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Abstract In this paper we analyze robust approaches to decision making under 4

uncertainty where the expected outcome is maximized but the probabilities are 5

known imprecisely. A conservative robust approach takes into account any prob- 6

ability distribution thus leading to the notion of robustness focusing on the worst 7

case scenario and resulting in the max-min optimization. We consider softer robust 8

models allowing the probabilities to vary only within given intervals. We show that 9

the robust solution for only upper bounded probabilities becomes the tail mean, 10

known also as the conditional value-at-risk (CVaR), with an appropriate tolerance 11

level. For proportional upper and lower probability limits the corresponding robust 12

solution may be expressed by the optimization of appropriately combined the mean 13

and the tail mean criteria. Finally, a general robust solution for any arbitrary intervals 14

of probabilities can be expressed with the optimization problem very similar to the 15

tail mean and thereby easily implementable with auxiliary linear inequalities. 16

1 Introduction 17

Several approaches have been developed to deal with uncertain or imprecise data 18

in optimization problems. In the standard stochastic programming models, we 19

assume that the probability distribution of the data is known (or can be estimated) 20

(Ruszczyński and Shapiro 2003). The approaches focused on the quality of the 21

solution for some data domains (bounded regions) are considered robust (Ben- 22

Tal et al. 2009; Bertsimas and Thiele 2006). Notion of robust solutions was 23

first introduced for statistical decisions in 1964 by Huber (1964). Stochastic 24

programming models with uncertain probability distributions first had been 25

introduced in (Dupacova 1987; Ermoliev et al. 1985). Practical importance of 26
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the performance sensitivity against data uncertainty and errors has later attracted 27

considerable attention to the search for robust solutions (see (Hampel et al. 1986)). 28

In general decision theory under uncertainty the notion of robustness may have 29

rather broad set of definitions (Ermoliev and Hordijk 2006). The precise concept of 30

robustness depends on the way uncertain data domains and the quality or stability 31

characteristics are introduced. 32

A conservative notion of robustness focusing on worst case scenario results 33

is widely accepted and the max-min optimization is commonly used to seek 34

robust solutions. Although shortcomings of the worst case approaches are 35

known (Ermoliev and Wets 1988). Recently, a more advanced concept of ordered 36

weighted averaging was introduced into robust optimization (Perny et al. 2006), 37

thus allowing to optimize combined performances under the worst case scenario 38

together with the performances under the second worst scenario, the third worst and 39

so on. Such an approach exploits better the entire distribution of objective vectors 40

in search for robust solutions and, more importantly, it introduces some tools for 41

modeling robust preferences. 42

In this paper we focus on robust approaches where the probabilities are unknown 43

or imprecise. Having assumed that the probabilities may vary within given intervals, 44

we optimize the worst case expected outcome with respect to the probabilities 45

perturbation set. For the case of unlimited perturbations the worst case expectation 46

becomes the worst outcome (max-min solution). In general case, the worst case 47

expectation is a generalization of the tail mean. Nevertheless, it can be effectively 48

reformulated as a Linear Programming (LP) expansion of the original problem. 49

The paper is organized as follows. In the next section we recall the tail mean 50

(Conditional Value at Risk, CVaR) solution concept providing a new proof of the LP 51

computational model which remains applicable for more general problems related 52

to the robust solution concepts. Section 3 contains the main results. We show that 53

the robust solution for only upper bounded probabilities is the tail ˇ-mean solution 54

for an appropriate ˇ value. For proportional upper and lower limits on probability 55

perturbation the robust solution may be expressed as optimization of appropriately 56

combined the mean and the tail mean criteria. Finally, a general robust solution 57

for any arbitrary intervals of probabilities or probabilities perturbations can be 58

expressed with optimization problem very similar to the tail ˇ-mean and thereby 59

easily implementable with auxiliary linear inequalities. In Sect. 4 we show how 60

for the specific case of LP problems, alternative dual models of robust solutions 61

may be built to overcome high dimensionality caused by the number of scenarios. 62

The computational advantages of the dual models are demonstrated on the portfolio 63

optimization problem in Sect. 5. 64

2 Robust Solution Concept 65

Consider a decision problem under uncertainty where the decision is based on the 66

maximization of a scalar (real valued) outcome. The simplest representation of 67

uncertainty depends on a finite set ˝ (j˝j D m) of predefined scenarios. The final 68
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outcome is uncertain and only its realizations under various scenarios ! 2 ˝ are 69

known. Exactly, for each scenario ! the corresponding outcome realization is given 70

as a function of the decision variables y! D f!.x/ where x denotes a vector of 71

decision variables to be selected from the feasible set Q � Rn of constraints under 72

consideration. Let us define the set of attainable outcomes A D fy D .y/!2˝ W 73

y! D f!.x/ 8 ! 2 ˝; x 2 Qg. We are interested in larger outcomes under each 74

scenario. Hence, the decision under uncertainty can be considered a multiple criteria 75

optimization problem (Haimes 1993; Ogryczak 2002) 76

max f .y!/!2˝ W y 2 A g : (1)

From the perspective of decision making under uncertainty, the model (1) only 77

specifies that we are interested in maximization of outcomes under all scenarios 78

! 2 ˝ . In order to make the multiple objective model operational for the decision 79

support process, one needs to assume some solution concept well adjusted to the 80

decision maker’s preferences. 81

Within the decision problems under risk it is assumed that the exact values of the 82

underlying scenario probabilities p! .! 2 ˝) are given or can be estimated. This 83

is a basis for the stochastic programming approaches where the solution concept 84

depends on the maximization of the expected value (the mean outcome) 85

�.y/ D
X

!2˝

y!p! (2)

or some risk function. In particular, the risk functions �ık .y/ D �.y/ � ık.y/ based 86
on the downside semideviations 87

ık.y/ D
"
X

!2˝

maxf�.y/ � y!p!; 0gk

#1=k

(3)

are consistent with the second degree stochastic dominance (Ogryczak and 88

Ruszczyński 2001) and thereby coherent (Artzner et al. 1999). Among them, the 89

Mean Absolute Deviation (ı1) related risk function can be expressed as the mean of 90

downside distribution �ı1 .y/ D P
!2˝ minf�.y/; y!gp! . 91

Recently, the second order quantile risk measures have been introduced in 92

different ways by many authors (Artzner et al. 1999; Embrechts et al. 1997; 93

Ermoliev and Leonardi 1982; Ogryczak 1999; Rockafellar and Uryasev 2000). 94

They generally represent the (worst) tail mean defined as the mean within the 95

specified tolerance level (quantile) of the worst outcomes. Within the decision under 96

risk literature, and especially related to finance application, the tail mean quantity 97

is usually called Tail VaR, Average VaR or Conditional VaR (where VaR reads 98

after Value-at-Risk) (Pflug 2000). Actually, the name CVaR after (Rockafellar and 99

Uryasev 2000) is now the most commonly used. Although, since we will consider 100

the measure with respect to distributions without a formally defined probabilistic 101

space we will refer to it as the tail mean. The tail mean maximization is consistent 102
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with the second degree stochastic dominance (Ogryczak and Ruszczyński 2002) and 103

it meets the requirements of coherent risk measurement (Pflug 2000). 104

For any probabilities p! and tolerance level ˇ the corresponding tail mean can be 105

mathematically formalized as follows (Ogryczak 2002; Ogryczak and Ruszczyński 106

2002). Having defined the right-continuous cumulative distribution function (cdf): 107

Fy.�/ D ProbŒyw � ��, we introduce the quantile function F
.�1/
y as the left- 108

continuous inverse of the cumulative distribution function Fy: 109

F .�1/
y .ˇ/ D inf

˚
� W Fy.�/ � ˇ

�
for 0 < ˇ � 1: 110

By integrating F
.�1/

y one gets the (worst) tail mean 111

�ˇ.y/ D 1

ˇ

Z ˇ

0

F .�1/
y .˛/d˛ for 0 < ˇ � 1: (4)

the point value of the absolute Lorenz curve (Ogryczak 2000). The latter makes the 112

tail means directly related to the dual theory of choice under risk (Quiggin 1982; 113

Roell 1987; Yaari 1987). 114

Maximization of the tail ˇ-mean 115

max
y2A

�ˇ.y/ (5)

defines the tail ˇ-mean solution concept. When parameter ˇ approaches 0, the tail 116

ˇ-mean tends to the smallest outcome 117

M.y/ D min fy! W ! 2 ˝g D lim
ˇ!0C

�ˇ.y/: 118

On the other hand, for ˇ D 1 the corresponding tail mean becomes the standard 119

mean (�1.y/ D �.y/). 120

Note that, due to the finite number of scenarios, the tail ˇ-mean is well defined 121

by the following optimization 122

�ˇ.y/ D min
u!

(
1

ˇ

X

!2˝

y!u! W
X

!2˝

u! D ˇ; 0 � u! � p! 8 ! 2 ˝

)
: (6)

Problem (6) is a Linear Program for a given outcome vector y while it becomes 123

nonlinear for y being a vector of variables as in the tail ˇ-mean problem (5). It 124

turns out that this difficulty can be overcome by an equivalent LP formulation of the 125

ˇ-mean that allows one to implement the ˇ-mean problem (5) with auxiliary linear 126

inequalities. Namely, the following theorem recalls Rockafellar and Uryasev (2000) 127

LP model for continuous distributions which remains valid for a general distribution 128

(Ogryczak and Ruszczyński 2002). Although we introduce a new proof which can 129

be further generalized for a family of robust solution concepts we consider. 130
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Theorem 1. For any outcome vector y with the corresponding probabilities p! , 131

and for any real value 0 < ˇ � 1, the tail ˇ-mean outcome is given by the following 132

linear program: 133

�ˇ.y/ D max
t;d!

(
t � 1

ˇ

X

!2˝

p!d! W y! � t � d!; d! � 0 8 ! 2 ˝

)
: (7)

Proof. The theorem can be proven by taking advantage of the LP dual to (6).
Introducing dual variable t corresponding to the equation

P
!2˝ u! D ˇ and

variables d! corresponding to upper bounds on u! one gets the LP dual (7). Due
to the duality theory, for any given vector y the tail ˇ-mean �ˇ.y/ can be found as
the optimal value of the LP problem (7). ut

Frequently, scenario probabilities are unknown or imprecise. Uncertainty is then 134

represented by limits (intervals) on possible values of probabilities varying inde- 135

pendently (Thiele 2008). We focus on such representation to define robust solution 136

concept. Generally, we consider the case of unknown probabilities belonging to the 137

hypercube: 138

u 2 U D
(

.u1; u2; : : : ; um/ W
X

!2˝

u! D 1; �l
! � u! � �u

! 8 ! 2 ˝

)
(8)

where obviously 139X

!2˝

�l
! � 1 �

X

!2˝

�u
!: 140

Focusing on the mean outcome as the primary system efficiency measure to be 141

optimized we get the robust mean solution concept 142

max
y

min
u

(
X

!2˝

u!y! W u 2 U; y 2 A

)
: (9)

Further, taking into account that all the constraints of attainable set A remain 143

unchanged while the probabilities are perturbed, the robust mean solution can be 144

rewritten as 145

max
y2A

min
u2U

X

!2˝

u!y! D max
y2A

(
min
u2U

X

!2˝

u!y!

)
D max

y2A
�U .y/ (10)

where 146

�U .y/ D min
u2U

X

!2˝

u!y!

D min
u!

(
X

!2˝

y!u! W
X

!2˝

u! D 1; �l
! � u! � �u

! 8 ! 2 ˝

) (11)
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represent the worst case mean outcomes for given outcome vector y 2 A with 147

respect to the probabilities set U . 148

Similar robust solution concepts can be built for various risk functions used 149

instead of the mean. For the tail mean (CVaR) optimization, the corresponding 150

robust tail ˇ-mean solution can be expressed as 151

max
y2A

�U
ˇ .y/ (12)

where 152

�U
ˇ .y/ D min

u2U
min

u0
!

(
1

ˇ

X

!2˝

y!u0
! W

X

!2˝

u0
! D ˇ; 0 � u0

! � u! 8 ! 2 ˝

)
: (13)

represents the worst case tail ˇ-mean outcome for given outcome vector y 2 A with 153

respect to the probabilities set U . 154

3 Tail Mean and Related Robust Solution Concepts 155

Let us consider first the robust mean solution (10) in the case of unlimited 156

probability perturbations (�l
! D 0 and �u

! D 1). One may easily notice that the 157

worst case mean outcome (11) becomes the worst outcome 158

�U .y/ D min
u!

(
X

!2˝

y!u! W
X

!2˝

u! D 1; 0 � u! � 1 8 ! 2 ˝

)
D min

!2˝
y! 159

thus leading to the conservative robust solution concept represented by the max-min 160

approach. 161

For the case of probabilities lying in a given box with relaxed lower limits (�l
! D 162

0 8 ! 2 ˝) the worst case mean outcome (11) becomes the classical tail mean 163

outcome. Hence, the robust solution (10) may be represented as the tail ˇ-mean 164

with respect to appropriately rescaled probabilities. 165

Theorem 2. The robust solution the worst case mean outcome (9)–(11) with 166

relaxed lower bounds may be represented as the tail ˇ-mean with respect to 167

probabilities 168

p! D �u
!

�X

!2˝

�u
! and ˇ D 1

�X

!2˝

�u
!; 169

and it can be found by simple expansion of the optimization problem with auxiliary 170

linear constraints and variables to the following: 171

max
y;d;t

(
t �

X

!2˝

�u
!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝

)
: (14)
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Proof. Note that by simple rescaling of variables with su D P
!2˝ �u

! one gets 172

�U .y/ D min
u!

(
X

!2˝

y!u! W
X

!2˝

u! D 1; 0 � u! � �u
! 8 ! 2 ˝

)

D min
u0

!

(
su
X

!2˝

y!u0
! W

X

!2˝

u0
! D 1

su
; 0 � u0

! � �u
!

su
8 ! 2 ˝

)
:

173

Hence, the robust solution may be represented as the tail .1=su/-mean with respect
to probabilities p! D �u

!=su. Following Theorem 1, it can searched by solving
(14). ut

Note that with �u
! D 1 for ! 2 ˝ we represent the robust solution (11) as the 174

tail ˇ-mean with p! D 1=m and ˇ D 1=m thus representing the max-min model. In 175

the case of �u
! D k=m for ! 2 ˝ we get p! D 1=m and ˇ D 1=k. For the specific 176

case of given probabilities Np with possible perturbations bounded proportionally it 177

is possible to express the corresponding robust solution (11) as the tail mean based 178

on the original probabilities. Indeed, in the case of �u
! D .1 C ıC/ Np! we get in 179

Theorem 2 180

p! D �u
!

�X

!2˝

�u
! D Np!: 181

In the general case of possible lower limits, the robust mean solution concept 182

(9)–(11) cannot be directly expressed as an appropriate tail ˇ-mean. It turns out, 183

however, that it can be expressed by the optimization with combined criteria of the 184

tail ˇ-mean and the mean. 185

Theorem 3. The robust mean solution concept (9)–(11) is equivalent to the convex 186

combination of the mean and the tail ˇ-mean criteria maximization 187

max
y2A

�U .y/ D max
y2A

�
��.y/ C .1 � �/�ˇ.y/

�
(15)

with 188

ˇ D
 

1 �
X

!2˝

�l
!

!�X

!2˝

�
�u

! � �l
!

�
and � D

X

!2˝

�l
!; 189

where the tail mean �ˇ.y/ is defined according to probabilities p0
! while the mean 190

�.y/ is considered with respect to probabilities p00
!: 191

p0
! D �

�u
! � �l

!

��X

!2˝

�
�u

! � �l
!

�
and p00

! D �l
!

�X

!2˝

�l
! for ! 2 ˝: 192

Proof. When introducing scaling factors su D P
!2˝ �u

! and sl D P
!2˝ �l

! , the 193

worst case mean outcome (11) can be expressed as follows 194
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�U .y/ D min
u!

(
X

!2˝

y!u! W
X

!2˝

u! D 1; �l
! � u! � �u

! 8 ! 2 ˝

)

D min
u0

!

(
X

!2˝

y!u0
! W

X

!2˝

u0
! D 1 � sl ; 0 � u0

! � �u
! � �l

! 8 ! 2 ˝

)

C
X

!2˝

y!�u
!

D .1 � sl / min
u00

!

(
su � sl

1 � sl

X

!2˝

y!u00
! W

X

!2˝

u00
! D 1 � sl

su � sl
;

0 � u00
! � �u

! � �l
!

su � sl
8 ! 2 ˝

�
C sl

P
!2˝ y!

�l
!

sl

D .1 � �/�ˇ.y/ C ��.y/

195

which completes the proof. ut
Corollary 1. The robust mean solution concept (10)–(11) for the specific case of 196

given probabilities Np with possible perturbations bounded proportionally �l
! D 197

.1 � ı�/ Np! and �u
! D .1 C ıC/ Np! for all ! 2 ˝ is equivalent to the convex 198

combination of the mean and tail ˇ-mean criteria maximization 199

max
y2A

�U .y/ D max
y2A

�
��.y/ C .1 � �/�ˇ.y/

�
(16)

with ˇ D ı�=.ıC C ı�/ and � D 1 � ı� where both the mean �.y/ and the tail 200

mean �ˇ.y/ are calculated with respect to the original probabilities Np! . 201

Proof. For proportionally bounded perturbations 202

�l
! D .1 � ı�/ Np! and �u

! D .1 C ıC/ Np! 203

formula 15 of Theorem 3 is fulfilled with 204

ˇ D 1 �P
!2˝ �l

!P
!2˝

�
�u

! � �l
!

� D ı�

ıC C ı� 205

and 206

� D
X

!2˝

�l
! D 1 � ı�: 207

Further, where the tail mean is defined according to probabilities 208

p0
! D �u

! � �l
!P

!2˝

�
�u

! � �l
!

� D
�
ıC C ı�� Np!

ıCP
!2˝ Np! C ı�P

!2˝ Np!

D Np! 209

as well as the mean is also considered with respect to probabilities 210



�

�

“Driver” — 2011/8/24 — 12:57 — page 27 — #10
�

�

�

�

�

�

UNCORRECTED
PROOF

Robust Decisions Under Risk for Imprecise Probabilities

p00
! D �l

!P
!2˝ �l

!

D
�
1 � ıl

!

� Np!�
1 � ıl

!

�P
!2˝ Np!

D Np! 211

which completes the proof. ut
Alternatively, one can take advantages of the fact that the structure of optimiza- 212

tion problem (11) remains very similar to that of the tail ˇ-mean (6). Note that 213

problem (11) is an LP for a given outcome vector y while it becomes nonlinear for 214

y being a vector of variables. This difficulty can be overcome similar to Theorem 1 215

for the tail ˇ-mean. 216

Theorem 4. For any arbitrary intervals Œ�l
!; �u

!� (for all ! 2 ˝) of probabilities, 217

the corresponding robust mean solution (10)–(11) can be given by the following 218

optimization problem 219

max
y;t;d u

! ;d l
!

(
t �

X

!2˝

�u
!d u

! C
X

!2˝

�l
!d l

! W
y 2 AI t � d u

! C d l
! � y!; d u

!; d l
! � 0 8 ! 2 ˝

�
:

(17)

Proof. The theorem can be proven by taking advantages of the LP dual to (11). 220

Introducing dual variable t corresponding to the equation
P

!2˝ u! D 1 and 221

variables d u
! and d l

! corresponding to upper and lower bounds on u! , respectively, 222

one gets the following LP dual to problem (11) 223

�U .y/ D max
t;d u

! ;d l
!

(
t �

X

!2˝

�u
!d u

! C
X

!2˝

�l
!d l

! W
t � d u

! C d l
! � y!; d u

!; d l
! � 0 8 ! 2 ˝

�
224

which completes the proof. ut
While considering the tail mean as the basic optimization criterion (CVaR 225

optimization) we have to deal with the robust tail mean solution concepts (12)–(13) 226

to allow for imprecise probabilities. It turns out that this robust solution concept for 227

any arbitrary perturbation set U (8) may be expressed as the standard tail mean with 228

appropriately defined tolerance level and rescaled probabilities. 229

Theorem 5. The robust tail ˇ-mean solution (12)–(13) with arbitrary set U (8) 230

may be represented as the tail ˇ0-mean with respect to probabilities 231

p0
! D �u

!

�X

!2˝

�u
! and ˇ0 D ˇ

�X

!2˝

�u
!; 232

and it can be found by simple expansion of the optimization problem with auxiliary 233

linear constraints and variables to the following: 234

max
y;d;t

(
t � 1

ˇ

X

!2˝

�u
!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝

)
: (18)
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Proof. Note that 235

�U
ˇ .y/ D min

u2U
min

u0
!

(
1

ˇ

X

!2˝

y!u0
! W

X

!2˝

u0
! D ˇ; 0 � u0

! � u! 8 ! 2 ˝

)

D min
u0

!

(
1

ˇ

X

!2˝

y!u0
! W

X

!2˝

u0
! D ˇ; 0 � u0

! � �u
! 8 ! 2 ˝

) 236

Thus by simple rescaling of variables with su D P
!2˝ �u

! one gets 237

�U
ˇ .y/ D min

u00
!

(
su

ˇ

X

!2˝

y!u00
! W

X

!2˝

u00
! D ˇ

su
; 0 � u00

! � �u
!

su
8 ! 2 ˝

)
: 238

Hence, the robust solution may be represented as the tail .ˇ=su/-mean with
respect to probabilities p! D �u

!=su. Following Theorem 1, it can searched by
solving (18). ut
Corollary 2. The robust tail ˇ-mean solution concept (12)–(13) for the specific 239

case of given probabilities Np with possible perturbations upper bounded proportion- 240

ally �u
! D .1 C ıC/ Np! and arbitrary lower bounded (any �l

! � Np!) for all ! 2 ˝ 241

is equivalent to the tail ˇ0-mean with respect to probabilities Np and ˇ0 D ˇ=.1CıC/, 242

and it can be found by simple expansion of the optimization problem with auxiliary 243

linear constraints and variables to the following: 244

max
y;d;t

(
t � 1 C ıC

ˇ

X

!2˝

Np!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝

)
:

(19)

4 Dual LP Models 245

Following (10), the robust mean solution concept is given as 246

max
y2A

�U .y/ D max
y2A

(
min
u2U

X

!2˝

y!u!

)
D max

y2A
min
u2U

X

!2˝

u!y! 247

where the inner optimization problem (11) represents the worst case mean outcome 248

for given outcome vector y 2 A with respect to the probabilities set U . It is an LP 249

for a given vector y but it turns into nonlinear within the entire robust optimization 250

problem (5), due to the quadratic objective function
P

!2˝ y!u! . This difficulty is 251

overcome by an equivalent dual LP formulation of problem (6). Indeed, introducing 252

dual variable t corresponding to the equation
P

!2˝ u! D 1 and variables d u
! and d l

! 253

corresponding to upper and lower bounds on u! , respectively, we get the following 254

LP dual to problem (11) 255
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�U .y/ D max
t;d u

! ;d l
!

(
t �

X

!2˝

�u
!d u

! C
X

!2˝

�l
!d l

! W
t � d u

! C d l
! � y!; d u

!; d l
! � 0 8 ! 2 ˝

�
(20)

This leads us to the standard LP model (17) of Theorem 4 for the robust opti- 256

mization. The model dimensionality is strongly affected by the number of scenarios 257

under consideration. The latter may be huge in the case of more advanced simulation 258

models employed for scenario generation (Pflug 2001). 259

An alternative robust optimization models can be built for LP problems by taking 260

advantages of the minimax theorem. Note that both sets A and U are convex 261

polyhedra. Hence, formula (5) can be rewritten into a dual form 262

max
y2A

min
u2U

X

!2˝

u!y! D min
u2U

max
y2A

X

!2˝

u!y! D min
u2U

D.u/ (21)

with the inner optimization problem 263

D.u/ D max
y

(
X

!2˝

u!y! W y 2 A

)
: (22)

The inner optimization problem although being an LP for a given vector u has the 264

quadratic objective function
P

!2˝ u!y! within the entire robust optimization prob- 265

lem (21) where u is also a vector of variables. Again, this difficulty can be resolved 266

by taking advantages of the LP dual D�.u/ to the inner problem D�.u/. Indeed: 267

min
u2U

D.u/ D min
u2U

D�.u/ (23)

but solving the latter problem allows us to use the LP methodology. Moreover, 268

set U has only one equation (structural constraint) which makes the problem 269

minu2U D�.u/ much simpler than those of (20). In the next section we illustrate 270

potential advantages of the alternative (dual) model with the portfolio optimization 271

problem. 272

5 Portfolio Optimization 273

The portfolio optimization problem we consider follows the original Markowitz’ 274

formulation and is based on a single period model of investment. At the beginning 275

of a period, an investor allocates the capital among various securities, thus assigning 276

a nonnegative weight (share of the capital) to each security. Let J D f1; 2; : : : ; ng 277

denote a set of securities considered for an investment. For each security j 2 J , 278

its rate of return is represented by a random variable Rj with a given mean 279

�j D EfRj g. Further, let x D .xj /j D1;:::;n denote a vector of decision variables 280

xj expressing the weights defining a portfolio. The weights must satisfy a set of 281

constraints to represent a portfolio. The simplest way of defining a feasible set Q is 282

by a requirement that the weights must sum to one and they are nonnegative (short 283
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sales are not allowed), i.e. 284

Q D
8
<

:x W
X

j 2J

xj D 1; xj � 0 8 j 2 J

9
=

; : (24)

Hereafter, we perform detailed analysis for the set Q given with constraints (24). 285

Nevertheless, the presented results can easily be adapted to a general LP feasible set 286

given as a system of linear equations and inequalities, thus allowing one to include 287

short sales, upper bounds on single shares or portfolio structure restrictions which 288

may be faced by a real-life investor. 289

Each portfolio x defines a corresponding random variable Rx D P
j 2J Rj xj 290

that represents the portfolio rate of return while the expected value can be computed 291

as �.x/ D P
j 2J �j xj . We consider m scenarios ! 2 ˝ with probabilities p! . 292

We assume that for each random variable Rj its realization r!
j under the scenario 293

! is known. Typically, the realizations are derived from historical data treating m 294

historical periods as equally probable scenarios (p! D 1=m). Although the models 295

we analyze do not take advantages of this simplification. The realizations of the 296

portfolio return Rx are given as 297

y! D
X

j 2J

r!
j xj : (25)

Following Theorem 4 and taking into account (25), for any arbitrary intervals 298

Œ�l
!; �u

!� (for all ! 2 ˝) of probabilities, the corresponding robust portfolio 299

optimization problem (10) can be given by the following LP problem: 300

max
x;y;t;d u

! ;d l
!

t �
X

!2˝

�u
!d u

! C
X

!2˝

�l
!d l

! W

s.t.
X

j 2J

xj D 1; xj � 0 for j 2 J

d u
! � d l

! � t C
nX

j 2J

r!
j xj � 0; d u

!; d l
! � 0 for ! 2 ˝

(26)

where t is an unbounded variable. 301

As a particular case of relaxed lower bounds on scenario probabilities (�l
! D 0 302

8! 2 ˝), following Corollary 2 one gets the classical CVaR portfolio optimization 303

model (Mansini et al. 2003): 304

max
x;y;t;d!

t � 1

ˇ

X

!2˝

p!d!

s.t.
X

j 2J

xj D 1; xj � 0 for j 2 J

d! � t C
X

j 2J

r!
j xj � 0; d! � 0 for ! 2 ˝

(27)

with probabilities p! D �u
!=
P

!2˝ �u
! and the tolerance level ˇ D 1=

P
!2˝ �u

! . 305
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Except from the corresponding portfolio constraints (24), model (27) contains 306

m nonnegative variables d! plus single variable t and m corresponding linear 307

inequalities. Hence, its dimensionality is proportional to the number of scenarios m. 308

Exactly, the LP model contains m C n C 1 variables and m C 1 constraints. It does 309

not cause any computational difficulties for a few hundreds scenarios as in several 310

computational analysis based on historical data (Mansini et al. 2007), However, in 311

the case of more advanced simulation models employed for scenario generation 312

one may get several thousands scenarios (Pflug 2001). This may lead to the LP 313

model (27) with huge number of variables and constraints thus decreasing the 314

computational efficiency of the model. 315

The dual model (23) allows us to formulate the corresponding robust portfolio 316

optimization problem (10), for any arbitrary intervals of probabilities (8), as the 317

following LP problem: 318

min
u;q

q

s.t. q �
X

!2˝

r!
j u! � 0 for j 2 J

X

!2˝

u! D 1

�l
! � u! � �u

! for ! 2 ˝:

(28)

For the specific case of the CVaR model (27) representing the case of relaxed 319

lower bounds, the dual model takes the following form: 320

min
u;q

q

s.t. q �
X

!2˝

r!
j u! � 0 for j D 1; : : : ; n

X

!2˝

u! D 1

0 � u! � p!

ˇ
for ! 2 ˝:

(29)

The dual LP model contains m variables u! , but only nC1 constraints (n inequalities 321

and one equation) excluding the simple bounds on u! not affecting the problem 322

complexity. Actually, the number of constraints in (29) is proportional to the 323

portfolio size n, thus it is independent from the number of scenarios. Exactly, there 324

are m C 1 variables and n C 1 constraints. This guarantees a high computational 325

efficiency of the dual model even for very large number of scenarios. Note that 326

possible additional portfolio structure requirements are usually modeled with rather 327

small number of linear constraints thus generating small number of additional 328

variables in the dual model. Certainly, the optimal portfolio shares xj are not 329

directly represented within the solution vector of problem (29) but they are easily 330

available as the dual variables (shadow prices) for inequalities q �P
!2˝ r!

j u! � 0. 331

Moreover, the dual model (29) may be considered a special case within the 332
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general theory of dual representations of coherent measures of risk, following from 333

conjugate duality (Sect. 5 in (Miller and Ruszczyński 2008)). 334

We have run computational tests (Ogryczak and Śliwiński 2010) on the large 335

scale CVaR portfolio optimization instances developed by Lim et al. (2010). The 336

instances were originally generated from a multivariate normal distribution for 50, 337

100 or 200 securities with the number of scenarios 50,000. All computations were 338

performed on a PC with the Intel Core i7 2.66GHz processor and 6GB RAM 339

employing the simplex code of the CPLEX 12.1 package. An attempt to solve 340

the primal model (27) with ˇ D 0:05 resulted in 580, 1443 and 5006 seconds of 341

computation on average, for problems with 50, 100 and 200 securities, respectively. 342

Solving the dual models (29) directly by the primal method (standard CPLEX 343

settings) results in computation times 5:3, 13:6 and 38:9 CPU seconds, respectively. 344

Moreover, the computation times remain very low for various confidence levels 345

(Ogryczak and Śliwiński 2010). 346

6 Conclusions 347

We have analyzed the robust mean solution concept where uncertainty is represented 348

by limits (intervals) on possible values of scenario probabilities varying indepen- 349

dently. Such an approach, in general, leads to complex optimization models with 350

variable coefficients (probabilities). We have shown, however, that the robust mean 351

solution concepts can be expressed with auxiliary linear inequalities, similar to the 352

tail ˇ-mean solution concept based on maximization of the mean in ˇ portion of the 353

worst outcomes. Actually, the robust mean solution for upper limits on probabilities 354

turns out to be the tail ˇ-mean for an appropriate ˇ value. For upper and lower limits 355

the robust mean solution may be sought by optimization of appropriately combined 356

the mean and the tail mean criteria. Thus, a general robust mean solution for any 357

arbitrary intervals of probabilities can be expressed with optimization problem very 358

similar to the tail ˇ-mean and thereby easily implementable with auxiliary linear 359

inequalities. While considering the tail mean as the basic optimization criterion 360

(CVaR optimization) the corresponding robust solution concept for any arbitrary 361

perturbation set may be expressed as the standard tail mean with appropriately 362

defined tolerance level and rescaled probabilities. 363

Our analysis has shown that the robust mean solution concept is closely related 364

with the tail mean which is the basic equitable solution concept (Kostreva et al. 365

2004). It corresponds to recent approaches to the robust optimization based on 366

the equitable optimization (Miettinen et al. 2008; Perny et al. 2006; Takeda and 367

Kanamori 2009). Further study on equitable solution concepts and their relations 368

to robust solutions seems to be a promising research direction. In particular, more 369

complex robust preferences can be modeled by combining with various weights the 370

tail means for larger and smaller perturbations thus leading to the combinations of 371

multiple CVaR measures (Mansini et al. 2007). 372



�

�

“Driver” — 2011/8/24 — 12:57 — page 33 — #16
�

�

�

�

�

�

UNCORRECTED
PROOF

Robust Decisions Under Risk for Imprecise Probabilities

Acknowledgements The research was partially supported by the Polish National Budget Funds 373
2009–2011 for science under the grant N N516 3757 36. 374

References 375

Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent masures of risk. Mathematical 376
Finance, 9, 203–228. 377

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. Princeton: Princeton 378
University Press. 379

Bertsimas, D., & Thiele, A. (2006). Robust and data-driven optimization: modern decision making 380
under uncertainty. Tutorials on Operations Research, INFORMS, Chap. 4, 195–122. 381

Dupacova, J. (1987). Stochastic programming with incomplete information: A survey of results on 382
postoptimization and sensitivity analysis. Optimization, 18, 507–532. 383
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