problem (7), thenx̄ is also an efficient solution of the
corresponding multi-criteria problem (1).

Proof. Supposēx optimal to (7) is dominated by somex′ ∈ Q. Thus, due to
strictly increasing partial achievement functions one gets āi = si(fi(x̄)) ≤ a′i =
si(fi(x

′)) ∀ i, with at least one inequality strict. Hence,θ1(ā) <lex θi(a
′) which

contradicts optimalitȳx to (7).
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Theorem 2 For any x̄ efficient solution, if the reference level are defined as
ri = fi(x̄) and strictly increasing partial achievement functionssi taking the
same value at the reference levels (si(ri) = ̺ ∀ i) are used, then̄x is an optimal
solution of the corresponding nucleolar RPM problem (7).

Proof. Note that̄ai = si(fi(x̄)) = ̺ ∀ i. If there exista′i = si(fi(x
′)) for x′ ∈ Q

such thatθ1(ā) <lex θi(a
′), thenāi =≤ a′i ∀ i with at least one inequality strict.

This contradicts the efficiency ofx.
Note that all typical partial achievement functions, in particular piecewise lin-

ear functions of the form (4), (5) or (6) are strictly increasing and they assign the
same value at the reference levels. Thus, Theorem 2 justifiesthe controllability of
the nucleolar RPM in the sense that for anyx ∈ Q efficient solution to multiple
criteria problem (1) there exists the reference vectorra such thatx is an optimal
solution of the corresponding nucleolar RPM problem (7) defined with this refer-
ence vector.

3. IMPLEMENTATION ISSUES

An important advantage of the RPM depends on its easy implementation as an
expansion of the original multiple criteria model. Actually, even more complicated
partial achievement functions of the form (6) are strictly increasing and concave
(under the assumption that0 < α < 1 < γ), thus allowing for implementation
of the entire RPM model (2) by an LP expansion [15]. The ordered achievements
optimized in the nucleolar RPM (7) are, in general, hard to implement due to the
pointwise ordering. Let us consider cumulated achievements θ̄k(a) =

∑k
i=1 θi(a)

expressing, respectively: the worst (smallest) achievement, the total of the two
worst achievements, the total of the three worst achievements, etc. Within the
lexicographic optimization a cumulation of criteria does not affect the optimal so-
lution. Hence, the nucleolar RPM model (7) can be expressed in terms of the
lexicographic maximization of quantities̄θi(a):

lex max { (θ̄1(a), θ̄2(a), . . . , θ̄m(a)) : ai = si(fi(x)) ∀ i, x ∈ Q } (9)

This simplifies dramatically the optimization problem since quantitiesθ̄k(a) can
be optimized without use of any integer variables. First, let us notice that for any
given vectora, the cumulated ordered valuēθk(a) can be found as the optimal
value of the following LP problem:

θ̄k(a) = min
uik

{
m

∑

i=1

aiuik :
m

∑

i=1

uik = k, 0 ≤ uik ≤ 1 ∀i } (10)

The above problem is an LP for a given outcome vectora while it becomes non-
linear fora being a vector of variables. This difficulty can be overcome by taking
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advantage of the LP dual to (10). Introducing dual variabletk corresponding to the
equation

∑m
i=1 uik = k and variablesdik corresponding to upper bounds onuik

one gets the following LP dual of problem (10):

θ̄k(a) = max
tk ,dik

{ktk −
m

∑

i=1

dik : ai ≥ tk − dik, dik ≥ 0 ∀ i } (11)

Due the duality theory, for any given vectora the cumulated ordered coefficient
θ̄k(a) can be found as the optimal value of the above LP problem. It follows from
(11) thatθ̄k(a) = max {ktk −

∑m
i=1 (tk − ai)+} where(.)+ denotes the non-

negative part of a number andtk is an auxiliary (unbounded) variable. The latter,
with the necessary adaptation to the minimized outcomes in location problems, is
equivalent to the computational formulation of thek–centrum model introduced
by [17]. Hence, formula (11) provides an alternative proof of that formulation.

Taking advantages of both (9) and (11), the nucleolar RPM canbe formu-
lated as a standard lexicographic optimization. Moreover,in the case of concave
piecewise linear partial achievement functions (as typically used in the RPM ap-
proaches), the resulting formulation extends the originalconstraints and criteria
with linear inequalities. In particular, for strictly increasing and concave partial
achievement functions (6), it can be expressed in the form:

lex max (z1, z2, . . . , zm)
s.t. x ∈ Q, yi = fi(x) ∀ i

zk = ktk −

m
∑

i=1

dik ∀ k

ai ≥ tk − dik, dik ≥ 0 ∀ i, k
ai ≤ γ(yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ (yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ α(yi − ra

i )/(ra
i − rr

i ) + 1 ∀ i

(12)

Thus, the nucleolar RPM can be effectively applied to various multiple criteria
optimization problems including the discrete ones.

Model (12) provides us with an easily implementable sequential algorithm to
generate efficient solutions according to the nucleolar RPMpreference specifica-
tion. However, it does not introduce any explicit scalarizing achievement function
which could be directly interpreted as expressing utility to be maximized. In or-
der to get such an analytical form (or rather approximation)of the nucleolar RPM
one needs to replace the lexicographic (preemptive) optimization of the ordered
achievements in (7) with its weighting approximation. Notethat the weights are
then assigned to the specific positions within the ordered achievements rather than
to the partial achievements themselves, thus representingthe so-called Ordered
Weighted Averaging (OWA) aggregation. With the OWA aggregation one gets the
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following RPM model:

max {

m
∑

i=1

viθi(a) : ai = si(fi(x)) ∀ i, x ∈ Q } (13)

wherev1 > v2 > . . . > vm > 0 are positive and strictly decreasing weights. When
differences among weights tend to infinity, the OWA aggregation approximates the
leximin ranking of the ordered outcome vectors [22]. That means, as the limiting
case of (13), we get the nucleolar RPM model (7). Actually, the standard RPM
model with the analytic scalarizing achievement function (2) can be expressed as
the following OWA model:

max { (1 +
ε

m
)θ1(a) +

ε

m

m
∑

i=2

θi(a) : ai = si(fi(x)) ∀ i, x ∈ Q }

Hence, the standard RPM model exactly represents the analytic (utility) form of
the OWA aggregation (13) with strictly decreasing weights in the case ofm = 2
(v1 = 1+ε/2 > v2 = ε/2). Form > 2 it abandons the differences in weighting of
the second largest achievement, the third largest one etc (v2 = . . . = vm = ε/m).

The OWA aggregation is obviously a piecewise linear function since it remains
linear within every area of the fixed order of arguments. Its optimization can be
implemented by expressing in terms of the cumulated orderedachievements

max {
m

∑

i=1

wiθ̄i(a) : ai = si(fi(x)) ∀ i; x ∈ Q }

wherewi = vi − vi+1 for i = 1, . . . ,m − 1, and taking advantages of the LP
expression (11) of̄θi [16]. This leads to a single level computational model similar
to (12).

max
m

∑

k=1

wkzk s.t. zk = ktk −
m

∑

i=1

dik ∀ k

x ∈ Q, yi = fi(x) ∀ i
ai ≥ tk − dik, dik ≥ 0 ∀ i, k
ai ≤ γ(yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ (yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ α(yi − ra

i )/(ra
i − rr

i ) + 1 ∀ i

(14)

For some special sequences of the OWA weightsvi this solution concept can
easily be defined without any need to order outcomes thus the solution procedure
may be quite simple. From the properties of the Gini’s mean absolute difference
[12] it follows that

m
∑

i=1

m
∑

k=1

min{ai, ak} =
m

∑

i=1

ai −
1

2

m
∑

i=1

m
∑

k=1

|ai − ak| =
m

∑

i=1

[2(m − i) + 1]θi(a)
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Hence, the OWA aggregation given by the decreasing sequenceof weightsvi with
a constant stepvi − vi+1 = ∆ can be directly expressed as

m
∑

i=1

viθi(a) = v̄1 min
1≤i≤m

ai +
∆

2

m
∑

i=1

m
∑

k=1

min{ai, ak} (15)

wherev̄1 = v1 −∆(2m − 1)/2. Note that formula (15) defines a piecewise linear
concave function which guarantees its LP computability when maximized.

The following extension of the analytic RPM model (2)

max { min
1≤i≤m

ai +
ε

m2

m
∑

i=1

m
∑

k=1

min{ai, ak} : ai = si(fi(x)) ∀ i, x ∈ Q } (16)

due to (15), represents the OWA aggregation given by the decreasing sequence of
weights withv1 = 1 + (2m − 1)ε and the constant stepvi − vi+1 = 2ε/m2.
Certainly, such an analytic model is only rough approximation to the nucleolar
RPM. Nevertheless, when applying (16) to our sample problemfrom Table 1, the
solution S6 is selected. For strictly increasing and concave partial achievement
functions (6) the model can be expressed as:

max a +
ε

m2

m
∑

i=1

m
∑

k=1

tik

s.t. x ∈ Q, yi = fi(x) ∀ i
ai ≥ a ∀ i
ai ≥ tik, ak ≥ tik ∀ i, k
ai ≤ γ(yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ (yi − rr

i )/(r
a
i − rr

i ) ∀ i
ai ≤ α(yi − ra

i )/(ra
i − rr

i ) + 1 ∀ i

(17)

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the nucleolar RPM performances let usanalyze the mul-
ticriteria problem of information system selection. We consider a billing system
selection for a telecommunication company [19]. The decision is based on 7 crite-
ria related to the system functionality, reliability, processing efficiency, investment
costs, installation time, operational costs, and warrantyperiod. All these attributes
may be viewed as criteria, either maximized or minimized. Table 4 presents all the
criteria with their measures units and optimization directions. There are also set
the aspiration and reservation levels for each criterion.

Five candidate billing systems have been accepted for the final selection pro-
cedure. All they meet the minimal requirements defined by thereservation levels.
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Table 4: Criteria and their reference levels for the sample billing system selection

f1 f2 f3 f4 f5 f6 f7

Function- Relia- Effi- Invest. Install. Oprnl. Warranty
ality bility ciency cost time cost period

Units # modules 1–10 CAPS mln. PLN months mln. PLN years
Optimization max max max min min min max
Reservation 4 8 50 2 12 1.25 0.5
Aspiration 10 10 200 0 6 0.5 2

Table 5 presents for all the systems (columns) their criteria valuesyi and the corre-
sponding partial achievement valuesai. The latter are computed according to the
piece-wise linear formula (6) withα = 0.1.

Table 5: Criteria valuesyi and individual achievementsai for five billing systems

System A System B System C System D System E
i yi ai yi ai yi ai yi ai yi ai

1 9 0.83 10 1.00 8 0.67 6 0.33 8 0.67
2 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00
3 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67
4 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75
5 10 0.33 3 1.05 6 1.00 8 0.67 5 1.02
6 1 0.33 1 0.33 0.6 0.87 0.2 1.04 1 0.33
7 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67

Table 6 presents for all the systems (columns) their partialachievement values
ordered from the worst to the bestθi(a). Examining rowθ1(a) one may notice that
except of system D all the other systems have the same worst achievement value
mini ai = 0.33. Selection among systems A, B, C and E depends only on the regu-
larization of achievements aggregation used in the RPM approach. Comparing the
second worst achievements (rowθ2(a)) one can see that according to the nucleolar
RPM (7) system E is the best selection guaranteeing at least0.67 achievement lev-
els for six criteria. These selection cannot be done if usingthe classical RPM with
regularization based on the total achievements. Actually,according to row

∑

i ai

either lexicographic RPM (3) or its analytic version (2) will select system C as
better than all the others. However, according to row

∑

i

∑

k min{ai, ak} even a
rough approximation to the nucleolar RPM given by the analytic model (16) turns
out to be strong enough to identify system E as the best selection.

CONCLUSIONS
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Table 6: Ordered achievements for five billing systems

A B C D E
θ1(a) 0.33 0.33 0.33 0.27 0.33
θ2(a) 0.33 0.33 0.60 0.33 0.67
θ3(a) 0.50 0.50 0.67 0.50 0.67
θ4(a) 0.83 0.85 0.80 0.67 0.67
θ5(a) 1.00 1.00 0.87 0.90 0.75
θ6(a) 1.00 1.00 1.00 1.00 1.00
θ7(a) 1.00 1.05 1.00 1.04 1.02
∑

i ai 4.99 5.06 5.27 4.71 5.11
∑

i

∑

k min{ai, ak} 27.33 27.75 29.91 25.10 30.27

The reference point method is a very convenient technique for interactive anal-
ysis of the multiple criteria optimization problems. It provides the DM with a tool
for an open analysis of the efficient frontier. The interactive analysis is navigated
with the commonly accepted control parameters expressing reference levels for the
individual objective functions. The partial achievement functions quantify the DM
satisfaction from the individual outcomes with respect to the given reference lev-
els. The final scalarizing function is built as the augmentedmax-min aggregation
of partial achievements which means that the worst individual achievement is es-
sentially maximized but the optimization process is additionally regularized with
the term representing the average achievement. The regularization by the average
achievement is easily implementable but it may disturb the basic max-min aggre-
gation. In order to avoid inconsistencies caused by the regularization, the max-min
solution may be regularized according to the Rawlsian principle of justice leading
to the nucleolar RPM model.

The nucleolar RPM implements a consequent max-min aggregation taking into
account also the second worst achievement, the third worse and so on, thus re-
sulting in much better modeling of the reference levels concept. The nucleolar
regularization is more complicated in implementation due to the requirement of
pointwise ordering of partial achievements. Nevertheless, by taking advantages of
piecewise linear expression of the cumulated ordered achievements, the nucleo-
lar RPM can be formulated as a standard lexicographic optimization. Actually, in
the case of concave piecewise linear partial achievement functions (typically used
in the RPM), the resulting formulation extends the originalconstraints and crite-
ria with simple linear inequalities thus allowing for a quite efficient implementa-
tion. The nucleolar RPM can be also approximated with the analytic form using
the ordered weighted averaging thus introducing explicit scalarizing achievement
function to be interpreted as utility.

The paper is focused on nucleolar refinement of the referencepoint method.
Nevertheless, the same methodology can easily be applied tovarious multiple cri-
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teria approaches requiring some fair (equitable) aggregations. In particular, to the
fuzzy goal programming models.
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15. Ogryczak, W., Studziński, K. and Zorychta, K. (1992). DINAS: A
Computer-Assisted Analysis System for Multiobjective Transshipment
Problems with Facility Location.Computers and Operations Research, 19,
637–647.
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