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Real-life decision problems are usually so complex they cannot be modeled with 
a single objective function, thus creating a need for clear and efficient techniques of 
handling multiple criteria to support the decision process. The most commonly used 
technique is Goal Programming. It is clear and appealing, but in the case of multiobjective 
optimization problems strongly criticized due to its noncompliance with the efficiency 
(Pareto-optimality) principle. On the other hand, the reference point method, although 
using similar control parameters as Goal Programming, always generates efficient solutions. 
In this paper, we show how the reference point method can be modeled within the Goal 
Programming methodology. It allows us to simplify implementations of the reference 
point method as well as shows how Goal Programming with relaxation of some traditional 
assumptions can be extended to a multiobjective optimization technique meeting the 
efficiency principle. 
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1. Introduction 

Cons ide r  a decis ion prob lem def ined  as an opt imiza t ion  p rob lem with k 
ob jec t ive  funct ions .  Fo r  s impl i f ica t ion we assume,  wi thout  loss o f  genera l i ty ,  that  

all the ob jec t ive  funct ions  are to be minimized.  The  p rob lem can be fo rmula ted  as 

fo l lows:  

where  

minimize F(x)  (1) 

subject to x ~ ,~, (2) 

F = (Fl . . . . .  Fk)-  k objec t ive  funct ions,  

.~ : feas ib le  set o f  the problem,  

x : vec to r  o f  dec is ion  variables.  

Cons ide r  fur ther  an ach ievemen t  vec to r  

q = F(x),  
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which measures the achievement of decison x with respect to the specified set of 
k objectives F! . . . . .  Fk. Let ~ denote the set of all the attainable achievement 
vectors 

°3J = {q = F ( x )  : x E ~ } ,  

i.e. all the vectors q corresponding to feasible solutions. It is clear that an achievement 
vector is better than another if all of its individual achievements are better or at least 
one individual achievement is better, whereas no other one is worse. Such a relation 
is called domination of achievement vectors and it is mathematically formalized as 
follows (in minimization problems such as that under consideration): 

if q" ~ q "  and q[ < q~" for all i = 1, . . . ,  k 

then q '  dominates q" and q" is dominated by q'. 

Unfortunately, there usually does not exist an achievement vector dominating all 
others with respect to all the criteria, i.e. 

there does not exist y ~ ~ such that, 

for any q ~ ~,  Yi < qi for all i = I . . . . .  k. 

Thus, in terms of strict mathematical relations we cannot distinguish the best 
achievement vector. The nondominated vectors are noncomparable on the basis of 
the specified set of objective functions. 

The feasible solutions (decisions) that generate nondominated achievement 
vectors are called efficient or Pareto-optimal solutions to the multiobjective problem. 
This means that each feasible decision for which one cannot improve any individual 
achievement without worsening another is an efficient decision. 

It seems clear that the solution of multiobjective optimization problems should 
simply depend on identification of the efficient solutions. However, even a finite 
characteristic of the efficient set for a real-life problem is usually so large that it 
cannot be considered as a solution to the decision problem. So, the need arises for 
further analysis, or rather decision support, to help the decision maker (DM) in 
selecting one efficient solution for future implementation. Of course, the original 
objective functions do not allow one to select any efficient solution as better than 
any other one. Therefore, this analysis depends on additional information about the 
DM's  preferences. The DM, working interactively with a decision support system 
(DSS), specifies his/her preferences in terms of some control parameters and the 
DSS provides the DM with an efficient solution which is the best according to the 
specified control parameters. For such an analysis, however, there is no need to 
identify the entire set prior to the analysis since contemporary optimization software 
is powerful enough to be used on-line for direct computation of the best efficient 
solution at each interactive step. Thus, the DSS can generate at each interactive step 
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only one efficient solution that meets the current preferences. Such a DSS can be 
used for analysis of decision problems with finite as well as infinite efficient sets. 
It is important, however, that the control parameters provide the completeness of 
the control (Wierzbicki [17]), i.e. that by changing the control parameters, the DM 
can identify every nondominated achievement vector. 

Goal Programming (GP), originally proposed by Charnes and Cooper [ 1] and 
further developed by others (e.g. Ijiri [7], Ignizio [4], Lee [8]), seems to be a 
convenient generating technique for a DSS. It is, in fact, commonly used in real- 
life applications (White [15]). Goal Programming deals with a specific model of the 
decision problem. In the case of the multiobjective optimization problem (1)-(2), 
it requires one to transform objectives into goals by specification of an aspiration 
level for each objective. An optimal solution is then the one that minimizes the 
weighted deviations from the aspiration levels. Various measures for multidimensional 
deviations have been proposed. They are expressed as achievement functions. Depending 
on the type of achievement function, we distinguish (compare Ignizio [5]): weighted 
(minsum) GP, fuzzy (minmax) GP, and lexicographic (pre-emptive priority) GP. If 
a GP model is used as a basis of a DSS, the aspiration levels can be changed during 
the decision analysis as the DM preferences evolve. 

Goal Programming turned out to be a very successful approach for many 
decision problems. However, when applied to the multiobjective optimization problem 
(1)-(2), Goal Programming, unfortunately, does not satisfy the efficiency (Pareto- 
optimality) principle. Simply, the GP approach does not suggest decisions that optimize 
the objective functions (1). It only yields decisions that have the outcomes closest 
to the specified aspiration levels, thus implementing the strict satisficing approach 
(Simon [11]). This weakness of Goal Programming has led to the development of the 
quasisatisficing approach. This approach deals with the so-called scalarizing achievement 
function which, when optimized, generates efficient decisions related to the specified 
reference levels. The best formalization of the quasisatisficing approach to multiobjective 
optimization was proposed and developed mainly by Wierzbicki [16] as the reference 
point method. The reference point method was later extended to allow additional 
information from the DM and, eventually, led to efficient implementations with 
successful applications (see Lewandowski and Wierzbicki [9]). 

In this paper, we show how the implementation techniques of Goal Programming 
can be used to model the reference point approach. Thereby, we also show how 
Goal Programming with relaxation of some traditional assumptions can be extended 
to an efficient decision support technique meeting the efficiency principle and other 
standards of multiobjective optimization theory. 

2. GP model of the reference point method 

The reference point method is an interactive technique. The basic idea of the 
interactive scheme is as follows. The decision maker (DM) specifies requirements, 



36 W. Ogryczak, The reference point method 

similarly as in GP, in terms of reference levels. Depending on the specified reference 
levels, a special scalarizing achievement function is built which, while being minimized, 
generates an efficient solution to the problem. The computed efficient solution is 
presented to the DM as the current solution in a form that allows comparison with 
the previous ones and modification of the reference levels if necessary. 

Let us concentrate on a single step, i.e. generation of an efficient solution by 
minimization of the scalarizing achievement function. The scalarizing achievement 
function, obviously, not only guarantees efficiency of the solution but also reflects 
the DM's expectations specified via the reference levels. While building the function, 
the following assumption regarding the DM's expectations is made: 

A1. The DM prefers outcomes that satisfy all the reference levels to any outcome 
that does not. 

One of the simplest scalarizing functions takes the following form (compare 
Steuer [12]): k 

max {s i (Fi (x  ) - r/)} + E ~.~ s i ( F i ( x  ) - r/), (3) 
l<_i<k i=1 

where r i denote reference levels, s i  > 0 are scaling factors, and e is an arbitrary 
small positive number. 

Minimization of the scalarizing achievement function (3) over the feasible set 
.~ generates an efficient solution. The selection of the solution within the efficient set 
depends on two vector parameters: reference vector (point) r and scaling vector s. 
In practical implementations, the former is usually designated as a control tool to 
be used by the DM, whereas the latter is automatically calculated from a pre- 
decision analysis (compare Grauer et al. [2]). The small scalar e is introduced only 
to guarantee efficiency in the case of a non-unique optimal solution. 

The reference point method, although using very similar main control parameters 
(reference levels instead of aspiration levels), always generates an efficient solution 
to the multiobjective problem, whereas GP does not. We will show, however, that 
the reference point method can be modeled via the GP methodology. Function (3) 
is built as a sum of the weighted Chebyshev norm of the differences between 
individual achievements and the corresponding reference levels and a small 
regularization term (the sum of the differences). 

Let us concentrate on the main term. The Chebyshev norm is available in GP 
modeling as fuzzy Goal Programming. The differences F / ( x ) - r  i can easily be 
expressed in terms of goal deviations n i and P i  defined according to the equations 

F i ( x ) + n i - P i = r  i for i =  1 . . . . .  k, 

ni>--O, pi>--O and n i P i = O .  
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Thus, nothing prohibits modeling the main term of the scalarizing achievement 
function via the GP methodology. We can form an equivalent GP achievement 
function: 

g l ( n , p )  = m a x  (--1)in i + w i P i )  , (4) 
l<i<_k 

where weights vi and wi associated with several goal deviations replace the scaling 
factors used in the scalarizing achievement function, e.g. for an exact model of the 
function (3), one needs to put I) i = W i = S i. However, there is one specificity in the 
function (4). Namely, there is a negative weight -v i  associated with the negative 
deviation n i. This is the reason why the reference point method attempts to reach 
an efficient solution even if the reference levels are attainable (which distinguishes 
the reference level from the GP aspiration level). This small change of the coefficient 
represents, however, a crucial change in the GP philosophy, where all the weights 
are assumed to be nonnegative. If we accept negative weights, we can consider the 
function (4) as a specific case of GP achievement functions. 

Adding a regularization term to the function (4) can destroy its GP form. 
However, by using lexicographic optimization we can avoid the problem of choosing 
an arbitrarily small positive parameter e (compare (3)) and introduce the regularization 
term as an additional priority level: 

k 

g 2 ( n , p )  = ~ _ ~ ( - l ) i r t i  + w i P i ) .  

i=1 

Finally, we can form the following lexicographic problem: 

RGP: lexmin 

subject to 

g ( n ,  p )  = [gl (n, p), g2 (n, p)] 

F i ( x )  + n i - Pi = r/ for i = 1 . . . . .  k, 

n i >_ 0, Pi >- 0 and niPi = O, 

x ~ . ~ .  

We will refer to the above problem as the reference GP model. It is not a standard 
GP model due to the use of negative weights in achievement functions and the 
different meaning of reference levels versus aspiration ones. The reference GP 
model always generates an efficient solution to the original multiobjective problem 
(proposition 1), satisfying simultaneously rules of the reference point approach, i.e. 
assumption A1 (proposition 2). 

PROPOSITION 1 

For any reference levels r i and any positive weights vi and wi,  if (~-, ~-, if) is 
an optimal solution to the problem RGP, then ~- is an efficient solution to the 
multiobjective optimization problem (1)-(2). 
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P r o o f  

Let (~, if, if) be an optimal solution to the problem RGP. Suppose that ~ is 
not efficient to the problem (1)-(2) .  That means there exists a vector x ~ such 
that 

F~(x)_<F~(~) for all i =  1 . . . . .  k (5) 

and for some index j (I < j  < k) 

Fj(x) < Fj(~), 
or, in other words, 

k k 
F~(x) < ~ ~ (~). 

i=1 i=1 

The deviations ~i and Pi satisfy the following relations: 

~ = (F~ ( ~ )  - r~)+ ,  ~ = (r~ - ~ (£))÷, 

where (.)+ denotes the nonnegative part of  a quantity. 
Let us define similar deviations for the vector x:  

(6) 

Pi = (F/(x) - r i )÷ for i = 1 . . . . .  k, 

ni = (r/ - F/(x))+ for i = 1 . . . . .  k. 

(x, n, p)  is a feasible solution to the problem R G P  and due to (5) and (6) for any 
positive weights u i and w i, the following inequalities are satisfied: 

wiPi  < Wi'ffi for i = 1 . . . . .  k, 

--Din i ~ --1)i'~ i for i = 1, . . . ,  k 
and 

k k 
E (--l)ini + w i P i )  < ~_~(--l)in i + wi-ffi ) . 
i=l i=l 

Hence, we obtain 

gl (n, p )  < gl (if, if) and g2 (n, p )  < g2 (if ,  i f ) ,  

which contradicts optimality of (.f, if, if) for the problem RGP.  Thus, ~ must be an 
efficient solution to the original multiobjective problem (1)-(2) .  [] 

PROPOSITION 2 

For any reference levels r i and any positive weights v i and w i if (£, if, if) is 
an optimal solution to the problem RGP, then any deviation ffi is positive only if 
there does not exist any vector x E ~ such that 

F i ( x ) < - r  i for a l l i = l  . . . . .  k. 
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Proof  

Let (~, ~-, if) be an optimal solution to the problem RGP.  Suppose that for 

some j, 
p-j > 0 ,  i.e. F j ( ~ ) > r j ,  

and there exists a vector x ~.~ such that 

Fi(x)<r l  for a l l i = l  . . . . .  k. 

Let us define deviations for the vector x: 

Pi = (F/(x) - r/)+ = 0 forall  i = 1 . . . . .  k, 

n i = (r/ - F/(x))+ > 0 for all i = 1 . . . . .  k. 

(x, n, p)  is a feasible solution to the problem R G P  and for any positive weights vi 
and wi, the following inequality is satisfied: 

m a x  ( - D i l l  i + w i P i )  <- 0 < wj- f f j  <_ max (-1)i~ i + Wi-ffi ) . 
l<i<k l < i S k  

Hence, gl (n, p) < gl (h-, if),  

which contradicts optimality of (~, ~, if) for the problem RGP.  Thus, there does 
not exist any vector x ~ • such that 

F i ( x  ) <- r i for all i = 1 . . . . .  k 

and thereby assumption A1 is satisfied. [] 

Note that neither proposition assumed any specific relation between weights. 
It is not necessary because we directly put into the problem R G P  the requirements 

nip i = 0 for i = 1 . . . . .  k (7) 

to guarantee proper calculation of all the deviations. It turns out, however, that 
requirements (7) can simply be omitted in the constraints of  the problem R G P  
provided that the weights satisfy some relations natural for the reference point 
philosophy. This is made precise in proposition 3. 

PROPOSITION 3 

For any reference levels ri, if  the weights satisfy relations 

O < v i < w i  f o r i = l  . . . . .  k, (8) 
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then any (£, ~-, if) optimal solution to the problem RGP with omitted constraints (7) 
satisfies these requirements, i.e. 

nip i = 0 for i = 1 . . . . .  k. 

Proof  

Let RGP '  denote the problem RGP with omitted constraints (7) and let 
(£, fi-, if) be an optimal solution to RGP'.  Suppose that for some j 

njp j  > O. 

Then we can decrease both Ej and ffj by the same small positive quantity. This 
means, for small enough positive 6, the vector (2, fi" - •ej, f f  - ~ej ) is feasible to 
the problem RGP' .  Due to (8), the following inequality is valid: 

-vj( j - 6)  + - 6 )  < -vj j + w j p j .  

Hence, we obtain 
gl (~', h- - 6e j , f f  - 6ej)  <_ g l (2 ,K ,  f f) ,  

- 6ej,  - 6 e j )  < 

which contradicts optimality of (£,fi-, P) for the problem RGP' .  Thus, nip  i = 0 for 
i = 1  . . . . .  k. [] 

Note that neither proposition assumes convexity of the feasible set ~. Thus, 
the reference GP model can be applied not only for linear problems but also for 
integer ones where the standard GP models fail to generate efficient solutions (HaUefjord 
and Jornsten [3]). Moreover, due to proposition 3, reference GP does not introduce 
any nonlinearity into the model. So, it can be easily implemented in spreadsheet- 
based LP systems, like What'sBest! (Lindo Systems [10]), to extend the capabilities 
of these tools commonly used in business decision making (Troutt et al. [14]). 

3. Numerical examples 

In the previous section, we have introduced the reference GP model and 
shown that it has all the most important properties of the reference point method. 
In order to demonstrate differences between the reference GP model and the standard 
GP models, we compare their results on small examples of multiobjective linear and 
integer problems. 

Consider the following optimization problem with two objectives: 

minimize (x], x2) 

subject to 3x] + 4x2 > 30, 

X 1 >2,  X 2 > 3 .  
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The efficient set for this problem is 

3x l+4x2=30 ,  x l>2 ,  x2>3, 

i.e. the entire line segment between vertices (2, 6) and (6, 3), including both vertices. 
We will compare the solutions to the above problem considered as linear 

(xl, x2-  continuous) and integer (xl, x2-  integer) generated with weighted, fuzzy, 
and reference GP. For this purpose, we define the goals: 

xl +nl  - P l  = l l ,  

X2 +n2 --P2 = /2, 

n i >_0, Pi >_0 for i = 1 , 2 ,  

where lj ( j  = 1, 2) represents the aspiration or reservation level, respectively. 
We use the same weights in all the models: 1 for the positive deviations and 

0.9 for the negative deviations. Thus, for weighted GP, we minimize the function 

Pl + 0.9ni + P2 + 0.9n2. 

For fuzzy GP, we need to minimize 

max(pl + 0.9nl, P2 + 0-9hE)- 

In the reference GP, a lexicographic minimum of the vector function 

[max(pl - 0.9nl, P2 - 0.9n2 ), Pl - 0.9nl + P2 - 0.9n2 ] 

is sought. 
We have solved all the corresponding linear and integer problems for eight 

aspiration/reference vectors (l I,/2)- The STORM package (Storm Software [13]) has 
been used for the computations. However, we have especially chosen such a simple 
problem to make verification of all the results with a graphical analysis of the 
problem possible. 

Table 1 reports results obtained for the linear problem. Note that both weighted 
and fuzzy GP have generated non-efficient solutions for three aspiration vectors 
((1, 8), (5, 5) and (8, 3)). One can claim that they are not good aspiration vectors, 
but who can justify which aspiration vector is good or not while analyzing a 
complex real-life decision problem? Moreover, one can easily verify that in all 
these cases, weighted GP generates the same non-efficient solutions for any set of 
positive weights. The same applies with fuzzy GP for aspiration vector (5, 5). 
Variations of the weights can improve the performances of fuzzy GP for aspiration 
vectors (1, 8) and (8, 3). When the weights associated with the negative deviations 
become small enough (less than 0.5), then we obtain efficient solutions (2, 6) and 
(6, 3), respectively. However, for any set of positive weights, non-efficient solutions 
(2, 8) and (8, 3) belong to the optimal sets of the corresponding fuzzy GP models. 
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Table 1 

Linear problem. 

(/t,/2) Weighted GP a) Fuzzy GP a) Reference GP 

(0, 0) 
(2, 3) 

(1, 8) 

(2, 5) 
(3, 4) 

(5, 5) 
(5, 3) 
(8, 2) 

(2, 6) (4.2857, 4.2857) (4.2857, 4.2857) 
(2, 6) (3.7143, 4.7143) (3.7143, 4.7143) 

! (2, 8) ! (2, 6.8889) (2, 6) 

(2, 6) (2.5714, 5.5714) (2.5714, 5.5714) 
(3, 5.25) (3.7143, 4.7143) (3.7143, 4.7143) 

! (5, 5) ! (5, 5) (4.2857,4.2857) 

(5, 3.75) (5.4286, 3.4286) (5.4286, 3.4286) 
! (8, 3) ! (6.8889, 3) (6, 3) 

a)! _ non-efficient solution. 

Furthermore, one may notice that weighted GP seems to show a worse distri- 
bution of the generated solutions than fuzzy GP, which may cause worse controllability 
of an interactive analysis. In weighted GP, we have obtained the solution (2, 6) for 
aspiration vector (0, 0) as well as for (2, 5), whereas fuzzy GP (and reference GP as 
well) generates the solutions (4.2857, 4.2857) and (2.5714, 5.5714), respectively. 
Weighted GP has generated the comer solution (2, 6) even for aspiration vector (2, 3), 
which is the utopia point, thus some compromise solution is expected (Zeleny [18]). 
Both fuzzy and reference GP have then generated a compromise  efficient solution 
(3.7143, 4.7143). In most  runs, weighted GP has generated solutions with one 
outcome as close as possible to the corresponding aspiration level and the second 
outcome relatively far. Both fuzzy and reference GP seem to be free f rom this 
weakness. 

Reference GP has generated exactly the same solutions as fuzzy GP when the 
latter has generated an efficient solution. The only difference is that reference GP 
has generated an efficient solution even when fuzzy GP has failed to do so. 

Table 2 reports results for the integer problem. Note that both weighted and 
fuzzy GP have generated non-efficient solutions for the same three aspiration vectors 
as in the linear case. In this case, however,  they have generated more non-eff icient  
solutions. In fact, fuzzy GP has generated efficient solutions for only two aspiration 
vectors ((2, 3) and (3, 4)), and weighted GP has generated a non-efficient  solution 
(3, 6) for aspiration vector (3, 4). These failures definitely cannot be explained by 
any questioning of the aspiration vector quality (compare Ignizio [6]). Though in 
all the cases of additional (in comparison to the linear case) non-efficient  solutions 
there exist alternative efficient solutions, the standard optimizer  has generated the 
non-efficient ones and in practical interactive decision support systems, usually, 
such a standard optimizer is used, providing the DM with only one alternative. We 
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Table 2 

Integer problem. 

(1 l, 12) Weighted GP a) Fuzzy GP a) Reference GP 

(0, 0) (2, 6) !? (5, 5) (4, 5) 
(2, 3) (2, 6) (4, 5) (4, 5) 
(1, 8) I (2, 8) ! (2,7)  (2, 6) 

(2, 5) (2, 6) !? (3, 6) (2, 6) 

(3, 4) !7 (3, 6) (4, 5) (4, 5) 

(5, 5) ~ (5, 5) ! (5, 5) (4, 5) 

(5, 3) (5, 4) !7 (6, 4) (5, 4) 
(8, 2) ! (8, 3) ! (7, 3) (6, 3) 

a)! - non-efficient solution. 
l? - non-efficient solution but there exists an efficient alternative solution. 

do not think it can be considered as a fault of the STORM package. We have tested 
these runs with other packages, getting the same results. It seems that the tendency 
to generate non-efficient solutions is rather a weakness of the weighted and fuzzy 
GP (especially fuzzy GP) models in connection with the standard procedure for 
mixed integer programs (i.e. the branch and bound procedure).  

One may notice that reference GP has always generated efficient solutions. 
Even if there are alternative solutions, they are all efficient. For instance, for 
aspiration vector (5, 5), we have obtained the solution (5, 4) but there is also an 
alternative (efficient) solution (4, 5). As in the linear case, reference GP shows 
much better controllability for an interactive analysis. 

4. C o n c l u s i o n s  

In this paper, we have shown that the implementation techniques of  Goal 
Programming can be used to model the reference point method. Namely, we have shown 
that employing the techniques of lexicographic and fuzzy GP with properly def'med 
weights, we receive an achievement function that satisfies all the requirements for the 
scalarizing achievement function used in the reference point approach. The properly 
defined weights mean, among others, usage of some negative weights. This is the reason 
why the scalarizing achievement function attempts to reach an efficient solution even 
if the reference levels are attainable. This small technical change, however, represents 
a crucial change in the GP philosophy, where all the weights are assumed to be nonnegative. 
We do not want to debate whether a Goal Programming model with negative weights 
is still Goal Programming or not. Instead of dealing with that scholastic problem, we 
are interested in the practical advantages of the relations proved in the paper. 
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From our point of view, the most important advantage is the possibility of 
using efficient GP implementation techniques to model the reference point approach. 
It allows one to simplify and demystify implementations of the reference point 
model and thereby extend applications of this powerful method. The reference GP 
proposed in this paper can easily be implemented in spreadsheet-based LP systems, 
like What'sBest (Lindo Systems [10]), and therefore used in business decision 
making. Moreover, it provides an opportunity to build unique decision support 
systems, providing the DM with both standard GP and the reference point method. 
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