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Abstract—An early motivation for this study was the problem of relocation of scarce or endan-
gered species of animals for breeding and/or reintroduction to establish new populations in the wild.
In this paper, we introduce single and multiple objective optimization models which are designed to
comprehend a wide variety of objectives which are of interest to conservation and wildlife managers.
We present the models in a general way and point out special features relative to ecology as they
arise. Thus, the models may be used for relocation decisions analysis in diverse fields, not only in
conservation and ecology. After presentation of the models in such a general way, we reformulate
the models to make use of the special structure present. Such reformulation reduces the number of
decision variables and constraints and, in general, makes solutions easy to obtain. By easy to obtain,
we mean that tools from linear and mixed-integer programming together with elementary sorting
procedures provide the basis for solving the models.

In order to illustrate the capabilities of the models and solution techniques developed, we present
the results of their application to the real-life relocation problem arising while analyzing restoration

of the globally endangered Przewalski’s horse population. © 1999 Elsevier Science Ltd. All rights
reserved.

Keywords—Multiple objectives, Wildlife management of endangered species.

1. INTRODUCTION

An early motivation for this study was the problem of relocating individuals from rare or endan-
gered species into breeding or reintroduction programs in such a way as to preserve the greatest
amount of genetic diversity. Managers of captive breeding programs for literally dozens of en-
dangered species attempt to optimize these selections each year, but they are often frustrated by
the astronomical number of choices. We show here that the genetic optimization problems can
be treated naturally as single and multiple objective integer programming problems, though with
discrete decision variables and nonlinear objective functions. These are not necessarily solvable
with real or realistic data. However, we develop some transformations which allow these problems
to be solved, and illustrate these techniques with actual data from the breeding program for the
globally endangered Przewalski's or Asiatic wild horse [1].

The authors would like to thank D. Bannister, C. Cone, and J. Shaw who made contributions through some
projects in their degree work in the Biological and Mathematical Sciences Departments of Clemson University.
We also wish to thank O. Ryder for sharing data on Przewalski’s horse, and Zoo Atlanta and the Harriet Jackson
Phelps Charitable Trust for their financial support.

0898-1221/99/% - see front matter © 1999 Elsevier Science Ltd. All rights reserved. Typeset by AaS-TEX
PII: S0898-1221(99)00065-6



136 M. M. KOSTREVA et al.

This horse is the only true wild species of horse on earth, distinct from feral domestic horses,
though it is extinct ‘in the wild’. The current world population of over 1200 animals is descended
entirely from.just 13 individuals, termed founders. Since each individual receives half of its genes
from each parent, and we know the pedigree of the entire world population, we can calculate the
fraction of each individual’s genes ultimately derived from each of the 13 founders. Summing
over all 191 animals in the North American captive population, we see that the result of about
a dozen generations of captive breeding has led to the favoring of some founders’ genes at the
expense of others, and a loss of perhaps two thirds of the total genetic variation in the founders
(see Figure 1). However, it is now believed that the continued loss of genetic variability can
threaten the survival of the animals, and managers of this and many other endangered species
attempt to choose individuals for breeding and reintroduction that best preserve what genetic
variation remains. Unfortunately, even with complete information, as with the Asiatic wild horse,
managers can be frustrated in achieving their goals by the huge number of choices possible. This
is where our approach may be of help.

After studying several models, we realized that the situation described above is one of more
general interest. There are needs for relocation in diverse fields, not only in conservation and
ecology. Thus, we wish to present the models in a general way and point out special features
relative to ecology as they arise. After presentation of the models in such a general way, we
reformulate the models to make use of the special structure present. Such reformulation reduces
the number of decision variables and the number of constraints, and, in general, makes solutions
easy to obtain. By easy to obtain, we mean that tools from linear and mixed-integer programming
together with elementary sorting procedures provide the basis for solving the models. Such
technology is currently available, and hence, we obtain a set of models which is quite usable for
the general audience of operations researchers, together with computer scientists, engineers, and
business analysts. Included in the paper are details about the solution of the models, including
proofs of the validity of simple sorting on certain models, and discussion about a more complex
form of sorting which is applicable to one model in the reformulated setting. It is felt that the use
of sorting to solve the complex decision models is quite remarkable in terms of potential impact
for solving large models and in terms of providing mathematical justification for what is one of
the heuristics which has been used in the management of endangered species. With linear and
integer programming software easily available, and with advances in computer technology, it is
felt that solutions for all reasonably sized problems are obtainable. Hence, we suggest that the
value of making such mathematical models available will be realized by this paper, while new
solution methods are not necessary for proper application of the models.

The paper is organized as follows. In Section 2, we start with initial optimization models
depicting the decision problem in a way that all relationships to the data and to the logical
framework of decision making are expressed explicitly. In Section 3, we reformulate the models
to make use of the special structure present. Such reformulation reduces the number of decision
variables and the number of constraints. Next, in Section 4, we discuss the solution techniques
for the optimization models. It turns out that most of them can be solved with simple sorting
procedures. Finally, in Section 5, the case study of the Przewalski’s horse herd restoration is
presented.

2. BASIC MODELS

In this section, the formulations of the mathematical models in their first version (or primary
version) are developed. Here all relationships to the data and to the logical framework of decision
making are expressed explicitly. These models are the most natural way of thinking about the
problem, but they are also the largest in terms of the number of decision variables and constraints
and storage requirements. To think that all of them could be solved routinely would be naive.
However, it is worthwhile to keep all features of the models open for some time since it is likely
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212 39 211 40 1 231 5 52 17 18 11 12 229
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D
1 380 |0.422 0.086 0.141 0.07 0.125 O 0.063 0.063 0.016 0.016 O 0 0
2 406 |0.375 0.172 0.125 0.141 0.063 0 0.031 0.031 0.031 0.031 0 0 0
458 |0.422 0.086 0.141 0.07 0.125 O 0.063 0.063 0.016 0.016 0 0 0
95 1515 |0.258 0.104 0.086 0.092 0.078 0.031 0.039 0.039 0.051 0.051 0.086 0.043 0.043
96 1536 |0.375 0.086 0.125 0.07 0.156 0 0.078 0.078 0.016 0.016 0 0 0
97 1539 |0.375 0.043 0.125 0.035 0.203 O 0.102 0.102 0.008 0.008 0O 0 0
189 5054 |0.352 0.132 0.117 0.111 0.055 0.109 0.028 0.028 0.035 0.035 O 0 0
190 5055 10.346 0.129 0.115 0.11 0.055 0.109 0.028 0.028 0.041 0.041 0 0 0
191 5056 |0.281 0.031 0.094 0.031 0.125 0.25 0.063 0.063 0.031 0.031 0 0 0
Total 63.61 22.11 21.21 18.7 15.72 10.67 7.868 7.868 6.763 6.763 4.93 2.468 2.468
Contributions
Fractional
Contributions |0-333 0.116 0.111 0.098 0.082 0.056 0.041 0.041 0.035 0.035 0.026 0.013 0.013
Numberof | 155 197 190 101 187 95 187 187 190 190 63 63 63
Descendants

Figure 1. Founder contributions to all 191 Przewalski’s horses in the North Ameri-
can SSP, as of 12-31-1992.
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that there will be interest in developing other related models which may not simplify in the
same way under reformulation. We are confident that there are many related problems outside
conservation biology which take the same form as those developed here, but we will consistently

relate back to the founder-descendant relocation problem to clarify the explanation.

Now, we introduce the terminology of the models. Let us define

d; (an integer) demand for carriers at destination j, j =1,2,...,n,
s; (an integer) supply of carriers at location ¢, i = 1,2,...,m,

z;; number of carriers transported from location ¢ to destination j, i = 1,2,...
i=12,...

.

7m)
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Constraints on z;; variables take the form of a typical transportation problem with m supply
points (locations) and n destinations.

n
> wi = s, fori=1,2,...,m, M
j=1
m
>z =dj, forj=1,2,...,n, (2)
i=1

z;; 2 0, z;; integer fori=1,2,...,m, j=1,2,...,n. (3)

Each carrier transports some amounts of several properties. We consider r different properties.
Let pix denote the amount of property k related to each carrierini, i =1,2,...,m, k= 1,2,...,7.
We are interested in maximization of amounts of properties transported with carriers relocated

to destinations 1,2,...,n — 1 (i.e., to all the destinations apart from the destination n). The
objective function may be formulated in various ways.

Let us maximize the minimum over all properties (k = 1,2,...,7) of the total of the k!
property transported to one of destinations 1,2,...,n — 1. For algebraic formulation of this

objective, we introduce auxiliary integer variables

yix number of units of property k transported from location 7 to one of destinations 1,2,...,
n-1,0(=12,...,mk=12,...,r).

Auxiliary variables y;; are related to the decision variables z;; by the following formulae

n-1
y‘ik=zx§j, fori=1,2,...,m, k=1,2,...,r. (4)
=1

The optimization problem can be stated then, as follows

m
SOSUM: max {k=nll’1.r.1"r {;p,—kyik : st (1)—(4)}} . (5)
As another objective one may consider maximization of the minimum over all properties (k =
1,2,...,r) of the minimal amount of the kth property transported to one of destinations 1,2, ...,

n — 1 by a single carrier. For an algebraic formulation of this objective, we introduce auxiliary
binary variables u; € {0,1}, (i =1,2,...,m, k=1,2,...,7). Let u;x = 1 indicate that at least
one unit of property k is transported from location i to one of destinations 1,2...,7 — 1, and
u;x = 0 otherwise. Then, auxiliary variables u; are related to the decision variables x;; by the
following

n—1
Uk =1, iff inj > 0.
i=1

These relations can be expressed in the algebraic form with the following inequalities:

n—-1
Stk 2 Y Ty Zwik,  fori=1,2,...,m, k=1,2,...,n (6)
j=1

The optimization problem can be stated then as follows:

SOBOT: HJ}%}-}({ min { min  pixli : 8.t (1)-(3), (6) and uy = 1}} SN

, k=1,...,r Li=1,....m

Transportation of several properties may be regarded as independent criteria. This leads us to
the multiple objective formulations of the optimization problem with r criteria corresponding to
several properties.
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Model SOSUM can be generalized to a multiple objective optimization problem with r objective
functions

i=1

MOSUM: max {Zp,ky,k} : st (1)-(4) 3. (8)
k=1,...,r .

Similarly, model SOBOT can be generalized to the following multiple objective optimization
problem with r objective functions

) i=1l,...m

MOBOT: ma.x{{ min p,ku,k} : 8.t (1)—(3), (6) and uy = 1} . (9)
k=1,.

Observe that these two multiple objective optimization models treat all properties (founders) in
the same way, giving each a separate objective function (k = 1,2,...,7). It may happen that
there is additional information available concerning the properties (like the genetic composition of
certain founders). Then, such information may be introduced to make the treatment of individual
properties (e.g., “rare” founder genes) less symmetrical. In the absence of additional information,
it is suggested to retain all the symmetry present in the models.

We remark that the selection of models introduced here is not exhaustive, but rather motivated
by interest in some high priority goals of managers of wildlife programs and also motivated by
having capabilities to solve the models. At this point, it may not be clear that the above models
are solvable for real and interesting data. That is why the contributions of the next section are
important to the serious study of relocation. It will be shown, that the above primary formula-
tions may be simplified into some nonlinear programs with a single unit knapsack constraint (all
coefficients equal to one) and binary variables.

Relating back to the relocation of rare species of animals, the carriers are the animals to be
relocated, and the properties are the genetic materials of the animals relative to the founders. It
is not possible to differentiate these properties according to the destinations in the forest (in the
wild), but it is possible to measure only those properties which do not go to destination n, which
represents the zoo. This concept agrees with the idea of restoration of genetic composition of the
founders, which is also independent of the destination.

For a critique of the models, notice that all are one period planning models, and all are
without cost considerations relative to the actual relocation expenses. The second of these may
be extremely important to overall decision making, as some destinations may be quite expensive
to access. We propose a second level of optimization, which will not be discussed further in this
paper. Regarding the dynamics of planning, it is an area for future research. We simply note
that the collection of rare animals into zoos is an ongoing process, and so it is a feature which
would necessitate a significant increase of data to build a dynamic model.

3. REFORMULATION OF MODELS

In this section, we analyze more carefully the optimization models introduced in the previous
section. Let us begin with model SOSUM. Note, that due to (1)

E Tij = 8i — Tin, fori=1,2...,m

Hence, equations (4) can be replaced by
Yik = $i ~ Tin, fori=12,...,m, k=1,2,...,7. (10)

Thus, the auxiliary variables y;x can be substituted into the optimization problem to yield

SOSUM: m)?x{ min {Zp,k(s1 Zin) ¢ st (1)- (3)}} (11)
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The feasible set for problem (11) includes only standard transportation relations (1)-(3). Thus,
in the case of a linear objective function it could be solved by linear programming, as integrality of
decision variables would be automatically preserved (totally unimodular matrix of coefficients [2]).
However, it is not true for problem (11) as the objective function is a concave nonlinear function.
The objective can be easily transformed into a linear one but it requires us to introduce additional
side constraints which destroy total unimodularity of the constraint matrix. Thus, problem (11)
is an integer programming problem.

Note that the objective function of model SOSUM formulated with (11) depends only on
decision variables z;, (1 = 1,2,...,m) and it is independent of z;; for j < n. Relative to the
conservation ecology problem, decisions related to distribution among specific destinations do
not affect the “genetic” criteria. It is suggested that they should be made on the basis of another
criterion on the second level after the optimization models presented here. Now, to proceed with
reformulation, let us introduce a new (smaller) set of decision variables strictly related to our
optimization problem. Namely,

z; number of carriers transported from location i to one of destinations 1,2,...,n — 1,
(i=12,...,m).

Variables z; are related to the original decision variables z;; by the following formulae:
2; = 8; — Tin, fori=1,2,...,m. (12)

Hence, we can reformulate model SOSUM into an integer knapsack problem

m m
SOSUM: max {kf},i.l.l.,r {;pikzi : ; zi =d,

(13)
0< 2z <s;, 2 integer for i = 1,...,m}},
where
n-1
d=d;. (14)
j=1

In order to simplify model SOBOT let us note first that problems (1)-(3) can be reformulated
into one with all supplies s; equal to 1. Such a transformation causes an increase of the number
of supply points, as instead of groups of carriers at the same location, we consider each carrier
independently. That means that the number of locations m is replaced with the number of
all carriers 7 = Y ., s;. This transformation is algebraically equivalent to replacing integer
variables x;; with sums of their binary components. Thus, for purpose of model SOBOT, we can
replace the feasible set (1)-(3) with the following:

n
> omi=1, fori=1,2,...,m, (15)
—~
m
Yz =dj, for j =1,2,...,n, (16)
i=1

zi; € {0,1}, fori=1,2,...,m, j=1,2,...,n. (17)

Hence, the inequality (6) in model SOBOT can be replaced with an equation similar to (4)

n-1
uik=z:z,vj, fori=1,2,...,m, k=1,2,...,r
i=1
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It allows us to substitute variables u;, similar to variables y;; in model SOSUM, with
Uik = 1 — Ty, fori=1,2,...,m, k=1,2,...,r,

and to form model SOBOT as follows

SOBOT: max {kznlnnr {i=lf}.i.r.l,m(pik + PTin) St (15)—(17)}} , (18)
where p is an arbitrarily large number greater than all p;; (in the case of the conservation ecology
problem where 0 < p;; < 1 one may simply put p = 1).

Similar to model SOSUM, the objective function in (18) depends only on decision variables Tin
(¢=1,2,...,7) and it is independent of z;; for j < n. Thus, we can introduce a new (smaller)
set of binary decision variables strictly related to our optimization problem. Namely,

z; equal to 1 if carrier ¢ is transported (from location 1) to one of destinations 1,2, ... ,m—1,
and equal to 0 otherwise (i = 1,2,...,m).
Binary variables z; are related to the original decision variables z;; of (15)~(17) by the formulae
analogous to (12). So, the relocation problem SOBOT can be viewed as a binary knapsack
problem.

k=1,...,r

SOBOT: mza.x{ min {i:l,.i.r.l,ﬁz(pik —pz; +p): Zzi =d,

i=1
z; € {0,1} fori:l,...,m}},

where d is defined with (14).

Next, we consider reformulations appropriate to the multiple objective models MOSUM and
MOBOT. As above, the observations about independence relative to the destinations may be
applied to achieve the simplified knapsack constraints rather than the original transportation
constraints. Such simple constraints may be further exploited in various solution methods. Details
about the solution techniques will be specified in the next section.

m m
MOSUM:  max { > pikzz} Yz =d,
i=1 k=l,r =1 (20)
0<2; <, 2 integer fori=1,...,m },
MOBOT: max { min _(py — pz; +p)} : Z z; =d,
z i=1,...,m k=1,..,r =1
- (21)

z; € {0,1}, fori=1,...,m}.

Model MOSUM is the most linear of the four and it is probably the easiest to solve, while
MOBOT is in one of the toughest classes of optimization problems: nonlinear, multiple objective
programs with binary variables. Very little is known about general solution algorithms for such
problems. In the next section, information about solution algorithms which take advantage of
special structure present in the models will be presented.

Finally, we conclude this section with Table 1 which contains the four models SOSUM, SOBOT,
MOSUM and MOBOT in a compact form for easy reference and comparison. Note that both
MOSUM and MOBOT models can be viewed as some kind of discrete location problems. For
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simplicity of the presentation, let us assume that both the models have been transformed into
binary variables, i.e., to all s; = 1. Then, by negating the coefficients p;; or replacing them with
their complements (P = p— pix), and next swapping all the max and min operators (to preserve
the original sense of optimization), both the models can be expressed in the equivalent form

mzin {{fk(z)}k=1,,_,,r : ZZ" =d, zz€{0,1} fori=1,... ,m} ,

t=1

where functions fi(z) are defined as

m
fi(z) = ;ﬁikzi or fi(z) = o

for MOSUM and MOBOT model, respectively. So, we can view the models as discrete location
problems with r clients and m potential facilities (locations), of which d facilities have to be
selected for the best service of the clients. If i depicts the distance from the facility ¢ to the
client k, the functions fi(z) express, respectively, the total (actually the average if divided by r)
and the maximal distance of the client i to all the located facilities. It means, we consider the
problem of location r different services assuming each client uses all the services and we consider
two possible measures of the service quality: the average distance and the maximal distance. Each
measure needs to be minimized in the corresponding problem. Further, SOSUM and SOBOT
models can be viewed as center approaches to the corresponding locations problems.

Table 1. Models summary.

Single Objective Multiple Objective
SOSUM MOSUM
m m m m
max{  min Zpew : }:zi =d, mex {Zmzz’} : Zzi =d,
Average =1 =1 i=1 k=1,..., r =1
0 < z; < 8;, z; integer for i = 1,...,m}} 0 < z; < 8;, 2; integer for i = 1,...,m}
SOBOT MOBOT
"
max k__.nl\‘l.z‘l”r I____lityl'l‘r'l’m(pik —pzi+p): Z z; = d, max {i:rlr,l.l.x.l,'rﬁ(pik - Dz + P)}k“1 .
Worst Case i=1 Fheeat
"
zi€{0,1} fori=1,...,m Zzi=d, zz€{0,1} fori=1,...,m
=1

4. SOLUTION TECHNIQUES

All of the four models formulated in the previous section are integer knapsack problems with
nonlinear objective functions. More precisely, models SOBOT and MOBOT are built with binary
variables whereas models SOSUM and MOSUM with general integer variables. However, the
latter can be also transformed to the form with binary variables if it would simplify the solution
process.

Model SOSUM seems to be, in general, a hard integer problem. From our experience its
complexity, when the branch and bound method used, strongly varied with the data. For instance,
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while dealing with the Przewalski’s horse case study (Section 5) with m = 191, the complete
solution with the MOMIP branch and bound code [3] the problems with d larger than r were
solved in 1-40 nodes taking less than 1 CPU second (on SUN Sparc 10 workstation) whereas it
took over 450000 nodes (over 15 CPU minutes) for d = 10.

Model SOBOT has a separable objective function. It turns out that it can be easily solved
with a certain sorting procedure. Let us define for each carrier i (i = 1,2,...,7) the quantities

p; = min py, fori=1,2,...,7m. (22)

k=1,...,r

The quantities p; define optimal solution to problem (19) with the following proposition.

PROPOSITION 1. Let quantities p; be presorted in the weakly increasing order, p;, < p}, <--- <
i, and let

So={i:p; <pi,} (23)
Feasible vector Z defined by the index set S (|S| = d) as follows:

Zi=1forieS and Z =0fori ¢S

is an optimal solution of model SOBOT if and only if S C Syp.
ProoF. Objective value for Z is equal to

- . . . *
= min mnp; = minp:.
p —1 n p‘k ‘iES p1

k=1,...r i€S
Thus,
p<p;, for SC 8 or §>pj for §ZS.
Hence, Z is an optimal solution if and only if S C Sp. 1

Note, that due to Proposition 1, in order to find an optimal solution to model SOBOT one
needs only to sort the quantities p} in the weakly decreasing order and next to pick up the
first d carriers in the presorted sequence. Moreover, the set Sp can be easily identified in the
presorted sequence of p} quantities, which allows us to find all the alternative optimal solutions
(as d-element subsets of Sp).

Multiple objective model MOSUM can be easily analyzed with weighting approach, which
transforms it into the following linear knapsack problem:

m T m
mfx{ZZwkpikz,-:Zz,-=d, 0<2,<s; fori=1,...,m}. (24)

i=1 k=1 i=1

Due to the constraints specificity any vertex solution to this problem will satisfy the integrality
requirements. It is made precise in Proposition 2.

PROPOSITION 2. Any vertex optimal solution to problem (24) with positive weights w;, (k =
1,2,...,7) is an eflicient solution of model MOSUM.

PROOF. The coefficient matrix of problem (24) is totally unimodular [2]. Hence, any vertex
optimal solution to this linear problem satisfies the integrality requirements and it is optimal to
the corresponding integer program. Next, due to positive weights any optimal solution to the
weighted integer program is an efficient solution to the corresponding multiple objective problem
(compare, [4]), i.e., to MOSUM model. ]

Note, that the linear knapsack problem (24) is, in fact, solvable with a simple sorting procedure.
The algorithms in [5, Chapter 4] are of low complexity and they are recommended if finding a
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single nondominated solution is degired. In order to find a vertex optimal solution to the problem,
one needs only to sort the quantities

T
p}"=z:wkpik, fori=1,2,...,m,
k=1

in the weakly decreasing order and next to pick up the first d carriers in the presorted sequence.
Weights inversely proportional to the totals of several properties (founder contributions in the
conservation ecology problem) seem to be especially interesting [6].

Note, that model MOSUM may be reformulated into that with all s5; = 1 (as we did with
SOBOT and MOBOT models). In this case, due to the constraints specificity, any vertex feasible
solution is an integer one, and any integer solution is a vertex one. So, while dealing with
a single linear objective we could simply forget about integrability requirements and solve the
corresponding linear problem. Unfortunately, with multiple linear criteria it is not so easy.
Although every integer efficient solution is a vertex solution and every vertex solution is an
integer one, there may exist an integer efficient solution which is no longer efficient if considered
in the linear problem (a vertex nondominated within the set of vertices but dominated by some
nonvertex solution). Thus, even in the case of all s; = 1, the weighting approach does not provide
us with a complete parametrization of the entire efficient set. As an example one may consider
a problem with two properties P1, P2 (r = 2), and three carriers C1, C2, C3 (m = 3) of which
only need to be selected to move (d = 1). Due to d equal to 1, one may certainly assume that
s; =1 for 4 = 1,2,3. Let the coefficients p;, (i = 1,2,3, k = 1,2) be given with the following
table:

P1 P2
C1 0 9
C2
C3 4 4

Note, that all three feasible solutions, i.e., selection of any carrier, are efficient solutions. One
can easily verify that while dealing with weighting approach to the problem, carrier C3 (despite
being a very attractive compromise solution) cannot be selected for any set of positive weights
assigned to clients. If P1 has been assigned the higher weight than P2 (w; > w2}, then carrier C2
is a unique optimal solution to the weighted problem. If P1 has been assigned the lower weight
than P2 (w; < ws), then carrier C1 is a unique optimal solution to the weighted problem. Finally,
if both properties have been assigned equal weights (w; = ws), then both carriers C1 and C2 are
optimal.

In our specific relocation problem related to the conservation ecology it was not a difficulty, as
the coefficients p;; satisfied relations

r
Zpik-:l, fori=1,2,...,m.
k=1

In such a case, every efficient solution of MOSUM model is an optimal solution to the linear
problem (24) with equal weights (w; = wy = -+ = w,). In a general case, another multiple
objective approach may be used to allow us to find any efficient solution. For instance, while using
generating techniques based on the weighted Chebyshev distance [4], we get the parametrized
SOSUM model to solve. For finding all nondominated solutions, it is possible to use multiple
objective dynamic programming.

Multiple objective model MOBOT may be easily analyzed with approaches based on generating
techniques using the weighted Chebyshev distance, like the reference point method [4,7]. When,
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we specify for each property an aspiration level ax and weight wy; then in order to generate an
efficient solution, we need to solve the following single objective problem:

m

max min - min_ wg(pyk — ar —pzi+p): E z; =d,
z k=1,...,r | t=1,...,m im1
1=

(25)
z; € {0,1} fori=1,...,m}}.

Problem (25) differs from model SOBOT only due to weighting and shifting of coefficients p;i.
It can be considered as a parametrization of model SOBOT. Thus, similarly as the latter, it can
be easily solved by sorting.

PROPOSITION 3. For any z efficient solution of MOBOT there exist aspiration levels a; and
positive weights wy, such that Z is an optimal solution to problem (25). For any aspiration
levels ay and positive weights wy, a unique optimal solution to problem (25) is an efficient
solution of model MOBOT.

PROOF. In order to prove the first statement, let us define aspiration levels
ax = minp;
k I;,rélélpzkv

where S is the index set defining the efficient solution Z. With such aspiration levels, for any
positive weights wy, Z is an optimal solution to problem (25).

Now, let us consider Z as a unique optimal solution of the problem (25) with some aspiration
levels a; and positive weights wy. Suppose it is not an efficient solution of model MOBOT. It
means, there exists a feasible solution z such that

min _(pik — pz; +p) > rlninm(pik - pZi +p), fork=1,2,...,r.
i=1,...,

i=1,...,7m

Hence,

min _ wg(pix — Gk —pz; +p) = rlnin_ wi(Pik — ax — PZ; + P), fork=1,2,...,r,
i=1,...,7

i=1,...,m

which contradicts our assumption that vector Z is a unique optimal solution of problem (25). 1

In the case of nonunique optimal solution to problem (25), some regularization techniques are
necessary to guarantee that the efficient solution will be selected [8,9]. Typically some weighted
terms are used for the regularization. Such a regularization would destroy the maximin struc-
ture of the problem (25). Therefore, we are rather interested in a lexicographic (or nucleolar)
regularization [10,11]. The lexicographic form of problem (25) can be solved by sequential opti-
mization of problems (25) with especially modified objective functions [12]. The same approach
may be used to the standard SOBOT model to refine the selection among the alternative optimal
solutions.

5. CASE STUDY

The example we present here is useful to illustrate the capabilities of the models developed
as applied to real (or realistic) data. The data we used was that of the Przewalski’s horse
herd. There were considered 191 living animals (North American Population, as of December 31,
1992), which could be traced to 13 founder horses. The totals of founders genetic contributions
are plotted in Figure 1.

In studying the Przewalski’s horse data, we solved several relocation problems. Both MOSUM
and MOBOT models were handled whereas SOSUM and SOBOT models were considered as
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Contribution
e

0..
2123921140 1 231 5 652 17 18 11 12 229
Founder identification number

Founder Identificaiton Number
212 39 211 40 1 231 5 52 17 18 11 12 229
Descendant ID#

535 0.375 0.031 0.125 0.031 0.188 0 0.094 0.094 0.031 0.031 0 0 0
615 0 009 0 0094 0 0 0 0 0.094 0.094 0.313 0.156 0.156
667 0.117 0.078 0.039 0.078 0.063 0.063 0.031 0.031 0.078 0.078 0.172 0.086 0.086
694 0.188 0.047 0.063 0.047 0.125 0 0.063 0.063 0.047 0.047 0.156 0.078 0.078
700 0.305 0.024 0.102 0.024 0.188 0.063 0.094 0.094 0.024 0.024 0.031 0.016 0.016
718 0.234 0.047 0.078 0.047 0.125 0.125 0.063 0.063 0.047 0.047 0.063 0.031 0.031
886 0.059 0.078 0.02 0.078 0.031 0.031 0.016 0.016 0.078 0.078 0.258 0.129 0.129
1144 0.188 0.055 0.063 0.055 0.125 0 0.063 0.063 0.055 0.055 0.141 0.07 0.07
1166 0.234 0.047 0.078 0.047 0.125 0.125 0.063 0.063 0.047 0.047 0.063 0.031 0.031
1167 0.176 0.055 0.059 0.055 0.094 0.094 0.047 0.047 0.055 0.055 0.133 0.067 0.067
1174 0.117 0.063 0.039 0.063 0.063 0.063 0.031 0.031 0.063 0.063 0.203 0.102 0.102
1185 0.176 0.063 0.059 0.063 0.094 0.094 0.047 0.047 0.063 0.063 0.117 0.059 0.059
1408 0.375 0.043 0.125 0.035 0.203 0 0.102 0.102 0.008 0.008 O 0 0
5019 0.138 0.079 0.046 0.076 0.059 0.047 0.029 0.029 0.066 0.066 0.184 0.092 0.092
5050 0.27 0.074 0.09 0.067 0.109 0.094 0.055 0.055 0.039 0.039 0.055 0.027 0.027
Sums: 2.951 0.876 0.984 0.858 1.59 0.797 0.795 0.795!0.793 0.793'1.887 0.944 0.944

Figure 2. Sosum: Single Objective-Sum. Selection of 15 P-horses that maximizes
the ninimum (unweighted) summed founder contribution.

special cases of the multiple criteria analysis. In both multiple criteria models, we decided to
use certain weights. Weights which seem to be very interesting are the inverse total founder
contributions. Such a set of weights will put more emphasis on the rare genes of the given
founders. We have also tried the inverse maximal founder contribution weights and unit weights
(all weights equal to one).

While analyzing the MOBOT model, we used the reference point approach (7], thus getting
the weighted SOBOT problems (25) to be solved with the sorting procedure (Proposition 1).

While analyzing MOSUM model, we used two approaches: the reference point method and the
linear weighting approach. When using the reference point method, we got the weighted SOSUM
problems to be solved. As these were general MIP problems, we solved them with a branch and
bound code. Using the MOMIP code (3|, the problems which interested us the most (i.e., with
d = 15 — 20) were solved very quickly in less than 1 CPU second (on SUN Sparc 10 workstation).
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Contribution

0—212 3921140 t 231 5 52 17 18 11 12 229
Foundaer identification number

Founder Identification Number
212 39 211 40 1 231 5 52 17 18 11 12 229
Descendant ID#

1167 0.176 0.055 0.059 0.055 0.094 0.094 0.047 0.047 0.055 0.055 0.133 0.067 0.067
1185 0.176 0.063 0.059 0.063 0.094 0.094 0.047 0.047 0.063 0.063 0.117 0.050 0.059
5052 0.211 0.082 0.07 0.074 0.078 0.063 0.039 0.030 0.047 0.047 0.125 0.063 0.063
5051 0.281 0.099 0.094 0.085 0.086 0.047 0.043 0.043 0.037 0.037 0.074 0.037 0.037
5049 0.281 0.099 0.094 0.085 0.086 0.047 0.043 0.043 0.037 0.037 0.074 0.037 0.037
5022 0.264 0.068 0.088 0.062 0.117 0.063 0.059 0.059 0.041 0.041 0.07 0.035 0.035
1806 0.264 0.068 0.088 0.062 0.117 0.063 0.059 0.059 0.041 0.041 0.07 0.035 0.035
1287 0.258 0.096 0.086 0.084 0.078[0.031]0.039 0.039 0.043 0.043 0.102 0.051 0.051
1400 0.258 0.104 0.086 0.092 0.078|0.031]0.039 0.039 0.051 0.051 0.086 0.043 0.043
1514 0.258 0.096 0.086 0.084 0.078{0.031]0.039 0.039 0.043 0.043 0.102 0.051 0.051
1515 0.258 0.104 0.086 0.092 0.078[0.031]0.039 0.039 0.051 0.051 0.086 0.043 0.043
1587 0.258 0.096 0.086 0.084 0.078[0.031]0.039 0.039 0.043 0.043 0.102 0.051 0.051
1673 0.246 0.125 0.082 0.11 0.063|0.031{0.031 0.031]0.055 0.055 0.086 0.043 0.043
1713 0.246 0.117 0.082 0.102 0.063 [0.031 | 0.031 0.031]0.047 0.047 0.102 0.051 0.051
718 0.234 0.047 0.078 0.047 0.125 0.125 0.063 0.063 0.047 0.047 0.063
Sums: 3.669 1.316 1.224 1.179 1.313 0.813 0.657 0.657 0.701 0.701 1.392 0.696 0.696
Available  |63.61 22.11 21.21 18.7 15.72 10.67 7.868 7.868 6.763 6.763 4.93 2.468 2.468

Figure 3. Sobot: Single Objective-Bottleneck. Selection fo 15 P-horses that maxi-
mizes the minimum founder contribution to any single animal.

However, we have found out that for some values of d (smaller than r), the branch and bound
process may take as long as 15 CPU minutes.

To illustrate the results of our computations, we present bar graphs of founder values for
the particular models, all for d = 15. Figure 2 contains the results of MOSUM/SOSUM (unit
weights), while Figure 3 contains MOBOT/SOBOT (unit weights) and Figure 4 represents the
MOSUM/SOSUM information (inverse total founder contribution weights). For an appreciation
of the leveling effect of the models’s optimizations, the reader should compare these graphs with
Figure 1.

When using the linear weighting approach, we got linear knapsack problems (24) solved with
the simple sorting procedure. In this approach, the case of unit weights was not considered as
in that case every feasible solution is optimal. Thus, we have limited this analysis to weights



148 M. M. KOSTREVA et al.

[\ w
1 1

Contribution

-
1

T21238 21140 1 231 5 52 17 18 11 12 229
Founder identification number

Founder Identification Number .
212 39 211 40 1 231 5 52 17 18 11 12 229
Descendant ID#
615 0 0094 0 0094 O 0 0 0 0.094 0.094 0.313 0.156 0.0156
667 0.117 0.078 0.039 0.078 0.063 0.063 0.031 0.031 0.078 0.078 0.172 0.086 0.086
668 0.117 0.063 0.039 0.063 0.063 0.063 0.031 0.031 0.063 0.063 0.203 0.102 0.102
694 0.188 0.047 0.063 0.047 0.125 O 0.063 0.063 0.047 0.047 0.156 0.078 0.078
886 0.059 0.078 0.02 0.078 0.031 0.031 0.016 0.016 0.078 0.078 0.258 0.129 0.129
1144 0.188 0.055 0.063 0.055 0.125 © 0.063 0.063 0.055 0.055 0.141 0.07 0.07
1167 0.176 0.055 0.059 0.055 0.094 0.094 0.047 0.047 0.055 0.055 0.133 0.067 0.067
1174 0.117 0.063 0.039 0.063 0.063 0.063 0.031 0.031 0.063 0.063 0.203 0.102 0.102
1185 0.176 0.063 0.059 0.063 0.094 0.094 0.047 0.047 0.063 0.063 0.117 0.059 0.059
1587 0.258 0.096 0.086 0.084 0.078 0.031 0.039 0.039 0.043 0.043 0.102 0.051 0.051
5019 0.138 0.079 0.046 0.076 0.059 0.047 0.029 0.029 0.066 0.066 0.184 0.092 0.092
5020 0.15 0.09 0.05 0.085 0.054 0.035 0.027 0.027 0.067 0.067 0.175 0.088 0.088
5024 0.173 0.11 0.058 0.099 0.043 0.016 0.022 0.022 0.062 0.062 0.168 0.084 0.084
5025 0.173 0.11 0.058 0.099 0.043 0.016 0.022 0.022 0.062 0.062 0.168 0.084 0.084
5052 0.211 0.082 0.07 0.074 0.078 0.063 0.039 0.039 0.047 0.047 0.125 0.063 0.063
Sums: 2.24 1.161 0.747 1.112 1.011 0.614 0.506 0.506 0.94 0.94 2.617 1.309 1.309
Weighted: 0.035 0.053 0.035 0.059 0.064 0.058 0.064 0.064 0.139 0.139 0.531 0.531 0.531

Figure 4. Mosum: Multiple Objective-Sum. Selection of 15 P-Horses that simulta-
neously maximizes all (weighted) summed founder contributions. Founders weighted
inversely by their total contribution.

defined as the inverse total or maximal founder contribution. Due to the solution procedure
specificity, with this approach it was possible to make a study of the percentage change in the
objective function with respect to changing the right-hand side. This is of interest because the
manager never knows exactly how many animals to relocate. So, it might be desirable to continue
relocating animals until the marginal gain is zero or negligible. For the data represented by the
Przewalski’s horse population and the inverse total founders contribution as the weights, the
percent marginal gain in objective values behaved as in Table 2.

For our modeling and analysis of Przewalski’s horse North American Population, we used all
animals available. It would be also possible to model with subpopulations based on age ranges
(say three to four year old animals) or other characteristics. For larger applications this may, in
fact, be a requirement for some of the models. It is demonstrated by the application at hand that
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Table 2. Percent marginal gain in objective values for MOSUM weighted with the
inverse total founders contributions.

Number Marginal Number Marginal
Relocated Gain(%) Relocated Gain(%)

10 8.21 100 0.64
15 4.75 105 0.62
20 3.62 110 0.59
25 2.92 115 0.55
30 2.48 120 0.54
35 2.00 125 0.52
40 1.71 130 0.51
45 1.55 135 0.50
50 1.25 140 0.47
55 1.18 145 0.46
60 1.05 150 0.44
65 0.97 155 0.43
70 0.91 160 0.42
75 0.85 165 041
80 0.80 170 0.40
85 0.76 175 0.37
90 0.71 180 0.36
95 0.67 185 0.34

190 0.29

reasonably sized models can be solved by the approaches described in this paper, with readily
available computer hardware and software.

6. CONCLUSIONS

This paper introduces and solves several mathematical optimization models connected with
the concept of relocation. For these models, it is demonstrated that the data needed and the
corresponding solution methods are at hand, ready for large-scale realistic applications. Motiva-
tion for the study comes from the biological problem of the management of rare or endangered
animal species with the goal of restoration of the genetic composition of founder populations. It
is felt that an interdisciplinary effort such as that employed here is likely to produce significant
applications of these ideas in related but disconnected areas of study.

Contained here is a progression of models, all equivalent in terms of optimal solutions, but
very different in structure and in their solution techniques. Models which are finally solved are
not natural for direct formulation, while those which come to mind in the primary formulation
appear to be too difficult to solve. Thus, the paper serves as a strong illustration of the need
for human mathematical reasoning skills together with the utilization of modern computational
resources all applied to solving a well-motivated problem outside of what is considered the normal
realm of operations research or applied mathematics. Biologists appreciate the way in which their
wildlife management goals may be quantified and, in fact, achieved in an optimal solution. For
operations research specialists, what may be most interesting is the simplicity with which some
seemingly difficult integer and multiple objective programming problems may be solved. From
the point of view of those interested specifically in location theory, it is a contribution which
opens a new problem area, while pointing the way to great potential applications in more general
planning environments.
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