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Abstract Many risk measures have been recently introduced which (for discrete random
variables) result in Linear Programs (LP). While some LP computable risk measures may
be viewed as approximations to the variance (e.g., the mean absolute deviation or the Gini’s
mean absolute difference), shortfall or quantile risk measures are recently gaining more
popularity in various financial applications. In this paper we study LP solvable portfolio op-
timization models based on extensions of the Conditional Value at Risk (CVaR) measure. The
models use multiple CVaR measures thus allowing for more detailed risk aversion modeling.
We study both the theoretical properties of the models and their performance on real-life
data.

Keywords Portfolio optimization - Mean-risk models - Linear programming - Stochastic
dominance - Conditional Value at Risk - Gini’s mean difference

Following the seminal work by Markowitz (1952), the portfolio optimization problem is
modeled as a mean-risk bicriteria optimization problem where the expected return is max-
imized and some (scalar) risk measure is minimized. In the original Markowitz model the
risk is measured by the standard deviation or variance. Several other risk measures have been
later considered thus creating the entire family of mean-risk (Markowitz-type) models. While
the original Markowitz model forms a quadratic programming problem, following Sharpe
(1971a), many attempts have been made to linearize the portfolio optimization procedure (c.f.,
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Speranza, 1993 and references therein). The LP solvability is very important for applications
to real-life financial decisions where the constructed portfolios have to meet numerous side
constraints (including the minimum transaction lots (Mansini and Speranza, 1999; Mansini
and Speranza, 2005), transaction costs (Kellerer, Mansini and Speranza, 2000; Konno and Wi-
jayanayake, 2001) and mutual funds characteristics (Chiodi, Mansini, and Speranza, 2003).
The introduction of these features leads to mixed integer LP problems. In order to guarantee
that the portfolio takes advantage of diversification, no risk measure can be a linear function
of the portfolio weights. Nevertheless, a risk measure can be LP computable in the case
of discrete random variables, i.e., in the case of returns defined by their realizations under
specified scenarios.

The simplest LP computable risk measures are dispersion measures similar to the variance.
The mean absolute deviation was very early considered in portfolio analysis (Sharpe, 1971b
and references therein) while Konno and Yamazaki (1991) presented and analyzed the com-
plete portfolio optimization model (the so-called MAD model). Yitzhaki (1982) introduced
the mean-risk model using Gini’s mean (absolute) difference as the risk measure. Both the
mean absolute deviation and the Gini’s mean difference turn out to be special aggregation
techniques of the multiple criteria LP model (Ogryczak, 2000) based on the pointwise com-
parison of the absolute Lorenz curves. The latter leads the quantile shortfall risk measures
which are more commonly used and accepted. Recently, the second order quantile risk mea-
sures have been introduced in different ways by many authors (Artzner et al., 1999; Ogryczak,
1999; Rockafellar and Uryasev, 2000). The measure, now commonly called the Conditional
Value at Risk (CVaR) (after Rockafellar and Uryasev (2000)) or Tail VaR, represents the
mean shortfall at a specified confidence level. It leads to LP solvable portfolio optimization
models in the case of discrete random variables represented by their realizations under spec-
ified scenarios. The CVaR has been shown by Pflug (2000) to satisfy the requirements of
the so-called coherent risk measures (Artzner et al., 1999) and is consistent with the second
degree stochastic dominance as shown by Ogryczak and Ruszczynski, 2002a). Several em-
pirical analyses (Andersson et al., (2001; Rockafellar and Uryasev, 2002; Mansini, Ogryczak
and Speranza, 2003b; Topaloglou, Vladimirou and Zenios, 2002) confirm its applicability
to various financial optimization problems. Thus, the CVaR models seem to overstep the
measure of Value-at-Risk (VaR) defined as the maximum loss at a specified confidence level
which is commonly used in banking (c.f., Jorion, 2001 and references therein).

This paper deals with portfolio optimization models based on the use of multiple CVaR
risk measures. Such an extension allows for more detailed risk aversion modeling while
preserving the simplicity of the original CVaR model. Both the theoretical properties of
the models and their performance on real data are analyzed. The paper is organized as
follows. In the next section we introduce basics of the mean-risk portfolio optimization,
the CVaR risk measures and the concepts necessary to make the paper self-contained.
Section 3 is devoted to the extended multiple CVaR model. Our analysis has been fo-
cused on the weighted CVaR (WCVaR) measures defined as simple combinations of a
few CVaR measures. The general model is presented and its two specific weight-setting
schemes relating the WCVaR measure to the Gini’s mean difference and its tail version,
respectively, are analyzed in detail. Moreover, a CVaR-related LP technique to directly
enforce portfolio diversification is introduced. Section 4 presents the experimental analy-
sis on real data from the Milan Stock Exchange. Extensive in-sample and out-of-sample
computational results are provided and commented. Finally, some concluding remarks are
given.
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1 Basic models
1.1 Mean-safety portfolio optimization

At the beginning of a period, an investor allocates the capital among various securities, thus
assigning a nonnegative weight (share of the capital) to each security. Let J = {1, 2, ..., n}
denote a set of securities considered for investment. For each security j € J, its rate of
return is represented by a random variable R; with a given mean u; = E{R;}. Further, let
X = (x;)j=1,2,..,n denote a vector of decision variables x; expressing the weights defining
a portfolio. To represent a portfolio, the weights must satisfy a set of constraints that form
a feasible set P. The simplest way of defining a feasible set is by a requirement that the
weights must sum to one and short sales are not allowed, i.e. > _, x; = landx; > Ofor j =
1, ..., n.Hereafter, itis assumed that P is a general LP feasible set defined by linear equations
and/or inequalities. This allows one to include upper bounds on single shares as well as several
more complex portfolio structure restrictions which may be faced by a real-life investor.
Each portfolio x defines a corresponding random variable Ry = Z'}zl R;x; that rep-
resents the portfolio rate of return. We consider 7 scenarios with probabilities p, (where
t=1,...,T). We assume that for each random variable R; its realization r;, under the
scenario ¢ is known. Typically, the realizations are derived from historical data treating T
historical periods as equally probable scenarios (p, = 1/T). The realizations of the port-

folio return Ry are given as y, = Z?:I rj:x; and the expected value can be computed as

wx) = Z,Tzl YePr = Zszl [>__1 7jsX;1p;. Similarly, several risk measures can be LP com-
putable with respect to the realizations y;.

Following Markowitz (1952), the portfolio optimization problem is modeled as a mean-
risk bicriteria optimization problem where the mean p(x) is maximized and the risk mea-
sure o(x) is minimized. In the original Markowitz model, the standard deviation o (x) =
[E{(Ry — 1(x))*}]/? was used as the risk measure. Several other risk measures have been
later considered thus creating the entire family of mean-risk models (see Mansini, Ogryczak
and Speranza, 2003a, 2003b). These risk measures, similar to the standard deviation, are
not affected by any shift of the outcome scale and are equal to O in the case of a risk-free
portfolio while taking positive values for any risky portfolio. Unfortunately, such risk mea-
sures are not consistent with the stochastic dominance order (Whitmore and Findlay, 1978)
or other axiomatic models of risk-averse preferences (Rothschild and Stiglitz, 1969) and risk
measurement (Artzner et al., 1999).

In stochastic dominance, uncertain returns (modeled as random variables) are compared
by pointwise comparison of some performance functions constructed from their distribution
functions. The first performance function F{V is defined as the right-continuous cumulative
distribution function: F,El)(n) = Fx(n) = P{Rx < n} and it defines the first degree stochastic
dominance (FSD). The second function is derived from the first as F,Ez)(n) = fjoo Fy(§) d&
and it defines the (weak) relation of second degree stochastic dominance (SSD): Ry >, Ry
if F,E,z)(n) < F,E/Z,)(n) for all . We say that portfolio X" dominates X" under the SSD (Ry >,
Ry»), if F;z )(n) < F,f%)(n) for all n, with at least one strict inequality. A feasible portfolio
x? € P is called SSD efficient if there is no x € P such that Ry >, Ry.

Several other portfolio performance measures were introduced as safety measures to be
maximized, like the worst realization, analyzed by Young (1998), and the CVaR risk measures
we consider further. Contrary to risk measures, the safety measures may be consistent with
formal models of risk-averse preferences (Rothschild and Stiglitz, 1969) and risk measure-
ment (Artzner et al., 1999). It has been shown by Mansini, Ogryczak and Speranza (2003a,
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2003b) that for any risk measure o(x) a corresponding safety measure (1,(X) = u(X) — 0(X)
can be defined and viceversa. Note that while risk measure o(x) is a convex function of x, the
corresponding safety measure 11, (X) is concave. A safety measure is considered risk relevant
if for any risky portfolio its value is less than the value for the risk-free portfolio with the
same expected returns. We say that the safety measure ug (x) is SSD consistent (or that the
risk measure 9(xX) is SSD safety consistent) if Ry >, Ry implies po(x") > po(x”). If the
safety measure is SSD consistent, then except for portfolios with identical values of p(x) and
Mo(X) (and thereby o(x)), every efficient solution of the bicriteria problem

max({[1(x), 1o(X)] : X € P} (D

is an SSD efficient portfolio (Ogryczak and Ruszczynski, 1999). Therefore, we will focus
on the mean-safety bicriteria optimization (1) rather than on the classical mean-risk model.

The commonly accepted approach to implement the Markowitz-type mean-risk models
is based on the use of a specified lower bound 1o on expected return while minimizing the
risk criterion. In our analysis we use the bounding approach applied to the maximization of
the safety measures, i.e.

max{u,(X):x € P, u(x) > po}. 2

For small values of the bound ¢, the constraint ;(x) > 11 does not influence the optimization
(2). In this case, the portfolio obtained is the so called Maximum Safety Portfolio (MSP),
whose return is referred to as w(MSP). The MSP is the solution of max Mo(X). When o >
w(MSP), then the optimal solution of the corresponding problem represents a mean-safety
efficient solution. In our computational analysis we will examine the MSPs for the different
models. We will obtain the MSPs by solving (2), with u set to zero.

1.2 Absolute Lorenz curve and related measures

Stochastic dominance relates the notion of risk to a possible failure of achieving some targets.
Note that function F;z), used to define the SSD relation, can also be presented as follows
(Ogryczak and Ruszczynski, 1999, 2001): F,fz)(n) = E{max{n — Ry, 0}} and its values are
LP computable for returns represented by their realizations y; as:

T
FP()=min » d p, subjectto d7 =n—y. d7 =0 fort=1,....T. (3)
t=1

In this paper we focus on quantile shortfall risk measures related to the so-called Absolute
Lorenz Curves (ALC) (Levy and Kroll (1978), Shorrocks (1983), Shalit and Yitzhaki (1994),
Ogryczak (1999), Ogryczak and Ruszczyniski (2002a)) which represent the second quantile
functions defined as

p
F{2(p) = f F{P(a)da for 0<p<1 and F{?(0)=0, “)
0

where F,E‘l)(p) = inf {n: Fx(n) > p} is the left-continuous inverse of the cumulative dis-
tribution function Fyx. Actually, the pointwise comparison of ALCs provides an alternative
characterization of the SSD relation (Ogryczak and Ruszczyniski, 2002a) in the sense that
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Ry >, Ry if and only if F,ffz)(ﬂ) > F,ffz)(ﬂ) forall 0 < B < 1. The duality (conjugency)
relation between F(~2 and F® (Ogryczak, 1999; Ogryczak and Ruszczynski, 2002a) leads
to the following formula:

F(B) = max [Bn — FY()] = max [fn — E{max{n — Ry 0}}] )

where 7 is a real variable taking the value of B-quantile Qg(x) at the optimum.

For any real tolerance level 0 < § < 1, the normalized value of the ALC defined as
Mg(x) = F{-2(B)/B is now commonly called the Conditional Value-at-Risk (CVaR). This
name was introduced by Rockafellar and Uryasev (2000) who considered (similar to the
Expected Shortfall by Embrechts, Kliippelberg and Mikosch (1997)) the measure CVaR
defined as E {Ry|Ry < F{~ D(B)} for continuous distributions showing that it could then be
expressed by a formula analogous to (5) and thus be potentially LP computable. The approach
has been further expanded to general distributions (Rockafellar and Uryasev, 2002). For
additional discussion of relations between various definitions of the measures we refer to
(Ogryczak and Ruszczyriski, 2002b).

The CVaR measure is a safety measure according to our classification (Mansini, Ogryczak
and Speranza, 2003a). The corresponding risk measure Ag(x) = u(x) — Mg(x) (Ogryczak
and Ruszczynski, 2002b) is called hereafter the (worst) conditional semideviation. Note
that, for any 0 < 8 < 1, the CVaR measures defined by F(~2(8), opposite to below-target
mean deviations F (2)(1;), are risk relevant. They are also coherent (Pflug, 2000) and SSD
consistent (Ogryczak and Ruszczynski, 2002a). For a discrete random variable represented
by its realizations y,, due to (3), problem (5) becomes an LP. Thus

1z
Mpg(x) = max [n—EZd,p,i| st. d =2n—y, d7 >0 fort=1,...,T

=1
(6)

The CVaR measure is an increasing function of the tolerance level 8, with M| (x) = u(x).
For B approaching 0, the CVaR measure tends to the Minimax safety measure (Young, 1998)

M(x) = mm y, (@)

AAAAA

whose corresponding risk measure is A(x) = u(x) — M(x). One may also notice that Ag s(x)
represents the mean absolute deviation from the median (Mansini, Ogryczak, and Speranza,
2003a), the risk measure suggested by Sharpe (1971b) as the right MAD model.

Yitzhaki (1982) introduced the GMD model using Gini’s mean (absolute) difference as
the risk measure. For a discrete random variable represented by its realizations y;, the Gini’s
meandifference T'(x) = 3 31 _, Y"1, 1y — v |py pr is LP computable (when minimized).
Actually, Yitzhaki (1982) suggested to use the corresponding safety measure

mr (%) = pu(x) — I'(x) = E{Rx A Ry} ®)

to take advantages of its SSD consistency. The measure is LP computable as:

M (X) = max Z Py +2 Z Z Pv Pty ©)

t'=1 t'=t'+1
St. upr < vy, upy <y for t'=1,....,T—1;, t"=¢+1,...,T.
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Fig. 1 The absolute Lorenz curve and risk measures

Both the Gini’s mean difference and the CVaR measures are related to the absolute
Lorenz curve (4). The graph of F{~? is a continuous convex curve connecting points (0, 0)
and (1, p(x)), whereas a deterministic outcome with the same expected value u(x), yields
the chord (straight line) connecting the same points. Hence, the space between the curve
(p, F,ﬁ’z)( P)), 0 < p <1, and its chord represents the dispersion (and thereby the riskiness)
of Ry in comparison to the deterministic outcome of w(x). It is called the Lorenz dispersion
space. One may notice that Ag(x) = %h 4(X) where hg(x) denotes the vertical diameter of the
Lorenz dispersion space at point p = g (Fig. 1). Actually, all the classical LP computable
risk measures are well defined size characteristics of the Lorenz dispersion space (Ogryczak,
2000, Ogryczak and Ruszczyniski, 2002a). The Gini’s mean difference may be expressed
asT'(x) =2 fol(,u(x)ot — F,E’z)(oe))doe =2 fol ho(x)da thus representing the doubled area of
the Lorenz dispersion space. Therefore, any CVaR measure (the conditional semideviation)
is a rather rough (diameter) measure of the Lorenz dispersion space when comparing to the
Gini’s mean difference.

The GMD safety measure summarizes all the CVaR measures as p.(x) = u(x) — I'(x) =
2 fol F,E’Z)(a)doz =2 fol aM,(x)da. Therefore, the stronger SSD consistency results have
been recently shown for the GMD model by Ogryczak and Ruszczyriski (2002a),i.e., Ry >,
Ry implies ur(x’) > ur(x”) which guarantees that every efficient solution of the bicriteria
problem (1) is an SSD efficient portfolio. On the other hand, its computational LP model (9)
requires 72 variables which makes it much more complicated than the CVaR model (6) using
only 7 variables. In the next sections we will demonstrate that models based on a few CVaR
criteria offer a very good compromise between the computationally complex GMD model
and simplified CVaR.
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2 Enhanced CVaR measures
2.1 The multiple CVaR model

Although any CVaR measure (for 0 < 8 < 1) is risk relevant, it represents only the mean
within a part (tail) of the distribution of returns. Therefore, such a single criterion is in some
manner crude for modeling various risk aversion preferences. In order to enrich the modeling
capabilities, one needs to treat differently some more or less extreme events (Haimes, 1993).
For this purpose one may consider multiple CVaR measures as risk (safety) criteria. In
particular, one may consider several, say m, tolerance levels 0 < ) < B < -+ < B <1
and use the corresponding CVaR measures Mg, (x) to build a multiple criteria portfolio
selection model:

max{[Mpg, (x), Mg,(X), ..., Mg (X)]: x € P}. (10)

The model may contain the original mean value as the last criterion M;(x) = u(x), if
Bm = 1. One may notice that, for any portfolio x, one gets [Mpg, (X), Mp,(X), ..., Mg, (X)] <
[p(x), n(x), ..., u(x)] with at least one inequality strict. Hence, the multiple criteria model
(10) is risk relevant in the sense that for any risky portfolio its outcome vector is dominated
by that for the risk-free portfolio with the same expected return. Actually, the model (10)
is SSD consistent in the sense that Ry >, Ry implies [Mg (X'), Mp,(X'), ..., Mg, (X)] >

[Mpg, (x"), Mg, (x"), ..., Mg, (x")]. Actually, the following assertion is valid.

Theorem 1. For any set of levels 0 < B; < o < ... < B < 1, except for portfolios with
identical values of all the corresponding CVaR measures Mg, (X), every efficient solution of
the multiple criteria problem (10) is an SSD efficient portfolio.

Proof: Letx® e P be an efficient solution of (10). Suppose that there exists X' € P such that
Ry >, Ry. Then, due to SSD consistency of the CVaR measures, Mg, (X') > M, (x%) for
allk =1, ..., m. The latter together with the fact that x is efficient, implies that M 5 (X) =
Mg, x% fork =1, ..., m, which completes the proof. O

The weighted sum is the simplest aggregation technique in multiple criteria optimization.
It can also be used to combine the CVaR criteria in (10). The weighted CVaR objective
was first introduced by Ogryczak, 2000) (not using the name CVaR introduced later by
Rockafellar and Uryasev, 2000); the portfolio optimization model based on historical data
and its LP computability was then proven. Later it was extended and considered in various
forms for portfolio optimization (Ogryczak and Ruszczyriski, 2002b; Acerbi and Simonetti,
2002), general decisions under risk (Ogryczak, 2002), as well as for regression analysis
(Rockafellar, Uryasev and Zabarankin, 2002).

In order to distinguish clearly the p(x) criterion, further we will consider it separately from
the m tolerance levels 0 < ) < f» < --- < B, < 1 (thus excluding 8 = 1). However, to
simplify some formulas, we will use the expanded notation: 8y = 0and 8,41 = 1. Combining
1(x) and the CVaR values with positive (and normalized) weights we introduce the Weighted
multiple CVaR (WCVaR) measure as

MYP(x) = wou(x) + Y wiMg,(x),

k=1
Zwkzl, wyg>0, wy>0 for k=1,...,m. (11)
k=0
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The WCVaR measure is a safety measure and it is risk relevant. The corresponding risk
measure turns out to be the weighted sum of the A g, (x) measures thus forming the weighted
conditional semideviation:

m m
Agv")(x) = n(x) — M&")(x) = Zkaﬁk(X)’ Zwk <1, we>0 fork=1,...,m.
k=1 k=1

12)
The latter is not affected by any shift of the outcome scale and it is equal to O in the case of
a risk-free portfolio while taking positive value for any risky portfolio, thus representing a
translation invariant and risk relevant dispersion parameter. Therefore, we can consider the
corresponding Markowitz-type model and its mean-safety formalization (1):

max {[p,(x), Mév’")(x)]:x € ’P} = max {[,u(x), n(x) — A(V’V")(x)]:x € ’P}. (13)

Since the CVaR measures are coherent (Pflug, 2000) and SSD consistent (Ogryczak and
Ruszczyriski, 2002a), the same applies to the WCVaR measure. In particular, Ry > ., Ry
implies M (x') > M{"(x") (Ogryczak and Ruszczyiiski, 2002b). Actually, the SSD consis-
tency relation for the WCVaR measure is stronger since it takes into account all the individual
CVaR measures as shown in the following assertion.

Theorem 2. For any set of levels 0 < B1 < By < -+ < B < 1, except for portfolios with
identical values of (X) and all conditional semideviations A g, (X), respectively, every efficient
solution of the bicriteria problem (13) is an SSD efficient portfolio.

Proof: Let x° € P be an efficient solution of (13). Suppose that there exists X' € P such
that Ry >, Ry. Then, due to SSD consistency of the CVaR measures, u(x’) > w(x%)
and Mg (X') > My, (x%) for all k =1,...,m. The latter, together with the fact that x°
is efficient, implies that u(x') = u(x®) and Y |", wiMg, (x') = Y ;- wi Mg, (x°). Hence,
Mg, (x') = Mg (x°) fork = 1, ..., m, and therefore, Ag, (x') = Ap,(x") forallk = 1,...,m,
which completes the proof. d

For returns represented by their realizations we get an LP model. The model contains
the following core LP constraints to define a feasible portfolio, portfolio realizations, and
portfolio expected return:

n n
xeP, z>puo, ZMijZZ and er,xj:y[ forr=1,...,T (14)
=1 =1

where 7z is an unbounded variable representing the mean return of the portfolio x and y,
(t=1,...,T) are unbounded variables to represent the realizations of the portfolio re-
turn under the scenario ¢. The general WCVaR model (13) leads us to the following LP
problem:

m

. - W
maximize woz-i-z Wik —E _ﬂ E Didsk
k
=1

k=1 k=1
subjectto (14)and dyy —qx +y: >0, dypy =0 fort=1,...,T; k=1,....m
(15)
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where g; (for k = 1, ..., m) are unbounded variables taking the values of the corresponding
Br-quantiles (in the optimal solution). Except from the core constraints (14), model (15)
contains 7' nonnegative variables d;; and T corresponding linear inequalities for each k.
Thus, its dimensionality is proportional to the number of scenarios 7' and to the number of
tolerance levels m. Note that model (15) with m = 1 and wy = 0 covers the standard CVaR
model, while m > 1 and various settings of positive weights w; allow us to model a wide
gamut of risk averse preferences. The model does not require any specific relation between
the number of scenarios 7' and the number of securities 7 or the number of tolerance levels m.
Similar to the Markowitz model, a very low number of scenarios may result in much less
diversified portfolios. Increasing the number of tolerance levels m, generally, enables a larger
diversification. However, such diversification is not guaranteed since, as demonstrated later,
it also depends on a specific weight-setting.

Recall that the absolute Lorenz curve, and thereby the CVaR measures, represent a
dual characterization of the SSD relation (Ogryczak and Ruszczyniski, 2002a). Hence, the
weighted combination of the CVaR measures may be interpreted as the dual utility criterion
within the theory developed by Yaari (1987) which was recently reintroduced into the finance
literature in a simplified form of the spectral risk measures (Acerbi, 2002). Indeed, according
to (11),

1 m Br 1
M (x) = wy / F(@do + el / F(@)da = / (@) F D (@)da
0 = Br Jo 0

where

m wi
$(a) = wo+;a, Bi1 <a < B; (16)

Wo, Bn <a =1

is a decreasing risk aversion function (note the sign change for our safety measures to be
maximized).

As pointed out by Acerbi (2002), the subjective risk aversion of an investor can be encoded
in a function ¢(«) defined for all possible confidence levels « € (0, 1] and from a financial
point of view one cannot see any natural choice of function ¢(«). The use of a wide class of risk
aversion functions in portfolio optimization (Acerbi and Simonetti, 2002) seems to be rather
far from the simplicity necessary to make possible an effective implementation of the portfo-
lio optimization procedure. In the following we will focus on the WCVaR measures defined
as simple combinations of a very few CVaR measures (thus stepwise risk aversion functions ¢
with a very few steps). On the other hand, we introduce two specific types of weight-settings
which relate the WCVaR measure to the Gini’s mean difference and its tail version. This al-
lows us to use a few tolerance levels B as the only parameters specifying the entire WCVaR
measures (modeling risk aversion function) while the corresponding weights are automati-
cally predefined by the requirements of the corresponding Gini’s measures. In other words, the
investor’s preferences are modeled by a selection of a few tolerance levels. It turns out that we
have managed to identify a class of simple WCVaR measures performing better in a real-life
portfolio optimization environment than typical CVaR measures and the GMD model.

2.2 Wide WCVaR measures

In the case of equally probable T scenarios with p, = 1/T (historical data for T periods),
the weighted CVaR measure M{T ~V(x) defined with m = T — 1 tolerance levels By = k/T
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fork =1,2,..., T — 1 represents the standard weighting approach in the multiple criteria
LP portfolio optimization model with criteria F~?(k/T) (Ogryczak, 2000). The use of
weights wy = (2k)/T* fork =1,2,..., T — 1 and wy = 1/T results then in AT V(x) =
% ,Z:_ll h & (x) = I'(x) (c.f. Fig. 1). Hence, the WCVaR model is then equivalent to the GMD
model and it cannot provide us with any new modeling capabilities.

In the general case of T scenarios with arbitrary probabilities p,, one may use an ap-
proximation to I'(x) with A(v:”)(x) based on some reasonably chosen grid of tolerance levels
Br, k =1,..., m and weights w; expressing the corresponding trapezoidal approximation
to the integral formula I'(x) = 2 fol (X)) — F,E‘z)(a))doz. Such an approximation is a very
attractive risk measure itself as it allows us to dramatically reduce the computational burden
caused by T'? dimensionality of the LP implementation of the GMD model (9) while intro-
ducing new modeling capabilities connected to the grid selection. Exactly, for any grid of m
tolerance levels0 < B) < --- < fBr < --- < B < 1one gets the trapezoidal approximation:

P() =Y Bert — B Dhp (0 = Y (Bert — BB Ap, (0.
k=1 k=1

Note that Z/r:l:l(ﬁk+] — Bi—1)Br = Bn < 1. This leads us to the WCVaR measure with
weights:

Wi = (Br+1 — Be—1)Pr,  fork=1,....m, and wo=1-f. a7

Precisely, when using the weights given by (17), the corresponding WCVaR measure defined
by (11) is an approximation to the GMD safety measure (8) (i.e., M (x) = 11.(x)), and the
corresponding weighted conditional semideviation (12) is an approximation to the Gini’s
mean difference I'(x). This can be also illustrated in terms of the spectral measures (Acerbi,
2002) as integrating by parts one gets

1 1 1
e (X) = 2/ FS(a)da = 2F 2 (1) — 2/ aFT Y (@)da :/ 2(1 — a)F D ()da
0 0 0

which allows us to express the GMD safety measure by the risk aversion function ¢(«) =
2(1 — a) while formula (16) with the weights (17) defines a stepwise approximation to this
function.

Again, the WCVaR measures may be considered the exact GMD measure applied to (m +
1)-point distributions approximating the original distribution of returns Ry, thus providing
a trapezoidal approximation to the original Lorenz dispersion space. In particular, for the
(m + 1)-point distribution Ry, ....sm

Bx —Biet, E=a fork=1,.... m+1
]P){RX(;‘?],“.A,@”,) =S} =

0, otherwise

suchthata; < ay < --- < ay.1,the weighted conditional semideviation AU (x#1-+An)y with
weights (17) is equal to I'(x#1-++#) In general, A" (x) is a lower approximation to I'(x).
It must be emphasized that despite being only an approximation to the Gini’s mean
difference, any WCVaR measure with weights defined by (17) is a well defined LP computable
risk measure with guaranteed SSD consistency in the sense of Theorem 2. In other words, we
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are interested in the GMD approximation properties only for a reasonable weights definition.
We will refer to the WCVaR measures with weights defined by (17) as the Wide WCVaR
as covering (spanning) a wide area of the quantile scale. The Wide WCVaR measures need
not to employ a very dense grid to provide a proper modeling of risk averse preferences.
This allows us to build relatively small LP models with mT variables. In our computational
analysis we have considered m = 3 while testing three different patterns of the tolerance
levels (see Table 1) corresponding to three types of preferences defined by the tolerance
levels location.

2.3 Tail WCVaR measures

The Wide WCVaR measures, based on the approximation to the Gini’s measure, contain the
risk neutral term M, (x) = p(x) with the weight wyg = 1 — B,,. This may cause the measure
to pay too much attention to very low probable but very large returns. Actually, the measure
can be more sensitive to large returns than the Gini’s mean difference. We encountered
such a situation in our computational analysis where in a few cases all the models based
on the WCVaR approximation to GMD selected a single security portfolio with very high
expectation caused by a very few but extremely high return realizations.

In order to overcome this flaw one may use the Tail WCVaR measures, built with an
approximation to the tail GMD measures instead of the GMD itself. The tail GMD (Ogryczak
and Ruszczyniski (2002a, 2002b)) is defined for any B € (0, 1] by averaging the vertical
diameters & ,(x) within the tail interval p < B as:

B
Tp(x) = % / (n@a — FS2(a))da. (18)
0

A simple analysis of the absolute Lorenz curve (Ogryczak and Ruszczynski, 2002a) shows
that, for any 0 < B < 1, the tail Gini’s measure I'g(x) is SSD safety consistent. One may
notice that the corresponding safety measure e, (x) = u(x) — I'g(x) can be expressed as

o, (X) = ju(x) — 2 f ﬁ(l/«(x)a — FS2(a)da = 2 / ’ FSP(a)da
T'p 52 0 X '32 0 X

which allows us to consider it as a second degree CVaR measure.

In the simplest case of equally probable T scenarios with p, = 1/ T, the tail Gini’s measure
for § = K/T may be expressed as the weighted conditional semideviation ASVK )(x) with
tolerance levels By = k/T fork = 1,2, ..., K and properly defined weights (Ogryczak and
Ruszczynski, 2002a). In a general case, we may resort to an approximation with the weighted
CVaR measure based on some reasonably chosen grid B, k =1, ..., m and weights wy
expressing the corresponding trapezoidal approximation of the integral in the formula (18).
Exactly, for any 0 < 8 < 1, while using the grid of m tolerance levels 0 < 8; < --- < B¢ <

- < B, = B one may define the weights:

(,Bm - ,Bmfl),Bm

we = (Br+1 — Br—1)Bk
132

B* ’

fork=1,....m—1, and w, = (19)

where By = 0. This results in the weighted sum > ;" wix Ag, (X) expressing the trapezoidal
approximation to the tail Gini’s measure (18). Note that > ;" wy = B%/B* =1 and thus
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we get a regular weighted conditional semideviation (12) Ag’v”)(x) = I'g(x). Further, weights
(19) together with wy = 0 generate a WCVaR measure (11) such that Mv(:")(x) = e, (x).
This can also be illustrated in terms of the spectral measures (Acerbi, 2002) as integrating
by parts one gets

2 P -2 2 -2
Iy, (X) = F{P()da = = F72(B)
b 0 B

B
2(8 — )

2 B 1 +
_E/ aF,g—“(a)da:/ 5 F{ ) (@)da
0 0

allowing us to express the tail GMD safety measure by the risk aversion function ¢(«) =
2(B8 — )™ /B? where (.)* denotes the nonnegative part of a number. Formula (16) with the
weights (19) defines a stepwise approximation to this function.

Again, we emphasize that despite being only an approximation to (18), any Tail WCVaR
measure (e.g., a WCVaR measure with weights defined according to (19)) is a well defined
LP computable measure with guaranteed SSD consistency in the sense of Theorem 2. They
need not be built on a very dense grid to provide proper modeling of risk averse preferences.
Actually, we are interested in a direct preference modeling with simple Tail WCVaR measures
rather than strict approximation to the Tail GMD measure. In our computational analysis we
have tested two Tail WCVaR models with m = 2 and m = 3 (see Table 1). Obviously, all the
Tail WCVaR model measures are implemented as LP problems (15) but with wy = 0. Again,
for a small value of m we get rather small LP models with mT variables.

2.4 Direct diversification enforcement

Since the seminal work of Markowitz (1952), the notion of investing in diversified portfolios
is considered one of the most fundamental concepts of portfolio management. Diversification
should be enforced by the mean/risk preference model. Indeed, in the original Markowitz
model it was usually guaranteed by the standard deviation (variance) minimization. In gen-
eral, it may happen that a single security or a low diversified portfolio is SSD dominating over
all other (more diversified) portfolios, and the SSD consistent Markowitz-type models will
select such an undiversified solution. Especially, the SSD consistent models based on the LP
computable risk measures may fail to generate sufficiently diversified portfolios, although this
also happens for the original Markowitz model (Mansini, Ogryczak and Speranza, 2003b).
Therefore, additional restrictions may be posed on the feasible portfolios to guarantee the
required diversification. The simplest way to enforce portfolio diversification is to limit the
maximum share. This, however, allows us to form a portfolio with a few shares at the max-
imum level. A better modeling alternative would be to allow for a relatively large maximum
share provided that the other shares are smaller. Such a rich diversification scheme may be
introduced with the CVaR constructs applied to the right tail of the distribution of shares.

A natural generalization of the maximum share is the (right-tail) conditional mean de-
fined as the mean within the specified tolerance level (amount) of the worst shares. One
may simply define the conditional mean as the mean of the k largest shares. This can
be formalized as follows. First, we introduce the ordering map ® : R" — R" such that
O(x) = (01(x), 02(x), ..., 8,(x)), where 6,(x) > 6,(x) > --- > 6,(x) and there exists a per-

mutation 7 of set J such that 6;(x) = x.(;, for j = 1,..., n. The use of ordered outcome
vectors ©(x) allows us to focus on distributions of shares impartially. Next, the linear cu-
mulative map is applied to ordered vectors to get G (x) = ZI;Z 10jx)fork =1,...,n. The
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coefficients of vector O(x) = (0;(x), f2(x), . . ., 0,(x)) express, respectively: the largest share,
the total of the two largest shares, the total of the three largest shares, etc. Hence, the (worst)
S—conditional mean share is given as %Q_k(x), fork=1,...,n.

Similar to the CVaR formulas, for a given vector x, the value of 6;(x) may be found by
solving the linear program (Ogryczak and Tamir, 2003):

n
Or(X) = min {ksk+2d,‘§j Ddyy = xj = sk, di; =0 for j = l,...,n},
=

where s is an unbounded variable (representing the k-th largest share at the optimum) and
dy; are additional nonnegative (deviational) variables. Hence, any model under consideration
can easily be extended with direct diversification constraints specified as 8;(x) < c; upper
bounding total of the k largest shares and implemented with linear inequalities:

n
kse+ Y dy <c and dy >x;—s, di; =0 for j=1,....n. (20)
j=1

3 Experimental analysis
3.1 Testing environment

The present section is devoted to the experimental analysis in a real framework of all the
described LP models based on extensions of the CVaR measure. Models have been tested on
a PC with a 500 MHz Pentium processor by using CPLEX 6.5 package. First we present the
test problems. Then the results of the in-sample analysis, both on the original models and on
their modifications to enforce diversification, are described. Next, the out-of-sample analy-
sis including the results obtained through the simulation of a “multiperiod-type” portfolio
investment is presented. Finally, portfolio performances in a separated period characterized
by a strong drawdown trend are discussed.

Historical data are represented by weekly rates of return from Milan Stock Exchange. The
rates are computed as relative stock price variations. Dividends are not included. The data
set consists of 157 securities quoted with continuity from 1994 to 1999. In the first years
of this historical period the Italian Stock Exchange has shown alternate short periods of up
and down trends while entering a positive growing trend at the end. This is shown in Fig. 2,
where the performance of the Milan Stock Exchange index MIB30 is depicted in the period
(1994-2002).

A set of 13 instances has been created, each of which takes into account the complete set of
securities over a different time period. For this reason, from now on, we will indifferently refer
to them as instances or periods. In particular, each instance is based on two years realizations
(about 104 weekly observations) as in-sample period and one year as out-of-sample. The
choice of weekly periodicity is consistent with the objective of reducing estimation errors
through an adequate number of observations (Simaan, 1997). Two consecutive instances
differ from each other for a three months period, e.g. the first instance covers the two years
1994-1995 as in-sample period, while the second instance does not include the first three
months of 1994 and does include the first three months of 1996. For each instance the
Maximum Safety Portfolio (MSP) has been obtained through the use of the various tested
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Fig.2 The Milan Stock Exchange Index MIB30: weekly quotations in the years 1994-2002 (source: DATAS-
TREAM)

models. In this section we only summarize and comment the main figures out of the huge
amount of computational results we obtained.

The model introduced by Young (1998), with safety measure the maximization of the
worst realization (7), is identified as Minimax. The model based on the safety measure
corresponding to the Gini’s mean difference (9), i.e. the mean worse return, is referred simply
as GMD. The CVaR model associated to a given tolerance level g is identified as CVaR(g).
We have tested the CVaR model for five different values of 8, i.e. CVaR(0.05), CVaR(0.1),
CVaR(0.25), CVaR(0.5) and CVaR(0.75). All the CVaR and the weighted CVaR models have
been formulated according to (15). Among the weighted models we have tested three Wide
WCVaR models (with m = 3 tolerance levels) and two Tail WCVaR models (with m = 2
and m = 3, respectively). The corresponding tolerance levels and weights are summarized
in Table 1.

Since SSD consistent models based on the LP computable risk measures may fail to
generate diversified enough portfolios we have added the following additional restrictions
to guarantee sufficient diversification: any stock share cannot exceed 0.20, while any three
shares cannot exceed 0.50 in total and any six shares cannot globally exceed 0.75 of the
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Table 1 Weighted CVaR models

Weights

Wide models Tolerance levels wo wq wo w3

WCVaR(AGD) Downside Approximation

B1=0.1, 8, =025 8 =05 0.5 0.025 0.1 0.375
WCVaR(AGS)  Symmetric Approximation

B1=025p8=05p8=075 025 0125 025 0375
WCVaR(AGT)  Tails Approximation

p1=0.1,8 =05, =09 0.1 0.05 0.4 0.45

Tail models - wi wo w3

WCVaR(TG2) Two-Point Tail

B =0.1, 8, =0.25 - 0.4 0.6 -
WCVaR(TG3) Three-Point Tail
B1=0.1, 8 =025 8 =05 - 0.1 0.4 0.5

portfolio investment. This requires the following side constraints:

x; <02 for j=1,...,n

3S3+Z?:1 5, <05 and df; >x;—s3, d;; =20 forj=1,....n (©3))
6s6+Z_';:1 5 =075 and dj; >x;—s6, dg; >0 for j=1,....n

For each model we have tested the corresponding version obtained by adding constraints
(21).

3.2 In-sample analysis

In the following we present and comment the characteristics of the MSPs selected by the
different models with and without the introduction of diversification enforcement. In Table 2,
the complete computational results for model CVaR(0.1) are presented as an example of the
type of information obtained by solving a single model over all the 13 periods. The table
consists of a first part corresponding to the results for the model without diversification
enforcement and a second one for the model with the diversification enforcement constraints
(21). Each of the two parts of the table has five columns: the objective function value (Obj.),
the portfolio per cent mean return (z), the portfolio diversification (Div.) represented by the
number of selected securities, the minimum and the maximum share within the portfolio,
respectively. The average return is given on a weekly basis (a good yearly approximation can
be obtained by multiplying the figures by 52). Notice that the introduction of diversification
constraints may result in an unmodified optimal portfolio. This is the case for the portfolios
selected in the instances 7 and 8.

To simplify results presentation, we have decided to focus our attention only on a subset of
instances (periods). In Tables 3 and 4 we show the results obtained by the different models in
the first and the twelfth instance without and with diversification constraints. The tables have
the same structure of Table 2. Tables 3 shows the large values obtained by the Wide WCVaR:
the fact can be explained by the relevance given to high returns by these models which are
much more sensitive to large returns than the Gini’s mean difference. This also explains why,
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Table 2 CVaR(0.1) model without and with diversification constraints: Optimal portfolio characteristics

in each of the 13 periods

Without diversification

With diversification

. . Shares . . Shares
Ob;. z Div. Ob;j. z Div.
Periods 1072 % # Min Max 1072 % # Min Max
1 —1.567 021 18 1.771073 0293 —1.638 0.17 20 1.931073  0.200
2 —1.543 024 18 2091073 0281 —1.604 021 20 44510~%  0.200
3 —1.129 0.61 18 3331073 0204 —1.137 052 20 1.101073  0.192
4 —-0.999 0.19 23 1681073 0.144 —0.999 0.19 23 1.681073  0.144
5 —-0955 0.10 24 6241073  0.138  —0.955 0.10 24 8281073 0.138
6 —-0.736 043 26 1.1810~% 0.165 —0.736 043 26 1.1810~*  0.132
7 —-0.721 041 27 14810~% 0.112 —0.721 041 27 1.4810~% 0.112
8 —-0.649 054 27 1531073 0.138 —0.649 054 27 1.531073  0.138
9 —-0.560 0.61 29 7.64107% 0.128 —0.560 0.61 29 7.6410~*  0.128
10 —-0.549 1.01 24 2071073 0.121 —0549 1.01 24 2071073 0.121
11 —1.401 099 19 7.811075 0245 —1.412 098 20 1.051073  0.200
12 —2.188 091 138 1.11107% 0210 —2.188 091 18 1.1110~* 0.210
13 —-2476 090 17 4491073 0223 —2478 087 18 5.3010~%  0.200
Table 3 Period 1—Maximum safety portfolios: Optimal portfolio characteristics
Without diversification With diversification
. . Shares . . Shares
Ob;. z Div. Obj. z Div.
Models 1072 % #  Min Max 1072 % #  Min Max
Minimax —1.812 006 14 1401073 0.193 —1.823 0.12 16 3.9810~* 0.194
CVaR(0.05) —1.767 0.5 14 5141073 0214 —1.789 0.13 16 3.061073 0.187
CVaR(0.1) —1.567 021 18 1771073 0293 —1.638 0.17 20 1.931073 0.200
CVaR(0.25) —1.155 029 11 1571073 0316 —1.199 029 18 5.131073 0.200
CVaR(0.5) —0.597 039 17 331107 0288 —0.611 040 19 4.8710~° 0.200
CVaR(0.75) —-0.055 062 17 1.12107* 0.179 —-0.056 0.61 18 1.1810~* 0.172
GMD —0313 060 17 260107* 0246 —0318 061 18 7.9010™* 0.200
WCVaR(AGD) 40.577 9426 1 1 1 8422 1952 12 1491072 0.200
WCVaR(AGS) 16.147 9426 1 1 1 3532 1948 13 1.191072  0.200
WCVaR(AGT) 1.603 9426 1 1 1 0.632 1947 13 2741073 0.200
WCVaR(TG2) —1.393 0.21 16 1341073 0343 —1.455 0.16 18 2631073 0.200
WCVaR(TG3) —0.986 0.31 15 89910~ 0.304 —1.025 036 18 2.6010~> 0.200

in some instances, the Wide WCVaR models select only one security portfolio characterized
by a large expected return (about 94% per week) generated by very few realizations with
dramatically high return. Moreover, it is worth noticing that in the Wide WCVaR models the
mean return z value is larger than that of all the other models. This is also true in the twelfth
period where the returns are dramatically lower than in other periods, thus reflecting the
downwards trend of the whole market. From Tables 3, 4 and the analogous results obtained
for the other periods (Mansini, Ogryczak and Speranza, 2003c) we observed that the MSPs
mean return tends to increase over the years by reaching a pick in the first quarter of the year
1998 and then decreasing. In general, the basic CVaR models are the most diversified.
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Table 4 Period 12—Maximum safety portfolios: Optimal portfolio characteristics

Without diversification With diversification
. X Shares . . Shares
Obj. z Div . Obj. z Div.
Models 1072 % # Min Max 1072 % # Min Max
Minimax —2.848 0.99 13 3771073 0289 —2927 099 14 1.41 1073 0.200
CVaR(0.05) —2.486 0.88 14 1.091073 0.198 —2.488 088 15 1.511073  0.200
CVaR(0.1) —2.188 091 18 1.1110~% 0.210 —2.188 090 18 9.1310~% 0.200
CVaR(0.25) —1.529 094 20 4651073 0.134 —1.529 094 20 4651073 0.134
CVaR(0.5) —0.608 1.05 20 7.8710~* 0.129 —0.608 1.05 20 7.8710~* 0.129
CVaR(0.75) 0.204 135 14 430107* 0222 0203 135 14 3.991073  0.200
GMD —0.186 1.35 20 1.011072 0.129 -0.186 1.35 20 1.011072 0.129

WCVaR(AGD) 0.182 151 17 2711073 0.179 0.182 1.51 17 2711073 0.179
WCVaR(AGS) —0.028 139 18 6.101073 0.158 —0.028 139 18 6.101073  0.158
WCVaR(AGT) 0.029 141 20 3361072 0.135 0.029 141 20 336107 0.135
WCVaR(TG2) —1.882 0.99 18 1251073 0.187 —1.882 0.99 18 1251073 0.187
WCVaR(TG3) —1.270 0.99 23 1.47107* 0.131 —1270 0.99 23 1.47107%  0.131

Table 5 Diversification of the optimal portfolios (MSPs)

MSP without MSP with
Models Diversification enforcement  Diversification enforcement
Minimax 6-29 12-29
CVaR(0.05) 14-29 15-29
CVaR(0.1) 17-29 18-29
CVaR(0.25) 11-30 18-30
CVaR(0.5) 16-29 18-27
CVaR(0.75) 12-23 13-22
GMD 12-26 16-26
WCVaR(AGD) 1-21 11-21
WCVaR(AGS) 1-23 13-21
WCVaR(AGT) 1-25 11-25
WCVaR(TG2) 15-30 17-30
WCVaR(TG3) 15-29 16-29

Table 5 shows, for all the models over all the periods, the diversification of the optimal
portfolios (MSPs). For instance, the number of selected securities for the Minimax model
varies, out of the 13 solved instances, from 6 to 29 securities, while with the introduction of
diversification constraints the corresponding range becomes 12-29. Similar considerations
can be made by analyzing portfolios composition in terms of minimum and maximum portfo-
lio shares. On average, the Wide WCVaR provide the ranges with the lowest upper limits and
result in extremely low diversified portfolios (or rather undiversified portfolios as the lower
limit can be equal to 1). These models seem to require the use of an additional technique to
guarantee enough diversification. Also the Minimax model may generate some low diversi-
fied portfolios (6 securities). The other models have always selected more than 10 securities.
Nevertheless, in many cases they generate portfolios with some very large shares (exceeding
30%). Thus, for all the LP computable models under consideration we may recommend a
support of some direct technique for diversification enforcement. One may notice that the
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application of the CVaR based diversification enforcement constraints (21) has resulted in
portfolios always containing at least 10 securities.

3.3 Out-of-sample analysis

In this section the behavior of all the MSPs is examined in the twelve months following the date
of each portfolio selection. To describe out-of-sample results we have used the following nine
ex-post parameters: the minimum, the average, the maximum and the median portfolio return
(Fmin» Favs Tmax and rmeq, respectively); the standard deviation (std) and the semi-standard
deviation (s-std); the mean absolute deviation (MAD) and the mean downside semideviation
(s-MAD); the maximum downside deviation (D-DEV). Such performance criteria have been
computed for all the models over all the periods and can be used to compare the out-of-sample
behavior of the maximum safety portfolios selected by the different models. The minimum,
average, maximum and median ex-post portfolio returns are expressed on a yearly basis. All
the dispersion measures (std, s-std, MAD, s-MAD and D-DEV) have been computed with
respect to the target return (o (which is zero for the MSP) to make them directly comparable
in the different models.

In Table 6 we present the average value of each criterion, over the thirteen periods, for
the various models in the cases without and with diversification enforcement, respectively.
One may notice extremely high average returns of the Wide WCVaR models (without diver-

Table 6 Out-of-sample statistics for MSPs: Average values over the 13 periods

Models Fmin Fav Fmed Fmax std s-std MAD s-MAD D-DEV

Without diversification enforcement

Minimax —-54.36 3005 17.57 337.19 0.0614 0.0270 0.0493 0.0148  0.0749
CVaR(0.05) —=52.75 2877 10.66 33293 0.0596 0.0264 0.0477 0.0145  0.0720
CVaR(0.1) —52.43 3057 12.24 34798 0.0611 0.0263 0.0486 0.0141  0.0713
CVaR(0.25) —49.68 3427 2658 307.67 0.0591 0.0237 0.0454 0.0110 0.0718
CVaR(0.5) —53.10 31.12 3234 282.05 0.0603 0.0267 0.0474 0.0128  0.0788
CVaR(0.75) —59.86 27.80 2934 38136  0.0668 0.0325 0.0512 0.0161  0.0945
GMD —58.64 27.85 2621 31579 0.0639 0.0304 0.0495 0.0151  0.0870

WCVaR(AGD) —72.84 9227 4852 362559 0.1153 0.0427 0.0913 0.0218 0.1148

WCVaR(AGS) —71.69 94.00 47.57 363452 0.1152 0.0415 0.0907 0.0209 0.1136

WCVaR(AGT) —72.17 94.15 4947 3631.79 0.1151 0.0418 0.0908 0.0209 0.1146

WCVaR(TG2) —52.14 30.52 27.86 378.51 0.0614 0.0259 0.0473 0.0134  0.0719

WCVaR(TG3) —49.50 33.09 2523 321.26 0.0602 0.0243 0.0458 0.0116  0.0719
With diversification enforcement

Minimax —53.80 3138 2549 337.79 0.0607 0.0263 0.0486 0.0139  0.0735
CVaR(0.05) —53.27 2873 1378 329.62  0.0592 0.0264 0.0473 0.0143  0.0731
CVaR(0.1) —52.17 29.88 11.94 33494  0.0596 0.0259 0.0474 0.0138  0.0712
CVaR(0.25) —46.93 33.00 26.57 302.67 0.0581 0.0232 0.0444 0.0109 0.0678
CVaR(0.5) —53.50 3049 3233  289.09 0.0607 0.0268 0.0470 0.0129  0.0793
CVaR(0.75) —60.23 2856 29.34 384.64  0.0682 0.0333 0.0522 0.0163  0.0948
GMD -59.19 2750 27.78 323.99 0.0646  0.0308 0.0497 0.0153  0.0877

WCVaR(AGD) —63.43 3521 38.88 439.76  0.0742 0.0337 0.0582 0.0171  0.0947
WCVaR(AGS) —6291 36.75 36.00 426.09 0.0737 0.0327 0.0574 0.0162  0.0944
WCVaR(AGT) —62.67 3696 3821 42626 0.0735 0.0328 0.0575 0.0162  0.0945
WCVaR(TG2) —52.04 30.19 27.86 366.65 0.0608 0.0257 0.0466 0.0132  0.0719
WCVaR(TG3) —49.36 31.62 2544 32226  0.0600 0.0246 0.0452 0.0119  0.0718
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sification enforcement). These performances are produced by single security portfolios with
very high returns. In general, the models are too risky as demonstrated by all the dispersion
measures. When we consider the models with diversification enforcement, the Wide WC-
VaR models are still characterized by the highest average returns and the largest dispersion
parameters but the differences from the other models are not very large. One may notice that
the GMD model, which is the computationally most complex, may be easily outperformed
(in terms of average returns and dispersion) by the simpler Tail WCVaR models or even by
CVaR(0.5).

We have also analyzed each model performance with respect to a long-run portfolio
management. Each of the portfolios selected by a specific model in the 13 instances has been
evaluated ex-post in the three months period following the date of selection. It turned out that
single period ex-post returns quite perfectly represent the upward and downward movements
of the market. For instance, all the models showed negative results from April to July 1996
and then again in October when the market was falling down. However, in such periods
some models (such as CVaR(0.1) and CVaR(0.25)) find portfolios with a better performance
with respect to the market index MIB30. Similarly, many models find higher returns with
respect to the MIB30 index at the beginning of the 1998 when the market showed a positive
trend (see Fig. 2). Full results of this analysis can be found in our technical report (Mansini,
Ogryczak and Speranza, 2003c). Further, we cumulated the returns over the horizon up to
13 periods (39 months) to better analyze each model achievements. The figures shown in
Table 7 are the cumulative returns of the portfolios selected by each model in the case without
diversification enforcement and with diversification enforcement, respectively. Each column
of these tables refers to a period and provides the cumulative returns of the portfolios selected
over the preceding periods. For a better understanding of these figures let us consider the first
line of Table 7 which refers to the model Minimax. Each of the 13 portfolios selected by the
Minimax model in the 13 instances has been evaluated ex-post in the three months investment
period following the date of its selection. Let us define as |, ry, . . ., r13 the ex-post returns of
these 13 portfolios. Then, the first column of Table 7 gives the ex-post return (after 3 months)
of the first portfolio selected, i.e. r;. The second column of Table 7 gives the cumulative
return of the portfolio selected in the first period and then modified after three months with
the portfolio selected in the second period: the value is computed as (1 + r;)(1 4+ r,) — 1.
Similarly, for all the other columns of the table. These results have been computed to simulate
a multi-period setting where, at no transaction cost, the portfolio changes over time. Rates
are expressed on a yearly basis.

Table 7 shows extremely high cumulative returns of the Wide WCVaR models (without
diversification enforcement). These performances are due to the single security portfolios
selected in the first 6 periods which resulted in dramatically high returns. Actually, when
ignoring these 6 periods and focusing on the remaining horizon of the last 21 months, the
cumulative returns of the Wide WCVaR models considerably shrink as it is evident when
comparing the first part of Table 8 with the last seven columns of Table 7. Table 8 shows the
ex-post cumulative returns over the last 21 months (7 periods) both for the case without and
with diversification enforcement. Moreover, as in column (7-13) of the first part of Table 8, it
can be noticed that the Wide WCVaR models perform much worse than all the other models
except for the Minimax and the extremal CVaR models (8 = 0.05 or 8 = 0.1). Note that both
the Tail WCVaR models and the CVaR(0.5) here have the best cumulative performances.

When the models with diversification enforcement are considered, the Wide WCVaR
models are still characterized by the highest cumulative returns but the differences from the
other models are not very large. When ignoring the first 6 periods and focusing on the last 21
months (second part of Table 8), one may see again the Wide WCVaR models performing
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much worse than all the other models except for the Minimax and the extremal CVaR models.
It is interesting to notice that, except for the Minimax and the extremal CVaR models, all the
other models resulted in similar cumulative return over the entire horizon of 39 months with
(annual) rate of return exceeding 30%. Also the GMD model is outperformed by simple Tail
WCVaR models and the CVaR models for larger tolerance levels.

To better capture the models behavior over small periods with possibly different market
trends we have analyzed the ex-post cumulative returns over subperiods of length 4, that
is we computed the cumulative returns over the periods 7-10, 8-11, 9-12 and 10-13. In
Table 9 we have shown the minimum, the average and the maximum cumulative return (v ¢pin,
rcay, and remax, respectively) for each model over these subperiods. Note that during the
periods with negative market trend, as during subperiod 10-13, all the models have negative
average cumulative returns. However, GMD and CVaR(0.5) and CVaR(0.25) show the best,
although negative, average performance. Moreover, when the maximum cumulative return is
considered, the three best models are GMD, CVaR(0.25) and WCVaR(TG3), respectively. On
the contrary, in positive market trend periods such as in the subperiod 9-12 (corresponding
to the first part of the year 1998), the CVaR(0.75) has the largest average and maximum
cumulative return while the largest minimum cumulative return is obtained by GMD.

Finally, to show how consistently the composition of the portfolios selected by the same
model over the different periods may change, we have reported, as an example, Table 10
which provides the portfolios composition changes from one period to the other for the
portfolios selected by the different models in the case without diversification enforcement.
For instance, the second line of Table 10 refers to model CVaR(0.05) and can be interpreted
as follows. The first column gives the number of securities selected by this model in the first
period (in this case 14 securities). The second column says that, with respect to the previous
portfolio, the one selected in the second period contains 2 new securities and no securities
have been eliminated from those already selected. Similarly for the other models.

3.4 Models behavior in a strong downward trend period: The years 2000-2002

The Markowitz type models, used without any additional forecasting procedure applied prior
to portfolio selection process itself, do not recognize any market trends and therefore they
are generally not appropriate tools for investment situations with a long lasting market trend.
Nevertheless, due to commonly observed negative trends during recent years, both researchers
and practitioners become more interested in the models behavior under such circumstances.
Therefore, in order to provide a better analysis and comparison of the proposed models when
the market trend is negative and thus the risk control may be relevant, we have decided to
add some computational results on the period (2000-2002). During this period the Italian
market has shown an impressive and continuous down-turn (see Fig. 2) with the MIB30 index
reaching its highest level 50467 on 10.03.2000 and its lowest level 21546 on 4.10.2002. The
following tables provide the relevant results on the analysis of the Maximum Safety Portfolios
(MSPs) selected by the different models with and without diversification enforcement using
the years 2000-2001 (104 weekly returns) as in-sample period and the year 2002 as out-of-
sample. The data set consists of 178 securities quoted with continuity from 2000 to 2002.
The meaning of tables entries is identical to those described in the former sections. Due to
low weekly values, the mean return z has been converted on a yearly basis.

Notice that all the models but CVaR(0.75), GMD and the Wide WCVaR models have
a mean return equal to zero. Thus, as for previous experiments, the Wide WCVaR models
are still among those models with larger mean returns. The use of constraints to enforce
diversification improves, on average, the portfolios performance in terms of mean return:
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Table 11 In-sample MSPs characteristics: Strong downward trend period

Without diversification With diversification
. . Shares X . Shares

Ob;j. z Div ___ Obj. z Div.
Models 1072 % # min max 1072 % # min max
Minimax —-0.212 0.00 7 20610~% 0813 —0281 0.00 14 6.0110™* 02
CVaR(0.05) —0.189 0.00 6 2.171073 0.563 —0.231 0.00 11 8.83107* 0.2
CVaR(0.1) —0.158 0.00 8 2.38107% 0450 —0.193 0.00 16 7.62107° 02
CVaR(0.25) —0.107 0.00 13 1.61107% 0469 —0.129 0.11 15 24710~* 0.2
CVaR(0.5) —0.065 0.00 13 1.6910~* 0.459 —0.079 0.16 13 54810~ 0.2
CVaR(0.75) —0.031 1.83 15 1701073 0.463 —0.033 327 19 1.831073 02
GMD —0.050 0.10 13 29710~* 0464 —0.058 0.60 15 1481073 02

WCVaR(AGD) —0.039 0.50 15 2.15107* 0.384 —0.044 1.16 17 725107 0.2
WCVaR(AGS) —0.044 025 15 146107* 0432 —0.050 081 16 1.241073 0.2
WCVaR(AGT) —0.043 034 15 1.10107> 0495 —0.049 1.08 15 1421073 0.2
WCVaR(TG2) —0.131 0.00 12 728107 0.429 —0.158 0.00 15 1.15107* 0.2
WCVaR(TG3) —0.093 0.00 14 1.5910™* 0.444 —0.112 006 12 3501073 0.2

CVaR(0.75) shows an increase from 1.83% to 3.27%, while some models as CVaR(0.5)
and CVaR(0.25) move from null to positive values. The same effect was not evident in the
previous experiments.

Table 11 shows that with respect to portfolio diversification, the introduction of enforce-
ment constraints produces an evident effect only for the Minimax model and the extremal
CVaR models (CVaR(0.05) and CVaR(0.1)). As before (see Tables 3—4), the Minimax model
generates some low diversified portfolios (7 securities). In contrast to previous results the
basic CVaR models are not the most diversified: the CVaR(0.05) model has selected only
6 securities, while the CVaR(0.1) portfolio has 8 securities. Moreover, note that the Wide
WCVaR models have selected rather diversified portfolios if we compare these results with
those shown in Tables 3—4. During the period 2000-2002 no security has shown realiza-
tions with dramatically high returns, thus justifying this diversification. Finally, in only one
case, i.e. for the WCVaR(TG3) model, the diversification without enforcement is larger than
that obtained with additional forcing constraints. In the first part of Table 11 it is worth
noticing that all the selected portfolios have a maximum share exceeding 40% (but for the
model WCVaR(AGD) with 38%) and that, in two cases, namely for the models Minimax and
CVaR(0.05), the maximum share is larger than 80% and 55%, respectively. For all such mod-
els we may recommend to apply the enforcement constraints (22) giving as result portfolios
always containing at least 11 securities.

For the out-of-sample analysis the behavior of all the MSPs is examined in the 52 weeks
following the date of each portfolio selection. The nine parameters reported in Table 12
have the same meaning defined for previous similar tables. Again, 7min, 7ay, "med and 7max
are expressed on a yearly basis and as per cent returns. Due to general market downward
trend, all the portfolios show ex-post negative average returns: the model CVaR(0.75) has
the worst performance. One may notice in Table 12 that, on average, the introduction of
diversification enforcement may result in portfolios with larger ex-post dispersion. This is
especially true for those models whose dispersion was already high without enforcement
(see, for instance, the models CVaR(0.75) and CVaR(0.5)). When we consider the models
with diversification enforcement, the model WCVaR(TG3) has the highest average return.
As for previous computational results, the GMD model (which is the computationally most
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Table 12 Out-of-sample results for MSPs: Strong downward trend period.

Models Fmin Fav Fmed Fmax std s-std MAD s-MAD D-DEV
Without diversification enforcement
Minimax —14.18 —0.93 —0.68 14.01 0.0009 0.0007 0.0006 0.0004 0.0029
CVaR(0.05) —12.81 —-0.73 —0.79 13.66 0.0009 0.0006 0.0007 0.0004 0.0026
CVaR(0.1) —7.81 —0.58 —1.19 10.70 0.0008 0.0006 0.0006 0.0004 0.0016
CVaR(0.25) —10.16 —0.88 —1.11 12.93 0.0008 0.0006 0.0006 0.0004 0.0021
CVaR(0.5) -8.75 —0.68 —0.96 13.25 0.0008 0.0006 0.0006 0.0004 0.0018
CVaR(0.75) —48.42 —1.49 0.67 42.82 0.0031 0.0026 0.0021 0.0012 0.0126
GMD -9.97 —-0.76 —0.61 13.21 0.0009 0.0007 0.0007 0.0004 0.0020

WCVaR(AGD) —1544 —1.01 -0.76 14.91 0.0011 0.0009 0.0008 0.0005 0.0032

WCVaR(AGS) —12.77 —0.80 —0.33 12.44 0.0010 0.0008 0.0008 0.0005 0.0026

WCVaR(AGT) —17.13 —-094 —042 14.57 0.0012 0.0010 0.0009 0.0005 0.0036

WCVaR(TG2) —7.61 —0.63 —0.59 11.56 0.0008 0.0006 0.0006 0.0004 0.0015

WCVaR(TG3) —-898 —0.77 —1.18 1242 0.0008 0.0006 0.0006 0.0004 0.0018
With diversification enforcement

Minimax —2228 —-096 —0.50 2097 0.0013 0.0010 0.0009 0.0005 0.0048
CVaR(0.05) —-12.44 —-123 —1.27 9.63 0.0008 0.0007 0.0006 0.0004 0.0025
CVaR(0.1) -9.78 =097 —-129 9.13 0.0008 0.0006 0.0006 0.0004 0.0020
CVaR(0.25) -940 —-0.61 —-046 7.70  0.0008 0.0006 0.0006 0.0004 0.0019
CVaR(0.5) —-12.04 -0.75 —-0.59 7.89 0.0008 0.0007 0.0006 0.0004 0.0025
CVaR(0.75) —62.78 —196 —0.07 6823 0.0044 0.0036 0.0030 0.0017 0.0188
GMD —-1335 -0.89 —-0.32 13.77 0.0011 0.0009 0.0008 0.0005 0.0027

WCVaR(AGD) —2445 —-131 -0.57 2234 0.0016 0.0013 0.0012 0.0007 0.0054
WCVaR(AGS) —-1593 —-095 -0.31 16.85 0.0013 0.0010 0.0009 0.0006 0.0033
WCVaR(AGT) -23.55 —-1.22 -0.19 21.53 0.0016 0.0013 0.0011 0.0007 0.0051
WCVaR(TG2) —10.16 —0.77 —0.55 7.96  0.0008 0.0006 0.0006 0.0004 0.0021
WCVaR(TG3) -9.82 —-0.57 -0.61 830 0.0007 0.0006 0.0006 0.0003 0.0020

complex) is outperformed in terms of average returns and dispersion by the Tail WCVaR
models.

Table 13 shows the ex-post cumulative portfolio returns for the case without and with
the diversification enforcement, respectively. Additionally, the cumulative performances of
the index MIB30 has been introduced in both tables. The weighted CVaR models show a
very stable ex-post performance always outperforming GMD model. Moreover, the Wide
WCVaR models also outperform extremal CVaR models when diversification enforcement
is introduced. Actually, except for a short period of strong increase of the MIB30 index, all
the models outperform the index. From Table 13 it is evident how diversification enforcement
has, on average, positively contributed to improve all the portfolios performance with the
only exception of extremal CVaR portfolios whose performances are worsen with respect to
the case without diversification.

The additional experimental analysis over the period 2000-2002 has allowed us to draw
the following main conclusions. First, during strongly negative market trend the weighted
CVaR models have, on average, performed better than the GMD, the Minimax and the
extremal CVaR models. Actually, in terms of cumulative returns all the models have beaten
the MIB30 index performance. Second, during strongly negative market trend the Wide
WCVaR models show a more stable behavior than in positive trend period. In the latter case
they may need diversification enforcement. Generally, the diversification enforcement turns
out to be necessary and effective for all the models rather during unstable market trends
(typically characterized by quick changes of market directions, as for previous experiments)
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than during strong downward periods where for some models, as for the extremal CVaR
models, diversification enforcement has made performances even worse.

4 Concluding remarks

In this paper we have studied LP solvable portfolio optimization models based on exten-
sions of the Conditional Value at Risk (CVaR) measure. The models use multiple CVaR
measures thus allowing for more detailed risk aversion modeling. All the studied models
are SSD consistent and may be considered some approximations to the Gini’s mean dif-
ference with the advantage of being computationally much simpler than the GMD model
itself. Our analysis has been focused on the weighted CVaR measures defined as sim-
ple combinations of a very few CVaR measures. We have introduced two specific types
of weight-settings which relate the WCVaR measure to the Gini’s mean difference (the
Wide WCVaR) and its tail version (the Tail WCVaR). This allows us to use a few tolerance
levels as only parameters specifying the entire WCVaR measures while the correspond-
ing weights are automatically predefined by the requirements of the corresponding Gini’s
measures.

Our experimental analysis of the models performance on the real-life data from the Mi-
lan Stock Exchange has confirmed their attractiveness. The WCVaR models have usually
performed better than the GMD, the Minimax or the extremal CVaR models. These promis-
ing results show a need for further comprehensive experimental studies analyzing practical
performances of the WCVaR models within specific areas of financial applications. It is im-
portant to notice that although the quantile risk measures (VaR and CVaR) were introduced in
banking as extreme risk measures for small tolerance levels (like 8 = 0.05), for the portfolio
optimization good results have been provided by rather larger tolerance levels. Additional
experimental analysis over the period with strongly negative market trend has confirmed
good achievements of the WCVaR models. In terms of cumulative returns all the models
have outperformed the MIB30 index.

While the Tail WCVaR models have always generated well diversified portfolios,
the Wide WCVaR models require some diversification enforcement to avoid too small
portfolios. Our experiments have also confirmed effectiveness of our CVaR based tech-
nique for a direct diversification enforcement. Although, the diversification enforce-
ment turns out to be necessary and effective rather during unstable market trends (typi-
cally characterized by quick changes of market directions) than during strong downward
periods.

Appendix

The spectral risk measures have been shown to be coherent in the sense of Artzner et al.
(1999). These coherence axioms are based on the standard ‘monotonicity’ (X > Y a.s. =
p(X) < p(Y)). Since the measures represent the dual theory of choice (Yaari, 1987), they
should also satisfy stronger monotonicity related to the SSD dominance. Indeed, the following
SSD consistency results can be shown.

Theorem 3. [fa nonnegative real function ¢ on the interval [0, 1] is weakly decreasing (i.e.,
ay < ay implies (o) > P(ar)), then the spectral measure My(X) = fol ¢(a)F,E’l)(oz)doz is
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SSD consistent, i.e.,

Ry > Ry = M¢(X/) > M¢(X//).

SSD

Proof: Note that My(x') — My(x") = fol ¢(o¢)(F,£f1)(oc) — F,E,Tl)(oz))doz and integrating by
parts one gets

1
My(x) — My(x") = ¢(1)(FS(1) — FS (D) — /0 (FSP(@) — FS2(@)dg(@) (22)

If Ry >, Ry, then F\ 2 (@) > F () for all « € [0, 1] and, in particular, F$ 2(1) —
F,E,T (1) = u(x') — u(x”) > 0. Hence, due to assumed properties of function ¢, one gets

My(x') — My(x") > 0. O

SSD

Theorem 4. If a nonnegative real function ¢ on the interval [0, 1] is strictly decreasing (i.e.,
oy < ay implies ¢p(a1) > ¢(a2)), then the spectral measure My(X) = fol d)(a)F,ﬁ_l)(oz)d(x is
strictly SSD consistent, i.e.,

Ry =4p Ry = Mp(X) > My(x").

Proof: If Ry > ., Ry, then F,E/_z) () > F,E/,_z)(a) for all o € [0, 1] with at least one strict
inequality for some aq € (0, 1]. Moreover, F{~2? are continuous functions (Ogryczak and

Ruszczyiiski, 2002a). Therefore, there exist & > 0 such that £, (@) > F., () forall o €
(g — €, ap]. Hence, due to assumed properties of function ¢, using (22) one gets My4(x) —
M4(x") > 0, which completes the proof. O
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