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Abstract

When locating public facilities, the distribution of travel distances among the service recipients is an important issue. It
is usually tackled with the minimax (center) solution concept. The minimax solution concept, despite the most commonly
used in the public sector location models, is criticized as it does not comply with the major principles of the efficiency and
equity modeling. In this paper we develop a concept of the lexicographic minimax solution (lexicographic center) being
a refinement of the standard minimax approach to location problems. We show that the lexicographic minimax approach
complies with both the Pareto-optimality (efficiency) principle (crucial in multiple criteria optimization) and the principle
of transfers (essential for equity measures) whereas the standard minimax approach may violate both these principles.
Computational algorithms are developed for the lexicographic minimax solution of discrete location problems. © 1997

Elsevier Science B.V.
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1. Introduction

Public goods and services are typically provided
and managed by governments in response to perceived
and expressed need. The spatial distribution of pub-
lic goods and services is strictly related to facility
location decisions. A host of operational models has
been developed to deal with the facility location opti-
mization (cf., Love et al., 1988; Francis et al., 1992;
Current et al., 1990). The location decisions involve,
depending on character of the services, one of two
fundamental considerations: spatial efficiency or geo-
graphical equity in the service provision (Morrill and
Symons, 1977). It results in two corresponding major
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approaches to location problems: minisum (median)
and minimax (center) approach. Most classical loca-
tion studies focus on some aspects of these two ap-
proaches.

The minisum approach is primarily concerned with
the spatial efficiency. Minisum models usually involve
minimization of aggregate or average weighted dis-
tance. Since the minisum approach is based on averag-
ing, it often provides solutions where remote and low-
population density areas are discriminated in terms of
accessibility to public facilities, as compared with cen-
trally situated and high-population density areas. For
this reason, an alternative approach, involving mini-
mization of maximum distance (travel time) between
any consumer and the closest facility, can be applied.
This approach to location problems is referred to as
minimax or center approach (Hakimi, 1965). As the
minimax objective primarily addresses the geograph-
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ical equity issues, this approach is of particular im-
portance in spatial organization of emergency service
systems, such as fire, police, medical ambulance ser-
vices, civil defense and accident rescue. In this paper
we are concerned with the minimax approach to loca-
tion problems.

One of the disadvantages of the minimax approach
to location problems is that it is too crude and many
quite different feasible solutions may be optimal with
respect to the minimax criterion. While using stan-
dard algorithmic tools to identify the minimax solu-
tion, one of many solutions is selected randomly. It
causes that the minimax solutions are highly unsta-
ble (Richard et al., 1990). Furthermore, it often turns
out that the distribution of spatial units in relation to
the location of facilities may make the minimax crite-
rion partially passive. It arises, for instance, when an
isolated spatial unit is located at a considerable dis-
tance from all the locations of facilities. Minimiza-
tion of the maximum distance is then reduced to the
minimization of the distance of that single isolated
spatial unit (e.g., Malczewski and Ogryczak, 1988)
leaving other location decisions unoptimized. It causes
that some minimax optimal solutions may violate the
Pareto-optimality principle. This principle, crucial in
the multiple criteria optimization theory, requires that
improvement of at least one outcome without wors-
ening any other outcome results in a more preferred
solution (e.g., Vincke, 1992). In the location context,
this means that as the system measure of overall ef-
ficiency improves, at least one individual is better off
(Marsh and Schilling, 1994). Crudity of the minimax
approach causes also that the minimax solution con-
cept is criticized from the perspective of the geograph-
ical equity. Namely, the minimax approach violates
the principle of transfers (e.g., Mandell, 1991; Erkut,
1992). This principle, which is commonly recognized
in the literature on equity analysis as the essential ax-
iom for equity measures, requires that a transfer of
service units from a subgroup to any relatively worse-
off subgroup results in an improvement in the measure
(Allison, 1978; Coulter, 1980).

In this paper we develop the concept of the lexi-
cographic minimax as a refinement of the standard
minimax approach to location problems. In this con-
cept we require to minimize not only the largest
distance but also to minimize the second largest dis-
tance, the third largest, and so on. The lexicographic

minimax solution is known in the game theory as
the nucleolus of a matrix game. It originates from
an idea, presented by Dresher (1961), to select from
the optimal (minimax) strategy set of a player a sub-
set of optimal strategies which exploit mistakes of
the opponent optimally. It has been later refined to
the formal nucleolus definition (Schmeidler, 1969)
and generalized to an arbitrary number of objective
functions (Potters and Tijs, 1992). This approach has
been recently used for linear programming problems
related to multiperiod resource allocation (Klein et
al., 1992) and for linear multiple criteria problems
(Marchi and Oviedo, 1992).

One may notice that the Rawlsian difference princi-
ple has some similarities with the lexicographic min-
imax approach. Rawls (1971) considers the problem
of ranking different “social states™; that is different
ways in which a society might be organized taking into
account the welfare of each individual in each soci-
ety, measured on a single numerical scale (see Rawls,
1971, p. 62). In the location context, the welfare is
expressed by accessibility of an individual to public
goods and services. Thus applying the Rawlsian ap-
proach, any two location patterns should be ranked ac-
cording to the accessibility levels of the least well-off
individuals in those spatial patterns; if the comparison
yields a tie, we should consider the accessibility levels
of the next—Ileast well—off individuals, and so on.

The lexicographic approach to the minimax solution
concept refines this concept as it selects the unique set
of outcomes (it may be a nonunique solution in the
decision space but all the solutions have exactly the
same distribution of outcomes). We argue that the lex-
icographic refinement of the minimax approach elim-
inates all the flaws of the standard minimax approach
to location problems. This paper is organized around
this hypothesis. In Section 2 we specify, in details,
the class of problems under consideration. In the first
part of this section, we formulate the general location
problem as a multiple criteria model with individual
objective functions measuring outcomes (effects, dis-
tances) of the location patterns for each spatial unit
(client). Next, in the second part, we introduce an
axiomatic characterization of solution concepts com-
plying with the both minimization of all the outcomes
(distances) and the minimization of the spatial in-
equality. Section 3 gives a formal definition of the lex-
icographic minimax solution concept. We show there
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that the lexicographic minimax solution concept sat-
isfies the principle of transfers as well as the Pareto-
optimality (efficiency) principle and all the other ax-
ioms specified in Section 2. We also discuss some re-
lated solution concepts satisfying the requirements. In
Section 4 we discuss algorithms that can be used to
solve the lexicographic minimax location problems.
Finally, in Section 5 we report some results of our ini-
tial computational experience with the lexicographic
minimax concept in comparison with the classical effi-
ciency and equity solution concepts. In order to make
the presentation more lucid, mathematical proofs have
been moved to the Appendix.

2. The problem
2.1. Decision structure

The generic location problem, we consider, may be
stated as follows. There is given a set of n spatial units
(clients). Each unit can be represented by a specific
point (node) situated in this unit. There is also given
a set of m potential locations for the facilities. It may
be, in particular, a subset (or the entire set) of points
representing the units. Further, the number (or the
maximal number) p of facilities to be located is given
(p < m). Thus, we limit our discussion to discrete
location problems (Mirchandani and Francis, 1990).
They can be viewed, however, as network location
problems with possible locations restricted to some
subset of the network vertices (Labbé et al., 1995).

Let us assume that for each spatial unit j (j =
1,2,...,n) thereis defined a function f;(x) of the lo-
cation pattern x. The function measures outcome (ef-
fect) of the location pattern for the spatial unit j (cf.,
Marsh and Schilling, 1994). In typical formulations
of location problems this function is usually related to
the distances and thereby its less value means better
effect (higher service quality or client satisfaction).
Therefore, we assume, each function f; needs to be
minimized. Hence, the generic location problem can
be viewed as the following multiple criteria minimiza-
tion problem

ngn{{fj(x)}jﬂ ,,,,, u xEQ}, (1)

where Q denotes the feasible set of location patterns.

The main decisions to be made in the location prob-
lem can be described with the binary variables:
x;: equal to 1 if location i is to be used and equal
to 0 otherwise (i=1,2,...,m).
To meet the problem requirements, the decision vari-
ables x; have to satisfy the following constraints

m

S xi=p, x€{0,1} fori=1,2,....,m, (2)

i=1

where the equation is replaced with the inequality (<)
if p specifies the maximal number of facilities to be
located. Note that constraints (2) take a very simple
form of the binary knapsack problem with all the con-
straint coefficients equal to 1. However, for most lo-
cation problems the feasible set @ has more complex
structure due to explicit consideration of allocation
decisions. These decisions are usually modeled with
additional allocation decision variables
xj;: equal to 1 if location i is used to service client
J and equal to O otherwise (i =1,2,...,m; j=
L,2,...,n).
The allocation decision variables have to satisfy the
following constraints

m

Zx:j=1 forjzlvza--'sn7 (3)
=1
x;<x fori=1,2,...,m
and j=1,2,...,n, (4)
x; €{0,1} fori=1,2,...,m
and j=1,2,...,n, (5)

where (5) may be relaxed to

x,’-j >0 fori=1,2,...,m
and j=1,2,...,n, (6)

if a partitioning of the spatial units during the allo-
cation process is allowed (fractional values of x;; are
accepted). In the capacitated location problem the de-
mand for services at each unit is expressed with the
corresponding coefficient v; and the capacities of the
potential facilities are given as g; (fori =1,2,...,m).
It implies the additional constraints

n
Y vixl<q fori=1,2,...,m (7
J=1
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We do not assume any special form of the feasible
set while proving the theoretical properties of the lex-
icographic minimax concept in Section 3. We rather
consider there the feasible set to be a general discrete
(nonconvex ) set. Therefore, the results of our analysis
apply to various discrete location problems. However,
while discussing the solution procedures in Section 4,
we take into account specific formulations of the fea-
sible set.

Individual objective functions f; depend on effects
of several allocations decisions. It means they de-
pend on allocation effect coefficients d;; > 0 (i =
I,...,m; j=1,...,n), called hereafter simply dis-
tance coefficients or distances as they usually express
the distance (or travel time) between location i and
unit j. Most location problems can be modeled with
objective functions defined as follows

fix) = dyxj; forj=1,2,....n. (8)

i=1

These linear functions of the allocation variables are
enough to build multiple criteria models (1) for the
uncapacitated as well as the capacitated facility loca-
tion problems. One may be interested in putting into
formula (8) some additional factors related to the unit
attributes, like service demand v;. It can be imple-
mented without affecting formula (8) by an appropri-
ate transformation of the distance coefficients d;; (e.g.,
dij = v;d;; for i = 1,2,...,m). Note that in such
transformations the set of potential locations and the
set of spatial units are treated independently thus gen-
erating possible nonsymmetric distances if the same
“geographical” point belongs to both the categories.
We use the specific form of the objective functions
only for the algorithmic consideration in Section 4.
Similar to the feasible set, we do not assume any spe-
cial form of the individual objective functions nor their
special properties (like convexity) while proving the
theoretical properties of the lexicographic minimax
concept in the next section.

2.2. Preference structure

Model (1), only specifies that we are interested in
minimization of all the objective functions f; for j €
N = {1,2,...,n}. In order to make it operational,
one needs to assume some solution concept specifying

what it means to minimize multiple objective func-
tions. Let F = ( fi,..., fy) represent a vector of n in-
dividual objective functions. Vector-function F maps
the feasible set @ (as a subset of the decision space)
into the criterion space Y. The elements of the criterion
space we refer to as achievement vectors. An achieve-
ment vector y is attainable if it expresses outcomes
of a location pattern x € Q (y = F(x)). We say that
achievement vectory’ € ¥ dominatesy” € Y if at least
one individual achievement is better whereas no other
one is worse (if yj’- < y}’ for all j € N where at least
one strict inequality holds). It is clear, or rather com-
monly accepted, that achievement vector y’ is better
than y” if y’ dominates y”'. In fact, it is the most gen-
eral assumption about the preference model underly-
ing the multiple criteria optimization. This assumption
is called the Pareto-optimality (or efficiency) princi-
ple. In accordance with the Pareto-optimality princi-
ple, we treat all the objective functions, and thereby
all the clients, in the same way. We do not make any
specific assumption about the decision maker prefer-
ence model except of the general assumption that for
each individual objective function less means better
(minimization), i.e. in terms of location problems, for
each spatial unit closer to the service means better.

Each feasible solution (location pattern) for which
one cannot improve any individual achievement with-
out worsening another one is the Pareto-optimal (ef-
ficient) solution. We say that a solution concept for
problem (1) complies with the Pareto-optimality prin-
ciple if it always generates a Pareto-optimal solution.
There exist usually many Pareto-optimal solutions and
they are different not only in the decision space but
also in the criterion space. Therefore, there may ex-
ist many quite different solution concepts complying
with the Pareto-optimality principle.

Typical solution concepts for the location problems
are based on some scalar measures of the achievement
vectors. However, there are some concepts, like the
lexicographic minimax discussed in this paper, which
do not introduce directly any scalar measure, despite
they rank the achievement vectors with a complete pre-
order. Therefore, we prefer to focus our analysis of so-
lution concepts on the properties of the corresponding
preference model. We assume that solution concepts
depend only on evaluation of the achievement vectors
do not taking into account other solution properties
not represented within achievement vectors. In fact, to
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extent of our knowledge, all the solution concepts for
location problems present in the literature satisfy this
assumption. Thus, we can limit our considerations to
the preference model in the criterion space Y.

The preference model is completely character-
ized by the relation of weak preference (cf., Vincke,
1992), denoted hereafter with <. Namely, we say that
achievement vector y’ € Y is (strictly) preferred to
y' eY (y <y") iffy Xy” and y" A y'. Similarly,
we say that achievement vector y’ € Y is indifferent
or equally preferred toy” € Y (y = y") iff y’ < y”
and y” < y'. If a solution concept is defined by the
minimization of some scalar function g(y), then the
corresponding preference model is defined by the
relation

y <y" iff g(y") <g(y").

All the scalar solution concepts, as well as all the
solutions concepts considered in this paper, generate
complete preorders in the criterion space. It means,
the corresponding preference relation < is complete

for any yl’yll cy, y/ < y/r or y// < y/ (9)
and transitive
(yl j yII al'ld y/! j yIH) = yl j ylll. (10)

To extent of our knowledge, all the solution concepts
for location problems present in the literature satisfy
both these properties. However, we assume only tran-
sitivity of the preference relation while discussing the
solution concept properties and we never assume that
a preference relation must be complete. So, the results
of our analysis may be applied to preference mod-
els violating (9). Under assumption of transitivity of
the preference relation, the Pareto-optimality princi-
ple may be expressed as the property of the prefer-
ence relation, called strict monotonicity. We say that
preference relation < is strictly monotonic if for any
achievement vector y and forany j € N

y—ee; <y fore>0, (11)

where e; denotes the jth unit vector in the criterion
space.

Let us concentrate now on issues of the geograph-
ical equity. Equity is, essentially, a socio-political ab-
stract concept that implies fairness and justness. Nev-
ertheless, the equity is usually quantified with the so-
called inequality measures. Inequality measures were

primarily studied in economics (Sen, 1973). However,
Marsh and Schilling (1994) have uncovered twenty
measures proposed in the literature to gauge the level
of equity in facility location alternatives. Among many
measures perhaps the most commonly accepted in eco-
nomics is the Gini coefficient which has been recently
also analyzed in the location context (Mulligan, 1991;
Erkut, 1993). The Gini coefficient is a half of the rela-
tive mean difference, where the mean difference (with
repetitions) is the average of the absolute differences
of all the possible pairs of individual effects ( Kendall,
1958). Since the index is dependent on on the pairwise
spread of individual effects, it has a certain theoretical
appeal as well as it can be relatively easily introduced
into the location models with tools of linear program-
ming (Mandell, 1991). The Gini coefficient also has
a popular graphical interpretation as the ratio of the
area between the Lorenz curve and the diagonal line of
absolute equality to the area of the entire triangle be-
low the diagonal (Sen, 1973; Mandell, 1991). When
applied to problem (1), the absolute mean difference
(AD) and the Gini coefficient (GC) are defined by
the following formulas

AD=(Y > |£(x) = fulx) /e, (12)
Jj=l k=1

GC=()_ D 1£(x) = fx))/2n D" f£(x). (13)
j=1 k=1 J=1

Focusing on model (1) we can consider inequal-
ity measures as functions of the achievement vectors.
Note, however, that an inequality measure is a function
of distribution of the outcomes rather than a function
of the achievement vector with a specified order of co-
efficients. It means, if considered as a function of the
achievement vector, an inequality measure is anony-
mous (symmetric, impartial) (Marsh and Schilling,
1994). Similarly, we require our preference relation <
to be anonymous (or impartial), i.e. we assume that
for any achievement vector y € Y and for any permu-
tation 7 of N

(Yr(1)s Y22y - > Yrm)) = (Y1, Y20+ <5 V) (14)

Moreover, according to the theory of inequality
measures (Sen, 1973; Allison, 1978) an inequality
measure should satisfy two major axioms: the princi-
ple of transfers and the principle of scale invariance.
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We define these requirements as the properties of
a preference relation. We say that preference rela-
tion < satisfies the principle of transfers if for any
achievement vector y € Y and for any pair of indices
jl’jll e N

yi >y =y —&ej + cejn <y
f0r0<s<yj/ —yj. (15)

We say that preference relation < is scale invariant
(satisfies the principle of scale invariance) if for any
achievement vectors y’,y” € Y and for any positive
constant ¢

y <y =cy 2cy'. (16)

Our formulation of the principle of scale invari-
ance assumes simply that multiplying of the outcomes
by a (positive) constant leaves the preferences un-
changed. For the inequality measures the principle of
scale invariance is often formulated in a stronger form
of the requirement that multiplying the outcomes by
a constant should leave the measure of inequality un-
changed (Erkut, 1993), i.e. in terms of the preference
relation

cy®y foranyc>0. 17)

Such a stronger requirement forces all appropriate in-
equality measures to be relative. As noticed by Erkut
(1993), it is rather a common flaw of all the relative
inequality measures that while moving away from the
spatial units to be serviced one gets better values of the
measure as the relative distances become closer to one-
another. As an extreme, one may consider an uncon-
strained continuous (single-facility) location problem
and find that the facility located at (or near) infinity
will provide (almost) perfectly equal service (in fact,
rather the lack of it) to all the spatial units.

One can easily notice that requirement (17) (to-
gether with transitivity) contradicts strict mono-
tonicity (11) and therefore it contradicts the Pareto-
optimality principle. Thus for solution concepts taking
into account both the distance minimization and the
inequality minimization we need to use the principle
of scale invariant in the form (16). Note that (16)
does not contradict strict monotonicity and it guaran-
tees that any change of the outcome scale due to con-
verting units does not affect the preference relation.

Concluding our discussion of the preference struc-
ture, we expect a solution concept to introduce the
preference relation which fulfills the requirement of
transitivity (10), strict monotonicity (11), anonymity
(14), scale invariance (16) and the principle of trans-
fers (15). Hereafter, we will call such a solution con-
cept the equitably efficient (E-E) solution concept.

3. Solution concepts
3.1. Lexicographic minimax

In this paper we focus on the minimax approach
(solution concept) applied to location problems. A
feasible location pattern x° € Q is called the minimax
(or center) solution of the multiple criteria problem
(1), if it is an optimal solution to the problem

min{,max fj(x):er}. (18)
X Jj=l,...n
The minimax solution concept is based on the prefer-
ence relation

y 2y iff  max y; < max yj.

i=l..., n j=l,..n
Note that the minimax preference relation <. is com-
plete (9), transitive (10), anonymous (14) and sat-
isfies the principle of scale invariance (16). The re-
lation, in general, does not satisfy strict monotonicity
(11) nor the principle of transfers (15). It causes the
reasons why the minimax solution concept is criticized
from the Pareto-optimality perspective as well as from
the perspective of inequality minimization. However,
the minimax solution concept satisfies the following
weaker forms of these conditions

y—¢ce; Xy fore>0, (19)
y—eey +eejn 2y forO<e<yy—ypm. (20)

The standard minimax approach looks only on the
largest outcomes and it is too crude to react on changes
of smaller outcomes. One may consider to minimize
also the second largest outcome (provided that the
largest one remains as small as possible), minimize
the third largest (provided that the two largest re-
main as small as possible), and so on. It leads us to a
concept of the lexicographic minimization of vectors
(fin(X), fp(x),..., f;,(x)) with the nonincreasing
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order of their coefficients, i.e. the lexicographic min-
imax optimization.

The lexicographic minimax approach can be math-
ematically formalized as follows. We introduce map
® : R — R" which orders the coordinates of vec-
tors in a nonincreasing order, i.e., @ (y1,y2,...,¥n) =
(31, %2, ..., ¥, iff there exists a permutation 7 of N
such that ¥; = y,(;) forallj e Nand §, > 5, > ... >
¥n. Note that the standard minimax approach depends
on minimization of ¥; and it ignores values of y; for
J = 2. It is a reason why the standard minimax ap-
proach is, in general, too crude to satisfy the Pareto-
optimality principle and the principle of transfers. In
order to take into account all the outcome values we
look for a lexicographic minimum among the ordered
achievement vectors. That means, we introduce the
strong lexicographic inequality <jex by ¥ <jex V iff
there is an index k& < n such that y; = v; forall j < k
and y; < vi. The weak lexicographic inequality is then
defined with therelationy <jex Viffy =vory <jex v.
It is commonly known that the (weak) lexicographic
order is complete and therefore one can look for a
minimum vector with respect to this relation. We call
a location pattern x° € Q the lexicographic minimax
solution (lexicographic center) if

®(f1(xa)if2(xo)»' '-»fn(xo))
Slex ®(fl(x)9f2(x)w' ,.,fn(X)),

for all location patterns x € Q. That means, the lexi-
cographic minimax solution is an optimal solution of
the following lexicographic problem

lexmin{®(f1(x), £2(%),...., fa(X)):x € Q}. (21)

The preference relation of the lexicographic min-
imax solution concept satisfies all our requirements
specified in the previous section (see Proposition 1 in
the Appendix for the formal proof). Thus, the lexico-
graphic minimax is an E-E solution concept.

Example 1. To illustrate the solution concept of the
lexicographic minimax, let us consider a problem of
location two facilities among ten spatial units where
each spatial unit can be considered as a potential lo-
cation. We assume that the facilities have unlimited
capacities and each spatial unit is served by the near-
est facility. Thus the problem takes the form (1)-(5)

and (8) with m = n = 10 and p = 2. To simplify
the example, we consider the units U1, U2,....U10 as
points on a line, say X-axis, with coordinates: 0, 4, 5,
6, 8,17, 18, 19, 20 and 28, respectively.

One can easily verify that the lexicographic mini-
max solution depends on location facilities in spatial
units U2 and U9. The distances generated by this loca-
tion are presented in the first row of Table 1. This solu-
tion seems to match very well the geographical equity
concept. It is, certainly, also an optimal solution to the
standard minimax problem (18). However, problem
(18) has other optimal solutions which are less de-
sirable from a geographical equity perspective. In the
second row of Table 1 there are presented distances
for another, in our opinion the worst, minimax solu-
tion. It is based on location facilities in spatial units
U1 and U9. In this solution two spatial units have the
maximal distance 8 to the nearest facility, whereas in
the lexicographic minimax solution only one does. For
easier comparison of the solutions, Table 2 presents
for each solution distances ordered in the nonincreas-
ing order. In Tables 1 and 2 we have included also
the minisum (median) solution and the solution min-
imizing the Gini coefficient (13). The minisum solu-
tion is based on locations in units U3 and U8, which
causes that the distance from unit U10 to the nearest
facility is 9. The Gini solution uses locations U1 and
U10 thus raising the maximal distance to 11. Addi-
tional columns in Table 2 provide value of the max-
imum distance (||.|o), the mean distance (|.||;/n),
the Gini coefficient (GC), and the absolute mean dif-
ference (AD), respectively.

The results of the GC minimization are hardly ac-
ceptable for the location problem. In our opinion, most
decision makers would rather consider this solution as
an example of the worst possible location for a spa-
tial organization of emergency services or other sim-
ilar applications. This is due to an obvious property
of the Gini coefficient that it decreases as we move
away from all the spatial units (clients). Note that the
“worst” minimax solution has better value of GC than
the lexicographic minimum despite the latter mini-
mizes (in this case) the absolute mean difference. Cer-
tainly, in general, the lexicographic minimax does not
coincide with the minimization of the absolute mean
difference.

Note that among four solutions (achievement vec-
tors) presented in Table 1 no one is dominated by
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Table 1
Location solutions for Example 1

Achievement vector

Solution concept Locations 1 2 3 4 5 6 7 8 9 10
lexicographic minimax U2 U9 4 0 1 2 4 3 2 1 0 8
“worst” minimax Ul U9 0 4 5 6 8 3 2 1 0 8
minisum u3 us 5 1 0 1 3 2 1 0 1 9
Gini Ul Ul10 0 4 5 6 8 11 10 9 8 0
Table 2

Evaluation of location solutions for Example 1

Solution concept Ordered achievement vector -l oo Bdh/n GC AD
lex minimax 8 4 4 3 2 2 1 1 0 0 8 25 0.484 242
“worst” minimax 8 8 6 5 4 3 2 1 0 0 8 37 0441 3.26
minisum 9 5 3 2 1 1 1 1 0 0 9 23 0.561 2.58
Gini 11 10 9 8 8 6 5 4 0 0 11 6.1 0.336 4.10

any other. In fact, all the solutions are Pareto-optimal.
However, from Table 2 one can see that ordered
achievement vector of the “worst” minimax solution
is dominated by that of the lexicographic minimax.
The ordered achievement vector of the Gini solution is
dominated by each of other three vectors. Thus, both
the Gini and the “worst” minimax solution cannot be
optimal with respect to any solution concept assuming
strict monotonicity and anonymity of the preferences.

The lexicographic refinement of the minimax ap-
proach allows us to select a solution which is al-
ways Pareto-optimal to the multiple criteria problem
(1) and simultaneously satisfies all the equity require-
ments specified in Section 2. Thus it complies with the
requirements for the E-E solution concept. Moreover,
this solution concept is consistent with the minimax
approach as it uses the minimax criterion on all the
optimization levels. This consistency causes that the
lexicographic minimax solution concept embarks and
expands some specificities of the minimax approach.
In the minimax approach it is assumed that any arbi-
trarily small decrease of the maximal distance, even
accompanied by remarkable worsening many lower
distances, is preferred to any (remarkable) decrease
of lower distances. It means, according to the mini-
max solution concept, for any arbitrarily small & >
0 achievement vector (d — &,d — &,...,d — &) is

preferred to (d,0,...,0). Thus, there is assumed the
complete lack of trade-off (compensation) between
decreasing of the largest distance and changes of all
the smaller distances. The lexicographic minimax so-
lution concept, due to the use of the lexicographic or-
der, expands this property on the entire hierarchy of
distances.

3.2. Related solution concepts

The minimax solution concept ( 18) may be viewed
a minimization of the [, norm of the achievement vec-
tor. Similarly, one may consider /, norms for a finite
a. In the case of location problem (1)-(5) and (8),
it can easily be implemented by replacing the original
distance coefficients with its & powers and applying
the minisum solution concept to the modified prob-
lem. Krarup and Pruzan (1981) have shown that, in
the case of discrete location problems, the use of the
minisum solution concept with the distances raised to
a sufficiently large power is equivalent to the use of
the minimax solution concept. This can be extended
to the lexicographic minimax solution concept and, in
fact, the lexicographic minimax solutions are the only
minimax solutions which can be identified with [, ap-
proximation. As shown by Burkard and Rendl (1991),
for some simpler discrete problems, expanding of dif-
ferences between the (distance) coefficients is cru-
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cial for approximation of the lexicographic minimax
with the minisum approaches. It turns out that the so-
lution concepts underlaying these approaches satisfy
all the requirements of the E-E solution concept. Let
g: Ry — R,. We call a location pattern x° € Q the
g-scaled minisum solution (g-scaled median) if it is
an optimal solution to the problem

min{}" ¢(f;(x)):x € 0}. (22)
Jj=1

If function g is strictly increasing and strictly convex,
then the g-scaled minisum solution concept (22) is
an E-E solution concept (see Proposition 2 in the Ap-
pendix).

‘When comparing two achievements vectors accord-
ing to the lexicographic minimax solution concept,
smaller coefficients need to be compared only in the
case of equal larger coefficients. One may consider
partially lexicographic minimax solution concepts
where the lexicographic minimization is only applied
to a few, say k, largest coefficients of the achieve-
ment vectors. It corresponds to a preference model
assuming that the decision maker does not accept any
trade-off (compensation) for minimization of the k
largest distances but allows to introduce some trade-
offs when minimizing smaller distances. Certainly, in
order to guarantee that such a solution concept sat-
isfies our requirements, the remaining n — k smaller
coefficients of the achievement vectors should be
minimized with another solution concept satisfying
the requirements of the E-E solution concept. For this
purpose, we may use the g-scaled minisum concept
(22). For instance, the k-lexicographic minimax so-
lution with the g-scaled regularization is an optimal
solution of the following problem

n

lexmxin{(y],...,yk, Z g(¥)):

j=k+1
§=0(F(x)), er}. 23)

If function g is strictly increasing and strictly con-
vex, then the k-lexicographic minimax solution con-
cept (23) is an E-E solution concept (see Proposi-
tion 3 in the Appendix).

One possible way to avoid flaws of the relative in-
equality measures applied to location problems is to

consider a bicriteria model taking into account both
the efficiency and the inequality (Mandell, 1991). One
may raise a question if such an approach complies with
the preference structure of the E-E solution concept.
Assuming that in the bicriteria model we are interested
in Pareto-optimal solutions, the bicriteria preference
relation is defined as follows

yI jb yI/ iff (yl jl yll and yl 52 yll) ,

where =< and =, are the preference relations for two
criteria, respectively. Note that, when using the min-
isum solution concept ( for efficiency) and the Gini co-
efficient minimization (for equity), the resulting pref-
erence relation =<, violates the property of strict mono-
tonicity (11). For instance, the Gini solution in Ex-
ample 1 would be a Pareto-optimal solution for such
a bicriteria problem whereas it cannot be optimal with
respect to any solution concept assuming strict mono-
tonicity and anonymity of the preferences. The min-
isum solution concept seems to be very well suited for
a use in the bicriteria model as its preference relation
satisfies all the requirements except of the principle
of transfers. Moreover, it does not strictly contradict
the principle of transfer as it is neutral on transfers
and it satisfies the weaker condition (20). Using as
the second criterion a solution concept satisfying at
least the weak property of monotonicity (19) and all
the other requirements we will get a bicriteria solu-
tion concept satisfying all the requirements of the E-
E solution concept. In particular, the bicriteria model
based on the solution concepts of the minisum and the
lexicographic minimax seems to be a very attractive
tool for modeling various decision maker preferences
related to some compromises between the spatial ef-
ficiency and the geographical equity.

4. Solution procedures
4.1. General techniques

The solution concept of the lexicographic minimax
is a refinement of the standard minimax solution con-
cept. So, the first idea for finding the lexicographic
minimax solution is to identify all the minimax so-
lutions and to sort their achievement vectors in the
weakly decreasing order to identify the lexicographi-
cally minimal one. This approach is rather naive but it
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should not be completely ignored as it may lead to a
quite efficient procedure for many location problems.
First of all, the minimax solution may be unique and
then it is, obviously, the lexicographic minimax solu-
tion. Next, for some classes of location problems, the
minimax procedures find, in fact, all the minimax so-
lutions or can easily be extended (without increasing
their complexity) to do it. It is in particular valid for
single facility location problems; as well for discrete
problems solved by sorting of the achievement vec-
tors as for location on networks where all the local
minimizers are examined (Labbé et al., 1995).

As mentioned, the lexicographic minimax solution
concept is known in the game theory as the nucleolus
of a matrix game. In matrix games the feasible sets
Q are convex polyhedral sets and the functions f; are
linear. In the case of linear objective functions and
convex feasible set, there exists a dominating objective
function which is constant on the entire optimal set of
the minimax problem. Therefore, such problems can
easily be solved, like the standard lexicographic op-
timization problems, by sequential optimization with
elimination of the dominating functions (Potters and
Tijs, 1992). This procedure was also used for other
linear programming problems (Klein et al., 1992) and
linear multiple criteria problems (Marchi and Oviedo,
1992). The algorithm reads as follows.

Algorithm 1.
Step 0. Initialize k =0, Qo = Q and Ny = N.
Step 1. For the current & solve the problem

P:: mixn{z:fj(x) < z for j € Ny,x € Ok}
2,

Let zx denote the optimal value of Py.

Step 2. Define Qri = {x € Qk: fi(x) < z for j €
Ni},
identify Sy = {j € Ny: fj(x) =z forall x €
Qiyr}
and put Ny = N — Sk,

Step 3. If Ny = 0, then go to Step 4, otherwise
increment & by 1 and return to Step 1.

Step 4. Stop. The last set Q4 is the set of all the
lexicographic minimax solutions.

Note that the algorithm is well defined for linear
problems since at each iteration Qy is a convex poly-
hedron and therefore each index set Si is not empty.

Moreover, while dealing with the simplex method sets
Sk can be relatively easily identified and the modifica-
tions of @y may be implemented by fixing some vari-
ables (Klein et al., 1992). As our objective functions
(8) are linear, Algorithm 1 can be used for continu-
ous allocation problems defined with (1), (3), (4),
(6), (8) and fixed values of the location variables.
Unfortunately, typical location problems are discrete
and usually there does not exist a dominating objec-
tive function which makes inapplicable the simple se-
quential optimization procedure of Algorithm 1.

Recent developments in the nucleolus theory
(Mashler et al., 1992) show that, in the general case
of discrete problems, the lexicographic minimax can
be defined as a solution to a sequence of problems
with especially modified objective functions. This
approach is based on the notice that the lexicographic
minimax solutions (the nucleolus) are not affected
if any two functions f;; and f,;» are replaced with
functions f;» and f; defined as follows

700 =min{ £ (0, fr (0} and
Fir (x) =max{fj(x), fi=(x)}. (24)

By recursive application of this rule one may replace
the original set of objective functions f; (j € N) with
the following

jfk(x),fj+1(x)}
forj=1,2,..

.....

Ln—1, (25)

fn(x)=r{1€313l(fk(x)’

where the function f, is clearly dominating and con-
stant on the set of minimax optimal solutions. Thus,
like in the convex case, we may proceed with sequen-
tial optimization and elimination of the dominating
functions. Step 2 of Algorithm 1 reads then as follows.

Step 2a. Define Qi1 = {x € Qufi(x) <
zi for j € N},
and identify Sy = {j € Ng fi(x)
zx for all x € Qps1}.
If Sy # 0, then put Nyyy = Ny — S and go
to Step 3.
Otherwise, apply transformation (25) to
functions f; for j € Ny and then return to
Step 1 (without changing k).
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Note that identification of the set Sk, in the general
case of discrete problems, may cause serious computa-
tional problems. On the other hand, having performed
transformation (25) we explicitly know one element
of the corresponding set S;. Therefore, one may de-
cide to abandon any attempts to identify set S; without
making transformation (25) and proceed with exactly
n cycles of the algorithm, where at each cycle trans-
formation (25) is performed and exactly one function
is eliminated (|Sej =1).

In the case of a single facility location problem of
type (1)-(5) and (8), transformation (24) may be
interpreted as a replacement of the spatial units j’ and
J" with the artificial points defined by the following
distances to the potential facility locations

(17,‘_,'/ = min{d,-j/,d,-ju} and Jiju = max{d,'j',d,'j"}
fori=1,2,...,m.

Thus, the transformation seems to be very well suited
for the location problems. Unfortunately, while deal-
ing with multiple facility location problems, only
one of two substitutions (24) can be implemented
directly on the distance coefficients. In the case of
the standard multiple facility location problem with
objective functions defined with (8), only f(x) =
min{ f;(x), f;#(x)} can be expressed by redefining
of the distance coefficients whereas the second one
(maximum) cannot. It means, the functions gener-
ated due to transformation (25) have to be defined
with additional binary variables and during the course
of the algorithm subsequent feasible sets Q contain
increasing number of binary side constraints, which
makes the algorithm computationally very hard.

As shown by Burkard and Rendl (1991) for some
simpler discrete problems, there is a possibility to re-
place the lexicographic minimax objective function
with an equivalent weighted linear function. Their al-
gorithms cannot be directly applied to the location
problems as functions f; are to complex. Neverthe-
less, the main idea of this approach can be, theoreti-
cally, used for discrete location problems. It depends
on taking advantages of finiteness of the set of all pos-
sible values for the functions f;. In the location prob-
lem (1)-(5) with objective functions (8), it is a sub-
set of all different distances. By making differences
among the distances larger (without changing their
order) one does not affect the lexicographically min-

imal solutions of problem (1). When the differences
are large enough the optimal solution to the median
problem is also the lexicographic minimax solution.
Approaches to the location problems based on the use
of some powers of distances may be considered as
some approximations to that one. For instance in Ex-
ample 1, if total of the cubes of distances were mini-
mized, we would get the lexicographic minimax solu-
tion as an optimal solution to the corresponding me-
dian problem. Similar approach was used by Krarup
and Pruzan (1981) in their proof that the minimax
problem can be solved as a minisum one with mod-
ified coefficients. In general, unrealistic high powers
may be necessary to generate large enough differences
among different distances. Therefore, the distances
should be mapped first on the set of integer variables
(numbered), like in Burkard and Rendl (1991) ap-
proach. While solving practical problems, large differ-
ences among distance coefficients may cause serious
computational problems. Therefore, it would require
rather an implementation using special arithmetics. In
order to overcome these difficulties, we propose an al-
gorithm which takes advantages of the location prob-
lem specificity and uses the sequential optimization
rather than a direct expanding of the distance scale.

4.2. Specialized techniques

In this subsection we develop a lexicographic mini-
max algorithm for the discrete location problems. We
focus on models defined by conditions (1)-(5) and
(8) with possible inclusion of additional side con-
straints, like the capacity constraints (7). We do not
allow, however, to replace (5) with (6), i.e., any par-
titioning of the spatial units during the allocation pro-
cess is not accepted. That means, whenever we refer to
problem (1) it is understood that the objective func-
tions are defined with (8) and feasible set O contains
(among others) constraints (3)-(5).

Let us partition the set of all the allocation indices
,jpi=1,....m; j=1,...,nintor (r < mn)
classes Cy (k = 1,...,r) defined by equal distance
coefficients. Let d(Cy) (k =1,...,r) denote value
of the distance coefficient for the class Ci. It means

(i,j) € C iff dijj =d(Cy)
k' < K= d,'/j' > d,ij
for (', j') € Cur, (i",j") € Cor. (26)
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For each class C; we define the objective function

he(x) = Z xj, fork=1,2,...,r, 27
(LHYEC

which expresses the number of instances from the class
being used in the achievement vector F(x), and we
formulate the following lexicographic problem

lexmxin{(hl(x),hz(x), oL h(x)):xeQ
and (27)}. (28)

Note that (28) is the standard lexicographic prob-
lem with apriori defined objective functions and their
hierarchy. Nevertheless, any optimal solution of (28)
is the lexicographic minimax solution of the original
discrete location problem (1) (see Proposition 4 in
the Appendix). Thus we can solve lexicographic min-
imization problem (28) instead of the lexicographic
minimax problem (21). The corresponding algorithm
reads as follows.

Algorithm 2.

Step 0. Initialize k =1 and Q) = Q.

Step 1. Solve the problem min{A;(x):x € Qk}.
Let x* denote an optimal solution.

Step 2. Define Qry1 = {x € Qp: e (x) < hi(x9)}.

Step 3. If k = r, then go to Step 4, otherwise incre-
ment k by 1 and return to Step /.

Step 4. Stop. x” is the lexicographic minimax solu-
tion.

Note that all the problems solved during the course
of Algorithm 2 (in Step /) are minisum location prob-
lems with linear side constraints on the allocation vari-
ables. Thus the problems can be solved with ready-
made general procedures. Certainly, the number of
problems to be solved in Algorithm 2 seems to be
rather tremendous. However, in practical implementa-
tions this number may be significantly reduced due to
several reasons. First of all, having found x* one may
check values of subsequent objective values on it. If
Byt (x5) = hpo(x%) = ... = kg, 5(xF) = 0 for some
s > 0, then one can skip solution of the correspond-
ing problems assuming x**! = x**2 = || = xk"S =
x*. Note that one may force subsequent functions to
be minimized by adding them as a small perturba-
tion (with arbitrarily small coefficient) to the previous

one. Furthermore, the iterative process can be abandon
whenever the problem solved in Step I has a unique
optimal solution (in the criterion space of functions
hi).

The number of classes Cy is related to the accu-
racy of distances. While dealing with discrete loca-
tion problems we have a discrete set of feasible alter-
natives (location patterns). However, the alternatives
are evaluated and compared on the basis of outcomes
(distances) which may take real values. It leads us to
the fundamental problem of the accuracy of distances,
or rather the accuracy of distinguishing different dis-
tances. We argue that a decision maker dealing with the
minimax approach is usually not interested in a reduc-
tion of some distance by arbitrarily small £ > 0. In our
opinion, the decision maker rather distinguish several
categories of distances: extremely close, very close,
..., far, very far, etc., and consider as an improve-
ment if a distance is moved to a lower category. We
believe, that most decision makers distinguish quite
small number of the distance categories. With such a
modeling approach there is a very limited number of
different distances and the corresponding C; classes,
thus generating a very limited number of problems to
be solved during the course of Algorithm 2.

Lexicographic minimax problems with large num-
ber of different distance coefficients (large ) can be
solved with Algorithm 2 applied on a problem de-
fined with much larger classes Ci including not nec-
essarily equal coefficients but still satisfying (26). In
order to ensure that the trade-offs between the dif-
ferent distance coefficients within the same class will
not affect the lexicographic solution, one may use dif-
ferent weights assigned to the different distances in-
cluded into the same class C;. While introducing such
a weighting scheme for a relatively small set of differ-
ent distances we avoid potential numerical difficulties
caused by too wide range of the weights. On the other
hand, we reduce significantly the number of optimiza-
tion levels in the corresponding lexicographic problem
(28).

Certainly, one may argue that the lexicographic op-
timization is important only on a few largest distances
and abandon this process after some number of steps,
switching to the corresponding g-scaled problem. Such
an approach leads us to a partially lexicographic min-
imax solution (23). However, the number of maxi-
mal coefficients of the achievement vector being min-
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imized (k in formula (23)) is then equal to the total
of the optimal values h;(x) for functions which have
been minimized, rather than a number of completed
circles of Algorithm 2.

5. Computational results

In this section, we report some results from our ini-
tial computational experience with the lexicographic
minimax solution concept. Our primary goal is to com-
pare the lexicographic minimax solution concept with
the standard minimax approach as well as with the
classical efficiency and equity solution concepts. For
this purpose, we have run several simulation experi-
ments with a single-facility location problems. In these
experiments, we compare the following solution con-
cepts:

e the lexicographic minimax (LM),
the standard minimax (MM),

o the minisum (MS),

o the least squares (LS),

L J

[

minimization of the Gini coefficient (GC),

minimization of the absolute mean difference

(AD).
The lexicographic minimax solution is, certainly, one
of the minimax solutions. Therefore, it is difficult to
define what is the standard minimax solution. Accord-
ing to the common practice while using the minimax
solution concept, we consider the first found optimal
minimax solution to be the standard minimax solution.
The minisum solution concept is included into our
comparison as the most typical spatial efficiency solu-
tion concept. Next, the least squares solution concept
is considered as a simple and frequently used g-scaled
median approximation to the lexicographic minimax.
Finally, two inequality measures are included in the
comparison. The Gini coefficient (13) as the most
commonly used in economics relative inequality mea-
sure and the absolute mean difference (12) as its ab-
solute counterpart. Further, we have run some simula-
tion experiments with two-facility location problems.
It allows us, in addition to the solution concept com-
parison, to test Algorithm 2 (Section 4) for finding
lexicographic minimax solutions.

In the first experiment we have solved random
single-facility location problems generated in the fol-
lowing way. We have generated n random (uniformly

distributed) integer points within the square defined
by vertices (0,0), (0,100), (100,100) and (100,0).
The distances among the points have been defined by
using first the Euclidean metric and next rounding the
results to the distance grid with the step 10. Thus, O,
10, 20, 30, etc. have been the only possible distance
values. Having such defined distances we look among
all the points (m = n) for the best location with re-
spect to various solution concepts. So, we apply six
solution concepts to the problem (1)-(5) and (8)
with p = 1 and m = n. We have conducted this exper-
iment for n =30, 50 and 100, generating 50 random
problems for each case. Tables 3-5 summarize the
results of the experiment.

Table 3 reports average results of several solution
concepts in terms of the following measures: the max-
imal distance (||.]loo), the mean distance (||.|[i/n),
the standardized distance (||.||2/+/n), the Gini coef-
ficient (13), and the absolute mean difference (12).
The corresponding columns in the table are labeled
with acronyms of the solutions concepts which min-
imize the measures, i.e., with MM, MS, LS, GC and
AD, respectively. There are reported also the percent-
age degradations of these measures to their optimal
values. All the reported values are averages from the
50 random problems. One may notice that except of
GC all the other solution concepts generate quite simi-
lar results. Simply, as pointed by Erkut (1993), the GC
solution concept frequently selects some boundary lo-
cations whereas all the other solution concepts (due to
the uniformly distributed points) select in some man-
ner central locations. The lexicographic minimax so-
lution is characterized by very low percentage degra-
dations with respect to all measures except of the Gini
coefficient. Moreover, with respect to all the measures
it has remarkably lower degradations than the standard
minimax solution. Furthermore, despite being some
compromise between the LM and MS approaches, the
LS solution tends to be much closer to the MS solu-
tion than to the LM one.

Table 4 presents average percentage distributions of
distances generated by the solution concepts. One may
easily notice quite large percent of very far distances
generated by GC. MM and LM minimizes the largest
distances. However, MM only forces to zero the dis-
tances exceeding the optimal minimax value whereas
LM minimizes also the number of the largest dis-
tances. MS rather maximizes the number of the short-
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Table 3
Average results for random problems with uniformly distributed points (m =n, p = 1, distance step 10)

Solution Achievements Percentage degradations
n concept MM MsS LS GC AD MM MS LS GC AD
30 LM 64.80 37.78 40.85 0.226 8477 0.00 1.40 0.62 12.44 1.22
MM 64.80 3821 41.56 0.235 8.966 0.00 2.55 2.36 16.92 7.06
MS 68.60 37.26 40.82 0.246 9.161 5.86 0.00 0.54 22.39 9.39
LS 66.20 37.37 40.60 0.233 8.656 2.16 0.30 0.00 1592 336
GC 90.40 54.56 58.19 0.201 10.970 39.51 4643 43.33 0.00 30.99
AD 66.00 38.72 41.67 0217 8375 1.85 3.92 2,64 7.96 0.00
50 LM 64.80 38.11 41.09 0.223 8.469 0.00 2.03 1.13 11.50 225
MM 64.80 38.45 41.62 0.230 8.819 0.00 295 2.44 15.00 6.47
MS 69.00 37.35 40.76 0.242 9.017 6.48 0.00 0.32 21.00 8.86
LS 67.20 37.48 40.63 0.232 8.653 3.70 0.35 0.00 16.00 447
GC 94.20 57.31 60.93 0.200 11.398 45.37 53.44 49.96 0.00 37.61
AD 66.80 38.26 41.12 0.217 8.283 3.09 2.44 1.21 8.50 0.00
100 LM 67.20 38.32 41.13 0217 8.300 0.00 1.00 0.49 6.90 1.21
MM 67.20 38.85 41.84 0.223 8.653 0.00 240 2.22 9.85 5.51
MS 70.40 37.94 41.01 0.229 8.673 4.76 0.00 0.20 12.81 335
LS 69.40 37.99 4093 0.223 8.476 327 0.13 0.00 9.85 335
GC 104.60 59.86 63.75 0.203 12.192 55.65 57.78 55.75 0.00 48.66
AD 68.80 38.57 41.31 0.213 8.201 2.38 1.66 0.93 493 0.00

Table 4
Average results for random problems with uniformly distributed points (m =n, p = 1, distance step 10)

Solution Percentage distribution of outcomes
n concept 0 10 20 30 40 50 60 70 80 90 100+
30 LM 3.67 4.80 11.53 20.27 25.40 2093 11.20 1.93 0.27
MM 3.67 5.33 12.27 19.00 24.07 19.60 12.13 333 0.60
MS 3.80 6.53 12.07 21.27 23.60 17.93 10.53 3.33 0.87 0.07
LS 3.73 5.80 11.27 20.27 26.60 19.13 10.33 2.40 0.47
GC 3.33 1.60 5.00 11.40 16.87 16.67 12.20 11.07 8.73 6.60 6.53
AD 3.47 3.67 10.60 20.33 26.33 21.53 10.73 2.87 0.33 0.13
50 LM 2.44 5.52 12.60 18.96 23.88 23.52 [1.16 1.92
MM 2.56 592 12.52 18.40 23.20 21.80 12.68 292
MS 2.88 6.56 13.88 19.68 23.00 19.72 10.96 2.80 0.48 0.04
LS 2.60 6.08 13.16 20.28 23.68 21.16 10.44 2.40 0.20
GC 2.08 2.12 5.72 10.56 15.04 16.04 12.12 9.56 9.32 7.64 9.80
AD 2.44 4.88 11.72 20.08 25.24 23.56 9.48 2.44 0.16
100 LM 1.54 578 12.40 19.64 23.52 24.72 10.76 1.64
MM 1.54 5.98 12.14 19.26 23.16 22.74 12.12 3.06
MS 1.68 6.48 13.14 19.72 23.92 21.54 10.86 2.32 0.34
LS 1.58 6.26 12.80 19.72 24.50 2226 10.66 2.12 0.10
GC 1.16 2.66 5.80 10.02 13.78 14.96 10.96 9.16 9.40 10.20 11.90

AD 1.38 5.50 11.84 19.76 24.72 24 .48 10.38 1.88 0.06
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est distances allowing some distances to exceed the
minimax value. LS works similarly to MS paying little
bit more attention to the minimization of the largest
distances but still accepting some distances exceeding
the minimax value.

Table 5 shows coincidence between several solution
concepts expressed as the percentage of identical so-
lutions. Due to the uniformly distributed points, there
is a pretty high level of coincidence between any pair
of the solution concepts. However, coincidence of all
the solution concepts (ALL) and even all the concepts
excluding GC (-GC) is not so high. Note that the co-
incidence of LM and MM is not higher than that of
LM and AD.

In the second experiment we have disturbed the
uniform distribution of points with a single remote
(isolated) point. Namely, we have selected the point
(100,100) and randomly generated remaining n — 1
points in the triangle (0,0), (0,100), (100,0). Fur-
ther, the experiment has been conducted in the same
way as the previous one. In this case the GC solution
concept always selects the remote point (100,100) as
the optimal one. The absolute equity solution concept
AD selects this point in 40-88% of runs depending
on the problem size. All the other solution concepts
always select some location inside the triangle. In this
experiment, the six solution concepts under consider-
ation can easily be partitioned into three pairs of con-
cepts working in a very similar manner: the minimax
concepts LM and MM, the median concepts MS and
LS, the equity concepts GC and AD (see Table 6).
One can read in Table 7 that the lexicographic mini-
max solution concept is now characterized by larger
percentage degradations than in the first experiment.
Nevertheless, its degradations are remarkably lower
than those for the standard minimax solution concept.
All the solution concepts (except of GC) have very
large percentage degradation to the optimal value of
the Gini coefficient. Note, however, that the minimal
value of GC is taken at point (100,100) and the second
minimal value is more than doubled (exactly, 0.221,
0.212 and 0.206 for r = 30, 50 and 100, respectively).
So, the percentage degradation of LM with respect to
the second minimal GC (connected with some point
in the triangle) is less than 25%.

In the first two experiments, due to the distance
grid with step 10, we have analyzed problems with a
small number of different distance coefficients which,

indeed, corresponds to our concept of the use of the
lexicographic minimax approach. In the third exper-
iment we have repeated the simulation from the first
experiment using distance step 1, thus significantly in-
creasing the number of different distance coefficients
(r in formula (28) ) and decreasing the number of al-
ternative minimax solutions. Now, in less than 10% of
runs, LM selects locations different from those found
by MM. Nevertheless, these less then 10% of different
solutions have resulted in a remarkable improvement
of the averages, especially with respect to the absolute
inequality measure AD (see Table 8). In this experi-
ment we have added to the comparison the class lexi-
cographic minimax technique (compare Section 4.2).
In this technique (denoted by CLM) we have applied
the lexicographic minimax approach to the classes of
distances defined by the grid with step 10. It means,
in this approach distances 10, 11,.. ., 19 are treated as
equal due to belonging to the same class C10. Table 8
shows that, when comparing to the strict lexicographic
minimax, CLM generates solutions with some degra-
dation to the optimal minimax distance but with lower
degradations of other measures. In comparison to LM,
CLM reduces the number of distances in the classes
of the largest distances. It is possible due to less stiff-
ness of CLM but it is paid with increased value of the
exact maximum distance.

All three above experiments are related to the
single-facility location situation and we have solved
the problems by enumeration of all the locations.
Nevertheless, we have computed some statistics re-
lated to the difficulty of identification of the lexi-
cographic minimax solutions. They are reported in
Table 9. First, we have analyzed the number of po-
sitions in the ordered achievement vector needed to
be examined in order to identify the lexicographic
minimum, i.e., to distinguish the optimal solution
from the second one. This characteristic corresponds
to the complexity of solution approaches based on
Algorithm 1. Second, we have analyzed the number
of classes of equal distances (Cy) needed to be exam-
ined in order to identify the lexicographic minimum
(assuming that we begin from the class containing
the minimax value). It corresponds to the complexity
of Algorithm 2. One can read from Table 9 that, in
average, only few largest positions of the achieve-
ment vectors needed to be examined. However, in the
worst case, this number exceeds 30. Certainly, much
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Table 5
Coincidence of solutions for random problems with uniformly distributed points (m = n, p = 1, distance step 10)

Solution n=730 n=>50 n=100

concept LM MM MS LS GC LM MM MS LS GC LM MM MS LS GC
AD 72 56 40 60 34 62 44 32 52 30 62 28 28 38 32
GC 32 28 18 28 28 16 6 16 24 14 14 18

LS 76 60 74 56 38 72 48 20 74

MS 52 42 34 28 38 20

MM 68 64 38

ALL 16 4 6

-GC 28 14 8

Table 6

Coincidence of solutions for random problems with a remote point (m = n, p = 1, distance step 10)

Solution n=730 n=>50 n =100
concept LM MM MS LS GC LM MM MS LS GC LM MM MS LS GC
AD 16 10 2 6 54 26 16 2 2 40 6 2 0 0 88
GC 0 0 0 0 0 0 0 0 0 0 0 0
LS 12 6 54 6 0 62 0 0 48
MS 6 4 2 0 0 0
MM 68 58 68
ALL 0 0 0
~GC 0 0 0
Table 7
Average results for random problems with a remote point (» = n, p = 1, distance step 10)
Solution Achievements Percentage degradations
n concept MM MS LS GC AD MM MS LS GC AD
30 LM 76.80 37.44 41.69 0.271 10.082 0.00 11.76 6.32 160.58 8.83
MM 76.80 38.68 43.16 0.276 10.587 0.00 15.46 10.07 165.38 14.28
MS 90.00 33.50 39.55 0.340 11.292 17.19 0.00 0.87 226.92 21.89
LS 87.80 33.78 39.21 0.318 10.669 1432 0.84 0.00 205.77 15.17
GC 126.20 93.52 95.99 0.104 9.711 64.32 179.16 144 81 0.00 4.83
AD 105.00 67.28 70.38 0.171 9.264 36.72 100.84 79.50 64.42 0.00
50 LM 74.20 37.83 41.35 0.246 9.227 0.00 14,12 8.50 167.39 10.24
MM 74.20 38.52 42.32 0.253 9.694 0.00 16.20 11.05 175.00 15.82
MS 91.60 33.15 38.52 0.321 10.584 23.45 0.00 1.08 248.91 26.45
LS 89.00 33.44 38.11 0.298 9.900 19.95 0.87 0.00 223.91 18.28
GC 130.60 95.02 96.87 0.092 8.703 76.01 186.64 154.19 0.00 398
AD 108.40 72.07 74.32 0.140 8.370 46.09 117.41 95.01 62.17 0.00
100 LM 71.40 39.11 4231 0.231 9.000 0.00 19.20 13.52 181.74 14.72
MM 71.40 39.35 42.65 0.234 9.162 0.00 19.93 14.44 185.37 16.79
MS 91.20 32.81 37.59 0.306 10.014 27.73 0.00 0.86 273.17 27.65
LS 89.40 32.99 3727 0.289 9.521 2521 0.55 0.00 252.44 21.36
GC 134.00 95.72 97.09 0.082 7874 87.68 191.74 160.50 0.00 0.37

AD 126.40 88.68 90.20 0.098 7.845 77.03 170.28 142.02 19.51 0.00
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Table 8
Average results for random problems with uniformly distributed points (s =n, p = I, distance step 1)
Solution Achievements Percentage degradations
n concept MM MS LS GC AD MM MS LS GC AD
30 CLM 65.26 37.81 40.94 0.231 8.698 1.12 1.23 0.81 14.36 2.79
LM 64.54 37.96 41.08 0.231 8.723 0.00 1.63 1.16 14.36 3.08
MM 64.54 38.04 41.24 0.234 8.857 0.00 1.85 1.55 15.84 4.67
MS 67.88 37.35 40.85 0.248 9.245 5.18 0.00 0.59 22.87 9.25
LS 66.08 3744 40.61 0.234 8.717 2.39 0.24 0.00 15.84 3.01
GC 92.38 55.71 59.38 0.202 11.276 43.14 49.16 46.22 0.00 33.25
AD 65.54 38.26 41.20 0.222 8.462 1.55 244 1.45 9.90 0.00
50 CLM 66.22 37.89 40.80 0.225 8.504 1.60 1.36 0.84 11.39 1.82
LM 65.18 38.14 41.08 0.226 8.590 0.00 2.03 1.53 11.88 2.85
MM 65.18 38.18 41.14 0.227 8.632 0.00 2.14 1.68 12.38 335
MS 68.90 37.38 40.56 0.237 8.849 5.71 0.00 0.25 17.33 5.95
LS 68.00 37.43 40.46 0.231 8.622 433 0.13 0.00 14.36 323
GC 99.56 60.23 64.03 0.202 12.102 52.75 61.13 58.26 0.00 44,90
AD 67.20 38.31 41.12 0.219 8.352 3.10 2.49 1.63 8.42 0.00
100 CLM 67.56 38.31 41.07 0.219 8.386 0.87 0.95 0.59 6.83 1.44
LM 66.98 38.32 41.13 0.221 8.469 0.00 0.97 0.73 7.80 244
MM 66.98 38.36 41.18 0.222 8.484 0.00 1.08 0.86 8.29 2.62
MS 69.96 37.95 4091 0.228 8.648 445 0.00 0.20 11.22 4,61
LS 68.88 38.00 40.83 0.222 8.442 2.84 0.13 0.00 8.29 2.12
GC 104.30 59.78 63.63 0.205 12.261 55.72 57.52 55.84 0.00 48.31
AD 68.44 3841 41.10 0.215 8.267 2.18 1.21 0.66 4.88 0.00

less positions of the ordered achievement vector need
to be examined for problems with a smaller distance
step. When looking at the number of classes of equal
distances, we can see that this characteristic is much
less sensitive on the problem size and the distance
step. Only two classes need to be examined in aver-
age whereas five classes in the worst case. It seems
to confirm attractiveness of Algorithm 2.

Algorithm 2, with a general purpose mixed inte-
ger programming solver, has been used in our fourth
simulation experiment to solve two-facility location
problems. In this experiment, we have generated
40 random (uniformly distributed) integer points
within the square defined by vertices (0,0), (0,100),
(100,100) and (100,0). The first 10 points have been
treated as potential locations whereas the remaining
30 as clients (m = 10, n = 30). The distances have
been defined, as in the first experiment, with the dis-
tance step 10. Table 10 reports average results for
50 problems solved in the experiment. While imple-
menting Algorithm 2 we managed to accommodate
(in the single-precision arithmetic) three subsequent

Ay functions in one weighted objective function. Ex-
actly, we minimized objective functions of the form
hi(x) + 001kt (x) + 0.0001 A4, >(x). We started
Algorithm 2 from the level k corresponding to the
maximum distance generated by the minisum ap-
proach. It turns out that in 49 problems one iteration of
Algorithm 2 has generated the optimal LM solutions
and only one problem needed the second iteration.
In Table 10, we report results of the first iteration as
the partial lexicographic minimax (PLM). Note that,
while MS is characterized by almost 10% degradation
of the maximum distance and MM has almost the
same degradation in the mean distance, both LM and
PLM are characterized by less than 4% degradations
in the mean distance.

6. Summary and conclusions

When locating public facilities, the distribution of
travel distances among the service recipients is an im-
portant issue. It is usually tackled with the minimax
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Table 9
Identification of the lexicographic minimax solution

Distance step 10

Distance step 1

n=30 n=50 n =100 n =30 n=250 n=100
Positions in ordered average 354 3.70 5.82 1.16 1.16 1.40
achievement vector maximum 22 32 3 5 3
Classes of equal average 2.04 2.02 1.16 1.16 1.38
distance coefficients maximum 5 3 3 5 3
Table 10
Average results for random problems with uniformly distributed points (m =10, n =30, p = 2, distance step 10)
Sol. Achiev. % degrad. Percentage distribution of outcomes
con. MM MS MM MS 0 10 20 30 40 50 60 70 80
LM 55.20 29.89 0.00 3.82 120 11.67 26.60 2473 21.67 11.73 227 0.13
PLM 55.20 29.93 0.00 3.96 1.13 11.60 26.60 24.87 21.67 11.73 2.27 0.13
MM 55.20 31.28 0.00 8.65 0.80 11.87 23.13 24.60 21.67 13.67 4.00 027
MS 60.40 28.79 9.42 0.00 1.93 16.73 24.80 2427 18.07 9.73 3.53 0.86 0.07

solution concept which is considered to be equity ori-
ented. The minimax solution concept, despite the most
commonly used in the public sector location models,
is frequently criticized as it does not comply with the
major principles of the efficiency and equity model-
ing. In this paper we have developed a concept of the
lexicographic minimax solution being a refinement of
the standard minimax approach to location problems.
In the lexicographic minimax approach we require to
minimize not only the largest distance but also the
second largest, the third largest, and so on. Thus it
may be regarded as a complete quantification of the
Rawlsian difference principle. We have shown that the
lexicographic minimax approach complies with both
the Pareto-optimality (efficiency) principle (crucial
in multiple criteria optimization) and the principle of
transfers (essential for equity measures) whereas the
standard minimax approach may violate any of these
principles. In fact, we have introduced an axiomatic
characterization of all solution concepts meeting the
standards of the multiple criteria minimization of dis-
tances and the equity maximization (E-E solution con-
cepts). The axioms are expressed in terms of the prop-
erties of the preference relation associated with the so-
lution concept. We have proven that the lexicographic
minimax solution concept satisfies all the axioms and

thereby it is an E-E solution concept.

Our initial computational experience shows that the
lexicographic minimax approach, in comparison with
the standard minimax, selects locations characterized
by remarkably smaller both the mean distance and
the absolute mean difference. Being an E-E solution
concept, the lexicographic minimax is free from the
common flaws of approaches based on the relative
inequality measures, where locations far away from
all clients are frequently selected. Certainly, as the
lexicographic minimax solution concept has not been
earlier applied to location analysis, it requires further
extensive studies on real-life location problems.

In this paper we have proposed some algorithms
for the lexicographic minimax solution of discrete lo-
cation problems. Algorithm 2 based on the inverse
approach seems to be very well suited for problems
with a small number of different distance (for a rough
distance grid). In our experience with the algorithm,
in most cases we needed to solve only two minisum
problems to get the exact lexicographic minimax so-
lution. Nevertheless, the research on efficient special-
ized algorithms for various specific types of location
problems should be continued.

The lexicographic minimax solution concept is a re-
finement of the standard minimax approach which is
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commonly used in the public sector location analysis.
However, as shown in the paper, there exist other E-E
solution concepts. As E-E solution concepts are much
better suited for location problems than the relative in-
equality measures originating from economics, further
research on these concepts seems to be promising.
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Appendix A

This appendix contains strict mathematical formu-
lations and proofs of the facts discussed in the paper.
Propositions 1-3 are related to Section 3. They prove
that the lexicographic minimax and the related solu-
tion concepts satisfy the requirements of the E-E so-
lution concept. Proposition 4 is related to Section 4.
It proves that the lexicographic minimization problem
(28) (used for Algorithm 2) generates the lexico-
graphic minimax solution to the original problem (1).

Proposition 1. The preference relation of the lexico-
graphic minimax solution concept is complete (9),
transitive (10), strictly monotonic (11), anonymous
(14), scale invariant (16) and satisfies the principle
of transfers (15).

Proof. The preference relation of the lexicographic
minimax solution concept is defined as follows

Y Sy’ it 0(y) <ex 0(y").

Apart from strict monotonicity (11) and the principle
of transfers (15), all the other properties are obvious.

In order to prove (11) for =<, let us consider an
achievement vector y € Y and y' = y — ee; for some
e > 0 and j € N. The corresponding ordered vectors
we denote by ¥ and §/, respectively. Let k¥ € N denote
the index such that y; = y; and 5 > ¥y (if k < n).
Then ¥/ = ; for i < k and 3, = max{Jx — &, Jes1} <
V. Hence, §¥' <jex ¥ and thereby y' <. y.

Similar, in order to prove (15) for <. we consider
y=0O(y) and ¥ = O(y’) wherey € Y and y’ =
y—e&e; +ee;r forsome 0 <e<yy—yn.Letke N
denote the index such that y; = y and 5 > ¥i41.

Then y; = 3; for i < k and 3, = max{y; — &, 511} <
Ji. Hence, §' <jex ¥ and thereby y’ <, y. O

Proposition 2. If function g is strictly increasing and
strictly convex, then the preference relation of the g-
scaled minisum solution concept (22) is complete (9),
transitive (10), strictly monotonic (11), anonymous
(14), scale invariant (16) and satisfies the principle
of transfers (15).

Proof. Apart from the principle of transfers (15), all
the other properties are obvious, including strict mono-
tonicity (11) which is due to strictly increasing func-
tion g. In order to prove that the preference relation

n n
Y 2y i) () <D ey
j=1 Jj=1

satisfies the principle of transfers let us consider an
achievement vector y with y; > y;~. Further, let us
introduce y° =y — ee;s + gej» and y* =y — (yjr —
yjr )ep+{(yy —yj)ejn. Note that y¢ = Ay*+ (1 —A)y
where A = g/(yr — yj») thus 0 < A < 1 for 0 <
€ < yj — yj». Function G(y) = E;Ll g(y;) is strictly
convex and symmetric thus G(y®) < AG(y*) + (1 —
A)G(y) =G(y) for 0 < & < yy — y;». Hence, y —
gej + gejr <gm y for 0 < & < yy — y;», which
completes the proof. [J

Proposition 3. If function g is strictly increasing and
strictly convex, then the preference relation of the k-
lexicographic minimax solution concept (23) is com-
plete (9), transitive (10), strictly monotonic (11),
anonymous (14), scale invariant (16) and satisfies
the principle of transfers (15).

Proof. Apart from strict monotonicity (11) and the
principle of transfers (15), all the other properties are
obvious. In order to prove (11) and (15) let us notice
that according to the preference relation of the solution
concept (23) y’ is strictly preferred to y” (y' <(23)
y") if and only if

(yiss)_)llc) <1€X ()—'i,’---9yll(,) or

=1

(770 =, .., 7)) and

PN EARDINE)F
J=1 j=t
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where ¥ = @(y). Thus, when j; for some 1 < j < k
is decreased, the properties (11) and (15) hold due to
Proposition 1. While decreasing y; for some k + 1 <
J < n,weget (11) and (15) due to Proposition2. O

Proposition 4. Any optimal solution to lexicographic
problem (28) is the lexicographic minimax solution
of the corresponding discrete location problem (1).

Proof. Let x° be an optimal solution of lexicographic
problem (28). Suppose that x° is not a lexicographic
minimax solution for the discrete location problem
(1). Then, there exists a feasible vector x such that
¥y = 0(F(x)) <iex ¥° = O(F(x°)). Hence, there
exists an index jo such that j; = y; for all j < jo
and y;, < Voo It implies that A, (x) = hx(x?) for all
k < ko and hy, (x) < hy,(x?), where ko is the index
of a distance class that contains 7, i.e., 72 = d(Cy,).
This contradicts the lexicographic optimality of x° for
problem (28). O
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