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A Markov decision process (MDP) is a general model for solving planning problems under
uncertainty. It has been extended to multiobjective MDP to address multicriteria or multiagent

problems in which the value of a decision must be evaluated according to several viewpoints,

sometimes con°icting. Although most of the studies concentrate on the determination of the set
of Pareto-optimal policies, we focus here on a more specialized problem that concerns the direct

determination of policies achieving well-balanced tradeo®s. To this end, we introduce a refer-

ence point method based on the optimization of a weighted ordered weighted average (WOWA)

of individual disachievements. We show that the resulting notion of optimal policy does not
satisfy the Bellman principle and depends on the initial state. To overcome these di±culties, we

propose a solution method based on a linear programming (LP) reformulation of the problem.

Finally, we illustrate the feasibility of the proposed method on two types of planning problems

under uncertainty arising in navigation of an autonomous agent and in inventory management.

Keywords: Multiobjective optimization; Markov decision processes; compromise programming;

reference point method; ordered weighted average; linear programming.

1. Introduction

The framework of Markov decision processes (MDPs) provides a useful mathematical

model for representing and solving sequential decision-making problems under

uncertainty. This model introduced ¯fty years ago (by Bellman1 and Howard2) is

used in many applications of Operations Research (investment planning, inventory

systems management, manufacturing, resource allocation)3,4 and Arti¯cial Intelli-

gence (path-planning, game search, trading agents, robotics and reinforcement

learning).5,6 Several variants of MDPs have been already considered and investi-

gated, depending on the nature of the set of states (¯nite or not), the nature of the
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reward function (quantitative or qualitative, scalar-valued or vector-valued), the

nature of uncertainty (probabilistic, possibilistic, ordinal) and the observability of

the system (partial or total), etc. In this paper we deal with the classical case (¯nite

set of states (fully observable), additive rewards, probabilistic uncertainty) except

that we consider several reward functions, possibly con°icting, each providing a

di®erent viewpoint on the value of a policy, thus leading to a multiobjective version

of the problem. Our aim is to propose an e±cient method in such multiobjective

MDPs to generate compromise solutions, i.e. whose pro¯le is well balanced in a

certain sense that we will de¯ne.

This study is motivated by the numerous practical planning problems in which

several viewpoints must be considered for the selection of actions. Many problems

indeed involve several criteria, possibly con°icting, and preference analysis over

policies must incorporate all of them during the optimization process. For example,

in path-planning problems under uncertainty, we may want to optimize various

features like travel duration, distance, energy consumption and risk simultaneously,

rather than focusing on a single aspect. Even when all criteria can be expressed in

monetary terms, it is often better to keep them separate because they refer to various

type of consequences that do not compensate each other and possibly concern

di®erent stakeholders. For instance, in the management of inventory systems, it is

usual to consider costs attached to storage, but also opportunity losses and supply

costs as well, each of them impacting di®erently on the system. Thus, a policy

entailing small storage costs but numerous shortage periods will not be equivalent to

a solution with higher storage costs but no shortage. Other examples can be found in

Arti¯cial Intelligence as well. For instance, multi-agents planning is another area

where multiobjective optimization is natural. In such problems, several agents must

cooperate but each of them has its own value system and its own objective. Hence, a

reward function must be de¯ned for every agent, and the goal is to ¯nd a collective

policy that fairly shares satisfaction among individuals. We can therefore distinguish

two main possible contributions of multiobjective optimization to planning under

uncertainty: one due to the need of handling several criteria in some planning pro-

blems, the other linked to multi-agents planning activities. This explains the current

interest for multiobjective (multicriteria or multiagent) extensions of MDPs in the

literature.7�11

When several objectives must be optimized simultaneously, most of the studies on

MDPs concentrate on the determination of the entire set of Pareto-optimal policies,

i.e. policies having a reward vector that cannot be improved on a criterion without

being downgraded on another criterion. However, the size of the Pareto-optimal

deterministic policies is often very large due to the combinatorial nature of the set of

deterministic policies. Its determination induces prohibitive response times and

requires very important memory space as the number of states and/or criteria

increases. In practice however, there is generally no need to determine the entire set

of Pareto-optimal policies, but only speci¯c compromise policies achieving a good
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tradeo® between the possibly con°icting objectives. A similar statement could be

made when one considers all randomized policies.

The search for a compromise solution is natural in multicriteria decision sup-

port14,15 and has counterparts in other optimization contexts involving several

dimensions. In the context of multi-agents optimization problems, the notion of

compromise refers to the idea of fairness.12,13 In all these cases, the quality of the

compromise achieved can be measured using a scalarizing function discriminating

between Pareto-optimal solutions. This function must be optimized to generate

an optimal compromise solution, as is usually done in interactive methods for mul-

tiobjective optimization.14,16

Motivated by such examples, we introduce in this paper a compromise pro-

gramming approach for the determination of well-balanced policies in multiobjective

MDPs. It is based on the optimization of a weighted ordered weighted average

(WOWA) used to scalarized expected reward vectors attached to policies. We dis-

cuss the technical problems to overcome when using such a function in a multi-stage

decision problem and provide solution methods based on linear programming. The

paper is organized as follows:

In Sec. 2, we recall the basic notions related to MDPs and their multiobjective

extension. In Sec. 3, we introduce WOWA as a scalarizing function to generate

compromise solutions. Section 4 is devoted to the search of WOWA-optimal policies

in multiobjective MDPs. Finally, Sec. 5 presents some experimental results showing

the e®ectiveness of our approach in generating compromise policies.

2. Multiobjective Markov Decision Processes

In this section, we ¯rst recall the de¯nition of the standard MDP and some basic

related notions. We then present its extension to the multiobjective case.

2.1. Markov decision processes

The model of MDPs has become an important framework for representing and sol-

ving sequential decision problems under uncertainty. In such problems, a decision-

maker (DM) repeatedly faces a choice problem (a ¯nite or an in¯nite number of

times). In a choice problem, the DM has to pick an action among a set of actions.

Each action has uncertain consequences and a®ects the future choice problems the

DM faces. A solution of this sequential problem would be to determine in advance a

sequence of choices optimal with respect to a preference structure, e.g. optimizing

some costs or rewards.

A MDP17 is described as a tuple ðS ;A;T ;RÞ where:

. S is a ¯nite set of states,

. A is a ¯nite set of actions,

A Compromise Programming Approach to Multiobjective Markov Decision Processes 1023
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. T : S � A ! PrðSÞ is a transition function, stating for each state and each action,

a probability distribution over states (in the sequel, we write Tðs; a; s 0Þ for

Tðs; aÞðs 0Þ),
. r: S � A ! R is a reward function giving the immediate reward for executing a

given action in a given state.

Given a ¯nite or in¯nite horizon (i.e. the number of decisions to be made), this

tuple models a sequential decision problem. In such a model, one wants to ¯nd the

preferred sequence of decisions with respect to some preference representation. We

assume in this paper that the horizon is in¯nite.

In this framework, a decision rule � is a procedure that determines which action to

choose in each state. The procedure can be deterministic and � is then de¯ned as a

function � : S ! A. More generally, the procedure can be randomized and � is then

de¯ned as a function � : S ! PrðAÞ where PrðAÞ is the set of probability distri-

butions over A.

A policy � is a sequence of decision rules ð�0; �1; . . . ; �t ; . . .Þ that indicates which
decision rule to apply at each step. It is said to be deterministic if all the decision

rules are deterministic and randomized otherwise. If the same decision rule � is

applied at each step, the policy is said to be stationary and is denoted �1.

In standard MDPs, a policy � is valued by a function v� : S ! R, called value

function, which gives the expected discounted total reward obtained by applying � in

each initial state. For � ¼ ð�0; �1; . . . ; �t ; . . .Þ, they are given by: 8s 2 S , 8h > 0,

8t ¼ 1; . . . ; h,

v �0 ðsÞ ¼ 0

v �t ðsÞ ¼ rðs; �h�tðsÞÞ þ �
X
s 02S

Tðs; �h�tðsÞ; s 0Þv �t�1ðs 0Þ; ð1Þ

where � 2 ½0; 1½ is the discount factor. Value function v �h de¯nes the value of policy �

at horizon h. This sequence converges to the value function of � at the in¯nite

horizon. A discount factor � strictly lower than 1 guarantees v� is well de¯ned at the

in¯nite horizon.

In this standard preference representation, there exists an optimal stationary

policy that yields the best expected discounted total reward in each state. Solving a

problem modeled as an MDP amounts to ¯nding one of those policies and its

associated value function. The optimal value function v� : S ! R can be determined

by solving the Bellman equations:

8s 2 S ; v�ðsÞ ¼ max
a2A

rðs; aÞ þ �
X
s 02S

Tðs; a; s 0Þv�ðs 0Þ: ð2Þ

There are three main approaches for solving MDPs. Two are based on dynamic

programming: value iteration and policy iteration. The last approach is based on

linear programming. We now recall value iteration and the linear programming

approach as they are needed for the exposition of our results.
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Value iteration consists of computing the solution of the Bellman equations using

the following recursive sequence: 8s 2 S; 8t > 0,

v �
0ðsÞ ¼ 0

v �
t ðsÞ ¼ max

a2A
rðs; aÞ þ �

X
s 02S

Tðs; a; s 0Þv �
t�1ðs 0Þ:

This sequence converges to the optimal value function and the optimal stationary

policy can be recovered by a greedy optimization.

An MDP can also be solved by linear programming. The Bellman equations state

that functions satisfying the following inequalities are upper bounds of the optimal

value function:

8s 2 S ; 8a 2 A; vðsÞ � rðs; aÞ þ �
X
s 02S

Tðs; a; s 0Þvðs 0Þ:

The linear program can then be written as follows:

ðPÞ
min

X
s2S

�ðsÞvðsÞ

s:t: vðsÞ � �
X
s 02S

Tðs; a; s 0Þvðs 0Þ � rðs; aÞ 8s 2 S ; 8a 2 A;

8><
>:

where weights � could be interpreted as the probability of starting in a given state.

Any positive � can in fact be chosen to determine the optimal value function.

However, we will assume here that � is normalized.

The dual of this program writes as follows:

ðDÞ

max
X
s2S

X
a2A

rðs;aÞxðs;aÞ

s:t:
X
a2A

xðs;aÞ � �
X
s 02S

X
a2A

xðs 0;aÞTðs 0;a; sÞ ¼ �ðsÞ 8s 2 S

xðs;aÞ � 0 8s 2 S ; 8a 2 A

9=
;: ðCÞ

8>>>><
>>>>:
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Program ðDÞ has a nice property, it separates the dynamics of the system (in the

constraints) and the preference representation (in the objective function).

To give an interpretation to variables xðs; aÞ, we recall the two following prop-

ositions that relate feasible solutions of the dual linear program to stationary ran-

domized policies in the MDP.17

Proposition 1. For a policy �, if x� is de¯ned as:

x�ðs; aÞ ¼
X1
t¼0

�tp�t ðs; aÞ 8s 2 S ; 8a 2 A; ð3Þ

where p�t ðs; aÞ is the probability of reaching state s and choosing action a at step t,

then x� is a feasible solution of the dual linear program.

Note that 8s 2 S , �ðsÞ ¼Pa2A p�0ðs; aÞ.
Proposition 2. If xðs; aÞ is a solution of the dual problem, then the stationary

randomized policy �1, de¯ned by:

�ðs; aÞ ¼ xðs; aÞP
a2Axðs; aÞ

8s 2 S ; 8a 2 A ð4Þ

de¯nes values x�
1ðs; aÞ as in Eq. (3), that are equal to xðs; aÞ:

Thus, there is a one-to-one mapping between stationary randomized policies and

the solutions x satisfying constraints ðCÞ. Moreover, the basic solutions of the dual

program D correspond to stationary deterministic policies. The stationary ran-

domized policies are in the convex hull of the basic solutions. Note that in an MDP,

any feasible value function can be obtained with a stationary randomized policy.17

Besides, for any x and � de¯ned as in Proposition 2, the expectation of the value

function of �1 with respect to � can be computed as follows:X
s2S

X
a2A

rðs; aÞxðs; aÞ ¼
X
s2S

�ðsÞv�1ðsÞ: ð5Þ

2.2. Multiobjective MDP

MDP has been extended to take into account multiple objectives or criteria. A

multiobjective MDP (MMDP) is de¯ned as an MDP with the reward function

replaced by:

. R: S � A ! Rn where n is the number of criteria, Rðs; aÞ ¼ ðR1ðs; aÞ; . . . ;Rnðs; aÞÞ
and Riðs; aÞ is the immediate reward for criterion i.

Now, a policy � is valued by a value function V � : S ! Rn, which gives the

expected discounted total reward vector in each state and can be computed with

a vectorial version of (1) where additions and multiplications are componentwise.

1026 W. Ogryczak, P. Perny & P. Weng
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To compare the value of policies in a given state s, the basic model adopted in most

previous studies18�20 is Pareto dominance de¯ned as follows: For any two policies

�; � 0, for any state s, V �ðsÞ Pareto-dominates V � 0 ðsÞ, denoted by V �ðsÞ �P V � 0 ðsÞ if
and only if:

V �ðsÞ 6¼ V � 0 ðsÞ and 8i ¼ 1; . . . ; n;V �
i ðsÞ � V � 0

i ðsÞ: ð6Þ
As Pareto dominance is a partial relation, generally there exist many optimal vectors

in a given state. For a set X � Rn, the set of Pareto-optimal vectors of X is de¯ned by

M ðX ;�PÞ ¼ fx 2 X : 8y 2 X ; not y�P xg.
Standard methods for MDPs can be extended to solve MMDPs. For the linear

programming approach, this can be shown as follows. Let ðDiÞ be the dual linear

program ðDÞ solving the MDP with reward function Ri for i ¼ 1; . . . ; n. Clearly, all

ðDiÞ share the same constraints ðCÞ. Hence, as argued in Ref. 19, the multiobjective

version of an MDP with reward system R ¼ ðR1; . . . ;RnÞ can be solved by the fol-

lowing multiobjective linear program:

ðvDÞ

v-max
X
s2S

X
a2A

Rðs;aÞxðs;aÞ

s:t:
X
a2A

xðs;aÞ � �
X
s 02S

X
a2A

xðs 0;aÞTðs 0;a; sÞ ¼ �ðsÞ 8s 2 S

xðs;aÞ � 0 8s 2 S ; 8a 2A

9=
;; ðCÞ

8>>>><
>>>>:

where v-max is a vector maximization with respect to Pareto dominance. Recall

that for any x satisfying ðCÞ and � de¯ned as in Proposition 2, we have
P

s2S
P

a2A
Riðs; aÞxðs; aÞ ¼

P
s2S �ðsÞV �1

i ðsÞ for all i ¼ 1; . . . ; n. Thus, solving ðvDÞ amounts to

optimizing the following objective function
P

s2S �ðsÞV ðsÞ, interpreted as the

expectation of a vector value function V with respect to probability distribution �.

Therefore, setting �ðs0Þ ¼ 1 for some s0 and �ðsÞ ¼ 0 for all s 6¼ s0, the objective

function boils down to V �1ðs0Þ ¼
P

s2S
P

a2ARðs; aÞxðs; aÞ.
Looking for all non-dominated solutions can be di±cult and time-consuming as

there could be many non-dominated solutions. In fact, there exists instances of

problems where the number of solutions is exponential in the number of states. We

illustrate this point by adapting an example proposed by Hansen.21

Example 1. Let N > 0. Consider the following deterministic MMDP represented in

Fig. 1. It has N þ 1 states. In each state, two actions (up or down) are possible except

in the absorbing state N . The rewards are given next to the arcs representing the two

actions. Here, we can take � ¼ 1 as state N is absorbing.

Fig. 1. Hansen graph.

A Compromise Programming Approach to Multiobjective Markov Decision Processes 1027
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In this example, there are 2Nþ1 stationary deterministic policies. Stationary

deterministic policies that only di®er from one another on the choice of the action in

the last state N have the same value functions as the reward and the transition in

those states for both actions are identical. In the initial state 0, the remaining policies

induce 2N di®erent valuation vectors, of the form ðx; 2N � 1� xÞ for

x ¼ 0; 1; . . . ; 2N � 1. Those di®erent vectors are in fact all Pareto-optimal as they are

on the line x þ y ¼ 2N � 1. It is then infeasible in such a case to determine all non-

dominated solutions.

Besides, in practice, the DM is only interested in ¯nding one particular solution

among all the non-dominated solutions that ¯ts her preferences concerning the

tradeo®s between all the criteria. Hence, it seems more natural to directly model the

problem as a search for that particular solution instead of ¯nding ¯rst all the non-

dominated solutions.

We introduce the notion of scalarizing function that will be used to discriminate

between Pareto-optimal vectors. Formally, a scalarizing function is a function  :

Rn ! R that de¯nes an overall value vðs0Þ 2 R for an initial state s0 from a vector

value function V : S ! Rn:

vðs0Þ ¼  ðV1ðs0Þ; . . . ;Vnðs0ÞÞ: ð7Þ

The most straightforward choice for  seems to be the weighted sum, which is

in fact not suited for generating compromise solutions (see Example 2). In this

case, vðs0Þ ¼
Pn

i¼1 �iViðs0Þ where �i > 0; 8i ¼ 1; . . . ; n so as to preserve the

monotonicity with respect to Pareto dominance. By linearity of the mathematical

expectation and the weighted sum, optimizing vðs0Þ is equivalent to solving the

standard MDP obtained from the MMDP where the reward function is de¯ned

as: rðs; aÞ ¼Pn
i¼1 �iRiðs; aÞ; 8s 2 S ; 8a 2 A. In that case, an optimal stationary

deterministic policy exists and standard solution methods can then be applied.

However, using a weighted sum is not a good procedure for reaching balanced

solutions as weighted sum is fully compensatory operator that does not encode

the idea of balanced solutions. This is well illustrated by the two following

examples:

Example 2. Consider the deterministic MMDP depicted in Fig. 2 with two criteria

using the same valuation scale. In this MDP, there only exists two deterministic

stationary policies depending on the choice of the action in state 1. They are thus

denoted a and b, respectively. Their value functions are given by: Vað1Þ ¼
ð1=ð1� �Þ; 9=ð1� �ÞÞ and Vbð1Þ ¼ ð5=ð1� �Þ; 5=ð1� �ÞÞ. If the rewards of the

agents are simply summed (i.e. we give equal weights to each criterion), then

Fig. 2. MMDP of Example 2.

1028 W. Ogryczak, P. Perny & P. Weng
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both policies are optimal and have the same value functions. However, the

policy choosing action b yields a much better balanced vector and should be

preferred.

From the previous example, one could think that by choosing appropriate

weights, one could reach a balanced solution. This is not the case. There exists

instances where well-balanced solutions cannot be obtained by optimizing a weighted

sum.

Example 3. Consider the MMDP represented in Fig. 3.

Here, there are three stationary deterministic policies. They are denoted a; b and

c respectively. Their value functions are given by: Vað1Þ ¼ ð1=ð1� �Þ; 9=ð1� �ÞÞ,
Vbð1Þ ¼ ð4=ð1� �Þ; 4=ð1� �ÞÞ and Vcð1Þ ¼ ð9=ð1� �Þ; 1=ð1� �ÞÞ. By giving equal

weights to both criteria, the policy that chooses action a and the one choosing action

c are equivalent. As soon as the weights are di®erent, only one of those two policies is

optimal and it therefore yields an unbalanced valuation vector. However, the policy

choosing action b is not dominated by the other policies. As it yields a much better

balanced valuation vector, one could arguably prefer that solution. Yet, it cannot be

obtained by a weighted sum.

In the next section, we introduce a a scalarizing function well suited for the

determination of well-balanced solutions.

3. Search for Compromise Solutions

3.1. Reference point method

In multiobjective optimization, the question of ¯nding balanced solutions among the

non-dominated ones is a crucial issue. The standard way of generating compromise

solutions in the Pareto-optimal set is resorting to the so-called reference point

approach that consists in ¯nding an attainable outcome vector that in some manner

minimizes a distance to a prescribed reference point.14,22,23 This can be achieved with

the so-called quasi-satis¯cing approach. A good formalization of the quasi-satis¯cing

approach to multiobjective optimization was proposed and developed mainly by

Wierzbicki24 as the reference point method (RPM).

Within the RPM the DM speci¯es requirements in terms of reference levels, i.e.

by introducing reference (target) values for several individual outcomes.

Depending on the speci¯ed reference levels, a particular scalarizing disachievement

Fig. 3. MMDP of Example 3.
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function is built which may be directly interpreted as expressing disutility to be

minimized. Minimization of the scalarizing disachievement function generates a

Pareto-optimal solution to the multiobjective problem. The scalarizing dis-

achievement function can be viewed as a two-stage transformation of the original

outcomes. First, the strictly monotonic individual (partial) disachievement func-

tions are built to measure individual performance with respect to given reference

levels. Having all the outcomes transformed into a uniform scale of individual

disachievements they are aggregated at the second stage to form a unique

scalarization. The RPM is based on the so-called augmented (or regularized)

min�max aggregation. Thus, the worst individual disachievement is essentially

optimized but the optimization process is additionally regularized with the term

representing the average disachievement. The min�max aggregation guarantees

fair treatment of all individual disachievements by implementing an approxi-

mation to the Rawlsian principle of justice. While building the scalarizing dis-

achievement function, it is assumed that DM prefers a solution with all individual

outcomes yi satisfying the corresponding reference levels to any solution with at

least one individual outcome worse than its reference level. That means, the

minimization of the scalarizing disachievement function must enforce reaching the

reference levels prior to further improving of criteria. Thus, similar to the goal

programming approaches, the reference levels are treated as targets but following

the quasi-satis¯cing approach they are interpreted consistently with basic con-

cepts of Pareto optimality in the sense that even when the target point can be

reached, the better solution compared to it, the more preferred the solution is.25

The generic scalarizing disachievement function takes the following form24:

 ðyÞ ¼ ð1� "Þ max
1�i�n

f�iðyiÞg þ
"

n

Xn
i¼1

�iðyiÞ; ð8Þ

where " is an arbitrary small positive number and �i :R ! R, for i ¼ 1; 2; . . . ; n, are

the individual (partial) disachievement functions measuring actual disachievement

of the individual outcomes yi with respect to the corresponding reference levels. Let

�i denote the individual disachievement for the ith outcome (�i ¼ �iðyiÞ) and � ¼
ð�1; �2; . . . ; �nÞ represent the disachievement vector. The scalarizing disachievement

function (8) is essentially de¯ned by the worst individual disachievement but

additionally regularized with the sum of all individual disachievements. The

regularization term is introduced only to guarantee the solution e±ciency in the

case when the minimization of the main term (the worst individual disachievement)

results in a non-unique optimal solution.

Various functions �i provide a wide modeling environment for measuring indi-

vidual disachievements.22,26�28 The basic RPM model is based on a single vector of

reference levels, the aspiration vector ra. Real-life applications of the RPM meth-

odology usually deal with more complex individual disachievement functions de¯ned

with more than one reference point26 which enriches the preference models and

1030 W. Ogryczak, P. Perny & P. Weng
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simpli¯es the interactive analysis. In particular, the models taking advantages of two

reference vectors: vector of aspiration levels ra and vector of reservation levels rr29

are used, thus allowing the DM to specify requirements by introducing acceptable

and required values for several outcomes. The individual disachievement function �i
can be interpreted then as a measure of the DM's dissatisfaction with the current

value of outcome for the ith criterion. It takes value �i ¼ 0 for yi ¼ r a
i , and �i ¼ 1 for

yi ¼ r r
i . Various functions can be built meeting those requirements. We use the

piecewise linear individual disachievement function originally introduced in an

implementation of the RPM system for the multiple criteria transshipment problems

with facility location30:

�iðyiÞ ¼

�
yi � r r

i

r r
i � r a

i

þ 1; if yi is worst than r r
i

yi � r a
i

r r
i � r a

i

; if yi is between r a
i and r r

i

	
yi � r a

i

r r
i � r a

i

; if yi is better than r a
i ;

8>>>>>>><
>>>>>>>:

ð9Þ

where 	 and � are arbitrarily de¯ned parameters satisfying 0 < 	 < 1 < �. Par-

ameter � > 1 represents increase of the DM's dissatisfaction connected with out-

comes worse than the reservation level while parameter 	 represents additional

decrease of the dissatisfaction (below zero) when a criterion generates outcomes

better than the corresponding aspiration level. These disachievement functions are

well de¯ned for any type of criteria, either maximized or minimized (see Fig. 4).

Indeed, assuming that r a
i > r r

i for maximized criteria and respectively r a
i < r r

i for

criteria being minimized, the individual disachievement function (9) takes values

�iðyiÞ ¼ jyi � r a
i j=jr a

i � r r
i j if yi is between r a

i and r r
i , �iðyiÞ ¼ �jyi � r r

i j=jr a
i �

r r
i j þ 1 if yi is worst than r r

i , and �iðyiÞ ¼ �	jyi � r a
i j=jr a

i � r r
i j when yi is better

(a) (b)

Fig. 4. Individual disachievement function (9): (a) maximized outcome (r a
i > r r

i ), (b) minimized out-

come (r a
i < r r

i ).
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than r a
i . They can easily be extended to enable preference speci¯cation with more

than two reference points.31

In a simpli¯ed approach, the reference points can be chosen as follows: the

aspiration levels ra as the ideal point (i.e. the lowest upper bound of the Pareto

solutions when maximizing an objective and the greatest lower bound when

minimizing an objective), and the reservation levels rr as the nadir point (i.e. the

highest lower bound of the Pareto solutions when maximizing and the lowest upper

bound when minimizing). With such an approach the scalarizing function (8)

with individual disachievements (9) takes the form of the augmented Tchebyche®

scalarization:

 ðyÞ ¼ ð1� "Þ max
i¼1...n

jIi � yij
jIi � Nij

þ "

n

Xn
i¼1

jIi � yij
jIi � Nij

; ð10Þ

where I is ideal point and N the nadir point. It de¯nes the relative Tchebyche®

distance from the ideal point. In practice, it is recommended for technical reasons

to use,22 instead of I , a point I 0, in the neighborhood of I that Pareto-dominates I .

Moreover, one uses an approximation of the nadir point32,33 instead of N , which is

di±cult to obtain when the number of criteria is greater than 2. Also, the use of

various reference points allows one to model various compromise solutions.

3.2. Reference point method with ordered aggregations

The min�max aggregation is crucial for allowing the RPM to generate various

compromise Pareto optimal solutions while the regularization is necessary to guar-

antee that only Pareto optimal solutions are obtained. The regularization by the

average disachievement, applied in the standard RPM method (8), is very simple but

it may disturb the basic min�max model. Actually, the only consequent regulariz-

ation of the min�max aggregation is the lexmin order or the more practical ordered

weighted averaging (OWA) aggregation with monotonic weights. In the OWA

aggregation34 of a vector the weights are assigned to the ordered values (i.e. to the

largest value, the second largest and so on) rather than to the speci¯c coordinates.

The OWA aggregation with monotonic weights combines all the individual dis-

achievements allocating the largest weight to the worst disachievement, the second

largest weight to the second worst disachievement, the third largest weight to the

third worst disachievement, and so on. This is mathematically formalized as follows.

Let h�i ¼ ð�h1i; �h2i; . . . ; �hniÞ denote the vector obtained from � by rearranging its

components in the non-increasing order. That means �h1i � �h2i � � � � � �hni and

there exists a permutation 
 of set f1; . . . ; ng such that �hii ¼ �
ðiÞ for i ¼ 1; . . . ; n.

The standard min�max aggregation depends on the minimization of �h1i as it ignores
the values of �hii for i � 2. In order to take into account all the disachievement values,

one needs to minimize a weighted combination of the ordered disachievements thus

representing the OWA aggregation. Note that the weights are then assigned to the

1032 W. Ogryczak, P. Perny & P. Weng
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speci¯c positions within the ordered disachievement vector rather than to the indi-

vidual disachievements themselves.

With the OWA aggregation one gets the following scalarizing disachievement

function to be minimized:

OWA!ð�Þ ¼
Xn
i¼1

!i�hii where �i ¼ �iðyiÞ 8i ¼ 1; . . . ; n; ð11Þ

where !1 > !2 > � � � > !n > 0 are positive and strictly decreasing weights. Actually,

they should be rather strongly decreasing to represent the regularization of the

min�max order. When the di®erences among weights tend to in¯nity, the OWA

aggregation approximates the leximax ranking of the ordered outcome vectors.35

Certainly, any ¯nite di®erences small enough to allow for numerical computation of

the OWA values provides a proper scalarizing disachievement function. We rec-

ommend the use of geometric decreasing series to de¯ne the OWA RPM weights !i.

Example 4. Let us consider three alternative feasible solutions among which one

wants to select one according to four criteria. Table 1 presents for all the solutions

the corresponding individual disachievements de¯ned according to the aspiration/

reservation model (9) thus allocating 0 to outcomes reaching the corresponding

aspiration level and 1 to those reaching the reservation level. Solution S1 oversteps

the aspiration levels (disachievement values �0.2) for two criteria while failing to

reach the corresponding aspiration levels for two other criteria (disachievement

values 0.7). Solution S2 approaches the aspiration levels for the ¯rst three criteria

(disachievement values 0.11) while clearly failing to reach only the aspiration level

for the fourth criterion (disachievement value 0.7). Solution S3 essentially fails to

reach all the aspiration levels, though being a little bit closer for the fourth criterion

(disachievement value 0.6). All the solutions are Pareto optimal. They generate the

same worst disachievement value 0.7 and therefore, while applying the standard

RPM (8), the ¯nal selection depends on the average disachievement (regularization

term). Actually, solution S1 will be selected as better than S2 and S3.

One may notice that the application of the OWA aggregation with decreasing

weights ! ¼ ð0:5; 0:3; 0:15; 0:05Þ enables selection of solution S2 from Table 1. One

may notice that OWA!ð�ðS2ÞÞ < OWA!ð�ðS3ÞÞ for any positive weights ! which

means that solution S2 will be always treated as better than S3.

When it is possible the OWA RPM optimization (11) generates a Pareto-optimal

solution with individual disachievements all equal, otherwise it generates another

Table 1. Sample disachievements for Example 4.

Sol. �1 �2 �3 �4 Max aver. �h1i �h2i �h3i �h4i OWA!ð�Þ

S1 0.7 �0.2 �0.2 0.7 0.7 0.25 0.7 0.7 �0.2 �0.2 0.520

S2 0.11 0.11 0.11 0.7 0.7 0.26 0.7 0.11 0.11 0.11 0.405

S3 0.4 0.3 0.7 0.6 0.7 0.50 0.7 0.6 0.4 0.3 0.605

A Compromise Programming Approach to Multiobjective Markov Decision Processes 1033
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Pareto-optimal solution but still providing equitability of individual disachievements

with respect to the Pigou�Dalton principle of transfers.13 That means, a transfer of a

small amount from an individual disachievement to any relatively worse-o® indi-

vidual disachievement results in a more preferred disachievement vector, i.e. when-

ever �i < �j and 0 < " � �j � �i, then � þ "ei � "ej is strictly preferred to � where ei
denotes the ith unit vector.

Note that the standardRPMmodelwith the scalarizingdisachievement function (8)

can be expressed as the following OWA model: maxðð1� ðn�1Þ"
n Þ�h1i þ "

n

Pn
i¼2 �hiiÞ.

Hence, the standard RPM model exactly represents the OWA aggregation (11) with

strictly decreasing weights in the case of n ¼ 2 (!1 ¼ 1� "=2 and!2 ¼ "=2). For n > 2

it abandons the di®erences in weighting of the second largest disachievement, the third

largest one, etc. (!2 ¼ � � � ¼ !n ¼ "=n). The OWA RPM model (11) enables to dis-

tinguish weights36 by introducing decreasing series (e.g. geometric ones).

When applying the OWA RPM scalarizing function (11) with individual dis-

achievements (9) built for the ideal point I and the nadir point N as the reference

levels:

 ðyÞ ¼ OWA!ð�Þ ¼
Xn
i¼1

!i�hii where �i ¼
jIi � yij
jIi � Nij

8i ¼ 1; . . . ; n; ð12Þ

we receive a special case of the ordered weighted regret optimization.11

Typical RPM model allows weighting of several disachievements only by

straightforward rescaling of the disachievement values. The OWA RPM model

enables one to introduce importance weights to a®ect disachievement importance by

rescaling accordingly its measure within the distribution of disachievements as

de¯ned in the so-called WOWA aggregation.37 Let ! ¼ ð!1; . . . ; !nÞ be a set of

the OWA weights and let � ¼ ð�1; . . . ; �nÞ be an additional importance weighting

vector such that �i � 0 for i ¼ 1; . . . ; n and
Pn

i¼1 �i ¼ 1. The corresponding WOWA

aggregation of disachievements � ¼ ð�1; . . . ; �mÞ is de¯ned as follows37:

WOWA!;�ð�Þ ¼
Xn
i¼1

wið�; �Þ�hii where

wið�; �Þ ¼ ’
X
k�i

�
ðkÞ

 !
� ’

X
k<i

�
ðkÞ

 ! ð13Þ

with ’ a monotone increasing function that interpolates points ð i
m ;
P

k�i !kÞ together
with the point ð0:0Þ and 
 representing the ordering permutation for � (i.e.

�
ðiÞ ¼ �hii). Moreover, function ’ is required to be a straight line when the point can

be interpolated in this way, thus allowing theWOWA to cover the standard weighted

mean with weights �i as a special case of equal OWA weights (!i ¼ 1=n for

i ¼ 1; . . . ; n). Actually, within the theory of decisions under uncertainty where

importance weights �i may represent scenarios probabilities, theWOWA aggregation

1034 W. Ogryczak, P. Perny & P. Weng
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is a special case of the rank dependent utility39 with a piecewise linear probability

weighting function ’ de¯ned by the importance weights.

Example 5. Consider two disachievements vectors � 0 ¼ ð0:1; 0:2Þ and � 00 ¼
ð0:2; 0:1Þ. While introducing preferential weights ! ¼ ð0:8; 0:2Þ, one may calculate

the OWA aggregations: OWA!ð� 0Þ ¼ OWA!ð�00Þ ¼ 0:8 � 0:2þ 0:2 � 0:1 ¼ 0:18, thus

equally valuating both disachievement vectors. Let us assume there are importance

weights � ¼ ð0:75; 0:25Þ for particular disachievements, which means that results

under the ¯rst disachievement are 3 times more important than those related to the

second criterion. To take into account the importance weights in the WOWA

aggregation (13) we introduce the piecewise linear function ’:

’ð�Þ ¼ 0:8�=0:5 for 0 � � � 0:5

0:8þ 0:2ð� � 0:5Þ=0:5 for 0:5 < � � 1:0

�

and calculate weights wi according to Formula (13) as illustrated in Fig. 5. Actually,

w1ð�; � 0Þ ¼ ’ð�2Þ ¼ 0:4 and w2ð�; � 0Þ ¼ 1� ’ð�2Þ ¼ 0:6 while w1ð�; � 00Þ ¼ ’ð�1Þ ¼
0:9 and w2ð�; � 00Þ ¼ 1� ’ð�1Þ ¼ 0:1. Hence, WOWA!;�ð� 0Þ ¼ 0:4 � 0:2þ 0:6 � 0:1 ¼
0:14 and WOWA!;�ð� 00Þ ¼ 0:9 � 0:2þ 0:1 � 0:1 ¼ 0:19.

The WOWA may be expressed with a more direct formula where preferential

(OWA) weights !i are applied to the averages of the corresponding portions of

ordered disachievements (quantile intervals) according to the distribution de¯ned by

importance weights �i.
40 Note that one may alternatively compute the WOWA

values by using rational importance weights to replicate the corresponding dis-

achievements and then calculate the OWA aggregations.

Example 6. (Example 5 continued) In the case of the previous example (with

importance weights � ¼ ð0:75; 0:25Þ), we need to consider three copies of dis-

achievement �1 and one copy of disachievement �2 thus generating vectors ~� 0 ¼
ð0:1; 0:1; 0:1; 0:2Þ and ~� 00 ¼ ð0:2; 0:2; 0:2; 0:1Þ of four equally important disachieve-

ments. Original preferential weights must be then applied respectively to the

Fig. 5. De¯nition of WOWA weights wi : (left) for vector �
0 ¼ ð0:1; 0:2Þ, (right) for vector � 00 ¼ ð0:2; 0:1Þ.
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average of the two smallest outcomes and to the average of two largest outcomes.

Indeed, we get WOWA!;�ð� 0Þ ¼ 0:8 � 0:15þ 0:2 � 0:1 ¼ 0:14 and WOWA!;�ð� 00Þ ¼
0:8 � 0:2þ 0:2 � 0:15 ¼ 0:19.

This approach can be generalized to any real (possibly irrational) importance

weights and the WOWA aggregation can be equivalently de¯ned as follows41:

WOWA!;�ð�Þ ¼
Xn
i¼1

!in

Z i
n

i�1
n

F
ð�1Þ
� ð�Þ d�; ð14Þ

where F
ð�1Þ
� is the stepwise function F

ð�1Þ
� ð�Þ ¼ �hki for

P
j<k �
ðjÞ < � �Pj�k �
ðjÞ,

for k ¼ 1; . . . ; n with 
 representing the ordering permutation for � (i.e. �
ðkÞ ¼ �hki).
It can also be mathematically formalized as the quantile function de¯ned as the left-

continuous inverse of the cumulative distribution function, i.e. F
ð�1Þ
� ð�Þ ¼ supf� :

F �ð�Þ � �g for 0 < � � 1 with F �ð�Þ ¼
Pn

i¼1 �iið�Þ where ið�Þ ¼ 1 if �i � � and 0

otherwise.

Example 7. (Example 5 continued) In the case of two disachievement vectors � 0 ¼
ð0:1; 0:2Þ and � 00 ¼ ð0:2; 0:1Þ (with importance weights � ¼ ð0:75; 0:25Þ) from

Example 5

F
ð�1Þ
� 0 ð�Þ ¼ 0:2 for 0 < � � 0:25

0:1 for 0:25 < � � 1

�
and F

ð�1Þ
� 00 ð�Þ ¼ 0:2 for 0 < � � 0:75

0:1 for 0:75 < � � 1:

�

Hence, calculating the corresponding WOWA aggregations according to formula

(14) one gets

WOWA!;�ð� 0Þ ¼ 0:8 � 2ð0:2 � 0:25þ 0:1 � 0:25Þ þ 0:2 � 2ð0:1 � 0:5Þ
¼ 0:8 � 0:15þ 0:2 � 0:1 ¼ 0:14

and

WOWA!;�ð� 00Þ ¼ 0:8 � 2ð0:2 � 0:5Þ þ 0:2 � 2ð0:2 � 0:25þ 0:1 � 0:25Þ
¼ 0:8 � 0:2þ 0:2 � 0:15 ¼ 0:19:

Applying the WOWA aggregation de¯ned in (14), with decreasing OWA weights

! to individual disachievements ( ð�Þ ¼ WOWA!;�ð�Þ), we get the WOWA RPM

optimization model42:

minWOWA!;�ð�Þ; �i ¼ �iðyiÞ 8i ¼ 1; . . . ; n ð15Þ
with piecewise linear individual disachievement function �i de¯ned according to (9).

Proposition 3. For any reference levels r a
i 6¼ r r

i , any positive weights ! and �, if �y

is an optimal solution of the corresponding problem (15), then �y is a Pareto-optimal

solution of the corresponding multiple criteria optimization problem.

Proposition 3 states that WOWA RPM-optimal solutions are Pareto-optimal. It

follows from strict monotonicity of the WOWA aggregation.43
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Due to the importance weights, the WOWA aggregation allows one to distinguish

various individual disachievements. Therefore, contrary to the OWA aggregation, it

does not generally provide any direct equitability of individual disachievements.

However, still in the case of decreasing OWAweights ! it can be considered equitable

with respect to the importance weighted disachievements in the sense that � þ
"
�i
ei � "

�j
ej is preferred to � (i.e. WOWA!;�ð� þ "

�i
ei � "

�j
ejÞ � WOWA!;�ð�Þ)

whenever �i < �j and 0 < " < ð�j � �iÞminf�i; �jg.44

4. Solution Method

4.1. RPM optimality

Writing the WOWA RPM optimization model (15) for solving an MMDP, the best

compromise solution VC� : S ! Rn, called (WOWA) RPM-optimal, can then be

computed with:

VC� ¼ argmin
V

 
X
s2S

�ðsÞV ðsÞ
 !

; ð16Þ

where � is a probability distribution over initial states and

 ðyÞ ¼ WOWA!;�ð�Þ; �i ¼ �iðyiÞ 8i ¼ 1; . . . ; n ð17Þ
with piecewise linear individual disachievement function �i de¯ned according to (9).

In an MMDP, the aspiration and reservation levels can be set with respect to the

ideal and nadir points. Here, they are respectively the lowest upper bound and the

greatest lower bound of nondominated solutions in the criterion space. In fact, in

practice, one uses an approximation of the nadir point as it is generally di±cult to

determine exactly.32 The ideal point for an MMDP can be computed by solving a

standard MDP successively with reward function Ri for i ¼ 1; . . . ; n. We denote Vi�

the vectorial value function optimal for the ith criterion. In a state s, the ideal point

then can be formally de¯ned as follows:

v I
i ¼

X
s2S

�ðsÞV i�
i ðsÞ 8i ¼ 1; . . . ; n:

The approximated nadir point is calculated with the Vi�'s as

vN
i ¼

X
s2S

�ðsÞ min
j¼1...n

V j�
i ðsÞ 8i ¼ 1; . . . ; n:

Now, one way to de¯ne the aspiration and the reservation levels is as follows by

setting two parameters qa and qr in interval ½0; 1	:
r a
i ¼ vN

i þ qaðv I
i � vN

i Þ and r r
i ¼ vN

i þ qrðv I
i � vN

i Þ:

Example 8. Continuing Example 3, the ideal point in state 1 is ð9=ð1� �Þ; 9=
ð1� �ÞÞ, the approximated nadir point is ð1=ð1� �Þ; 1=ð1� �ÞÞ and � can be taken
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ðð1� �Þ=8; ð1� �Þ=8Þ. Then the RPM-optimal value, which is close to 1=2 when " is

close to 0, is reached by the policy choosing action b.

This simple example explains why the RPM model is preferred to any weighted

sum in multiobjective optimization. Besides, as mentioned previously, the quality of

compromise solutions found is even better if we consider randomized policies.

In the next subsections, we present the problems that we need to overcome for

¯nding RPM-optimal (possibly randomized) policies and we propose a solution

method for compromise search in MMDPs.

4.2. RPM optimality is state-dependent

In a standard MDP, an optimal (w.r.t. the standard preference structure, i.e. max-

imizing the expectation of discounted total rewards) policy is optimal in every initial

state. In an MMDP, a Pareto-optimal policy (i.e. solution of ðvDÞ) is Pareto-optimal

in every initial state. However, here, the optimality notion based on the RPM sca-

larizing disachievement function depends on the initial state, i.e. a best compromise

policy in a given initial state may not be a best compromise solution in another state.

We illustrate this point with a simple example.

Example 9. Consider a deterministic MMDP de¯ned by ðS ;A;T ;RÞ where

S ¼ f0; 1; 2g, A ¼ fUp;Downg, T and R are represented in Fig. 6. Actions Up

(resp. Down) are represented by the arcs above (resp. below). The bi-dimensional

rewards are given near the arcs. As state 2 is an absorbing state, one can set the

discount factor � to 1.

Let us consider the simplest RPM scalarizing disachievement function (17) with

!1 ¼ 1� "=2, !2 ¼ "=2, �1 ¼ �2 ¼ 1=2, the aspiration levels set to ra ¼ ð20; 20Þ and
the reservation levels to rr ¼ ð0; 0Þ.

Now, taking �ð1Þ ¼ 1 and �ð0Þ ¼ �ð2Þ ¼ 0 in (16), the compromise solution in

state 1 is given by ð5; 5Þ, obtained by choosing action Down. However, taking �ð0Þ ¼
1 and �ð1Þ ¼ �ð2Þ ¼ 0, action Up in state 0 followed by action Up in state 1 (valued

by ð10; 10Þ) yields a better compromise than action Up in state 0 followed by action

Down in state 1 (valued by ð5; 15Þ).
From this observation, we can conclude that the best compromise policy viewed

from one state is not necessarily a best compromise solution viewed from another

state.

Fig. 6. MMDP of Example 9.
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Therefore, to use the RPM optimality as de¯ned by (16), one needs to know the

initial state. This is not, in our opinion, a very demanding requirement as for most

problems, this information is available. Moreover, when the initial state is unknown,

one can instead consider the average of a value function over all possible initial

states.

4.3. Dynamic inconsistency

Due to the nonlinearity of the RPM scalarizing function, we cannot transform the

MMDP into a standard MDP. More speci¯cally, solving an MDP obtained by

aggregating the vector rewards of an MMDP with the scalarizing function is not

equivalent to optimization (16) in the original MMDP.

Example 9 shows that contrary to standard MDPs, one does not have the fol-

lowing fundamental property:

� � � 0 ) ð�; �Þ % ð�; � 0Þ;
where �; � 0 are two policies, � is a decision rule, ð�; �Þ (resp. ð�; � 0Þ) is the policy

consisting of applying ¯rst decision rule � then policy � (resp. � 0) in the next steps

and relation � (resp. %) is the strict (resp. weak) preference relation over policies

induced by the RPM scalarizing function. Without this property, one cannot elim-

inate dominated subpolicies as they can be improved later. Indeed, if � � � 0, it could
happen that for some �, one can get a preference reversal ð�; � 0Þ � ð�; �Þ, thus,

making impossible to prune � 0 using � in a solution method based on dynamic

programming.

Example 10. As a consequence, we can no longer rely on algorithms based on

dynamic programming, such as value iteration. Indeed, the natural counterpart of

value iteration for scalarizing function optimization would have been:

.

where  is de¯ned by Eq. (15). Let us apply this algorithm on an example.

Consider again the MMDP de¯ned in Example 9. As the only valuation vector

that can be obtained in the absorbing state 2 is ð0; 0Þ, we will skip the computation in

that state.

A Compromise Programming Approach to Multiobjective Markov Decision Processes 1039
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Initialize V0ð0Þ ¼ V0ð1Þ ¼ ð0; 0Þ. In state 0, the value of applying action Up is

given by Q1ð0;UpÞ ¼ ð0; 10Þ. For action Down, we get Q1ð0;DownÞ ¼ ð0; 0Þ.
Obviously, the best action in state 0 is Up and V1ð0Þ ¼ ð0; 10Þ. In state 1, the value of

applying action Up is given by Q1ð1;UpÞ ¼ ð10; 0Þ. For action Down, we get

Q1ð1;DownÞ ¼ ð5; 5Þ. Here, the best action is Down and V1ð1Þ ¼ ð5; 5Þ.
At the second iteration of the algorithm, we obtain: In state 0, the value of

applying action Up is given by Q2ð0;UpÞ ¼ ð5; 15Þ. For action Down, we get

Q2ð0;DownÞ ¼ ð5; 5Þ. Obviously, the best action is Up and V2ð1Þ ¼ ð5; 15Þ. In state

1, we are in the same situation as at the previous iteration. Therefore, we get V2ð1Þ ¼
ð5; 5Þ and Down is the best action.

At the third iteration, one can see that the value function has converged and

yields a dominated policy as the policy choosing action Up in every state is the best

compromise policy.

This last observation motivates us to search for a solution method based on the

multiobjective linear program vD.

4.4. Solution method

Searching for RPM optimal solution in the set of stationary randomized policies can

be better than restricting the search to the set of deterministic policies. As an

illustration, consider Fig. 7 which represents value functions of deterministic policies

in an initial state for a given MMDP (n ¼ 2). Assume that point c is the RPM

optimal solution. Now, if we consider randomized policies, we can do much better as

shown in Fig. 8.

The valuation vectors of randomized policies are in the convex hull of the

valuation vectors of deterministic policies, represented by the gray zone. The dark

gray zone represents all feasible valuation vectors that are preferred to point c. The

dotted lines linking points a, b and d represent all Pareto-optimal valuation vectors.

It is then easy to see that point c is dominated by all the randomized policies that are

Fig. 7. Valuation vectors.
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both in the dark gray zone and on the dotted line. As any RPM-optimal solution is

also Pareto-optimal, one can ¯nd better solutions than c when considering also the

set of randomized policies.

For this reason, we now focus on the search of an RPM-optimal randomized

policy. Although the RPM scalarizing function is not linear, the dynamics of an

MMDP remains identical to a standard MDP and thus is linear. For ¯nding RPM-

optimal solutions, it is therefore possible to adapt the linear program proposed for

¯nding Pareto-optimal solutions in an MMDP. The WOWA RPM-optimal policy

de¯ned according to (16) and (17) can be identi¯ed by solving the following

optimization problem:

min WOWA!;�ð�Þ
s:t: �i ¼ �iðyiÞ 8i ¼ 1; . . . ; n

yi ¼
X
s2S

X
a2A

Riðs; aÞxðs; aÞ 8i ¼ 1; . . . ; n

X
a2A

xðs; aÞ � �
X
s 02S

X
a2A

xðs 0; aÞTðs 0; a; sÞ ¼ �ðsÞ 8s 2 S

xðs; aÞ � 0 8s 2 S; 8a 2 A:

ð18Þ

An important advantage of the RPM depends on its easy implementation as an

expansion of the original multiple criteria model. Even complicated individual dis-

achievement functions of the form (9) are strictly monotonic and convex, thus

allowing for LP implementation.30 Indeed, since individual disachievement function

(9) is piecewise linear convex, it can be expressed in the form:

�iðyiÞ ¼ max �
yi � r r

i

r r
i � r a

i

þ 1;
yi � r a

i

r r
i � r a

i

; 	
yi � r a

i

r r
i � r a

i

� �

¼ max �&iyi þ 1� �&ir
r
i ; &iyi � & ir

a
i ; 	& iyi � 	& ir

a
if g; ð19Þ

where & i ¼ 1=ðr r
i � r a

i Þ for i ¼ 1; . . . ; n. Formula (19) guarantees LP computability

with respect to outcomes yi. Hence, due to the strict monotonicity of the WOWA

a

b

d

c

Fig. 8. Better solutions.
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aggregation, the RPM-optimal policy de¯ned by model (17) can be identi¯ed with

the following WOWA optimization on the LP feasible set:

min WOWA!;�ð�Þ
s:t: �i � �&iyi þ 1� �&ir

r
i 8i ¼ 1; . . . ; n

�i � &iyi � &ir
a
i 8i ¼ 1; . . . ; n

�i � 	& iyi � 	& ir
a
i 8i ¼ 1; . . . ; n

yi ¼
X
s2S

X
a2A

Riðs; aÞxðs; aÞ 8i ¼ 1; . . . ; n

X
a2A

xðs; aÞ � �
X
s 02S

X
a2A

xðs 0; aÞTðs 0; a; sÞ ¼ �ðsÞ 8s 2 S

xðs; aÞ � 0 8s 2 S ; 8a 2 A:

The WOWA criterion is, in general, hard to implement due to the pointwise

ordering of individual disachievements. Nevertheless, similarly to the standard OWA

optimization,45 its minimization can be implemented with LP model,40 in the case of

positive and strictly decreasing preferential (OWA) weights !1 > !2 > � � � > !n > 0.

Recall that formula (14) de¯nes the WOWA value applying preferential weights !i

to importance weighted averages within quantile intervals. It may be reformulated

with the tail averages (Lorenz components):

WOWA!;�ð�Þ ¼
Xn
k¼1

!knL �; �;
k

n

� �
where Lð�; �; �Þ ¼

Z �

0

F
ð�1Þ
� ðÞd ð20Þ

and di®erential weights

!k ¼ !k � !kþ1 for k ¼ 1; . . . ; n � 1 and !n ¼ !n: ð21Þ
Note that the di®erential weights !i are positive in the case of positive and strictly

decreasing preferential (OWA) weights !1 > !2 > � � � > !n > 0. Graphs of functions

Lð�; �; �Þ (with respect to �) take the form of concave piecewise linear curves, the so-

called (upper) absolute Lorenz curves. Values of function Lð�; �; �Þ for any 0 � � � 1

can be given by optimization:

Lð�; �; �Þ ¼ max
ui

Xn
i¼1

�iui :
Xn
i¼1

ui ¼ �; 0 � ui � �i i ¼ 1; . . . ; n

( )
: ð22Þ

Introducing dual variable t corresponding to the equation
Pn

i¼1 ui ¼ � and variables

di corresponding to upper bounds on ui one gets the following LP dual expression of

Lð�; �; �Þ:

Lð�; �; �Þ ¼ min
t;di

�t þ
Xn
i¼1

�idi : �i � t þ di; di � 0 8i ¼ 1; . . . ; n

( )
: ð23Þ
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Hence, the entire WOWA RPM program (17) can easily be linearized as follows:

min
Xn
k¼1

!kzk

s:t: zk ¼ ktk þ n
Xn
i¼1

�idik 8k ¼ 1; . . . ; n

�i � tk þ dik ; dik � 0 8i; k ¼ 1; . . . ; n

�i � �& iyi þ 1� �&ir
r
i 8i ¼ 1; . . . ; n

�i � &iyi � &ir
a
i 8i ¼ 1; . . . ; n

�i � 	& iyi � 	& ir
a
i 8i ¼ 1; . . . ; n

yi ¼
X
s2S

X
a2A

Riðs; aÞxðs; aÞ 8i ¼ 1; . . . ; n

X
a2A

xðs; aÞ � �
X
s 02S

X
a2A

xðs 0; aÞTðs 0; a; sÞ ¼ �ðsÞ 8s 2 S

xðs; aÞ � 0 8s 2 S; 8a 2 A;

where tk for k ¼ 1; . . . ; n and yi for i ¼ 1; . . . ; n are unbounded (unrestricted)

variables. Actually, variables yi are introduced only to represent the

values
P

s2S
P

a2ARiðs; aÞxðs; aÞ, but their elimination does not simplify the model.

The coe±cients !k are de¯ned as di®erential OWA weights (21).

Our previous observation concerning the state-dependency of the RPM optim-

ality suggests that contrary to standard MDPs, RPM-optimal solutions depend on �.

When we do not know the initial state, distribution � can be chosen as the uniform

distribution over the possible initial states. When the initial state s0 is known, �ðsÞ
should be set to 1 for s ¼ s0 and to 0 otherwise. The solution found by the linear

program does not specify which action to choose for any state s for which �ðsÞ ¼ 0

and that is not reachable from the initial state as such a state does not impact the

value of the RPM-optimal policy.

4.5. Preference modeling

The reference point methods support preference modeling by the reference levels in

the sense that various e±cient solutions can be selected by appropriate setting of the

reference levels. Indeed any properly e±cient solutions46 with bounded tradeo®s can

be generated by the standard RPM.47 Recall that an outcome vector �y is properly

nondominated with tradeo®s bounded by �, if and only if for any attainable outcome

vector y the implication

yi is better than �yi and �yk is better than yk ) jyi � �yij � �j�yk � yk j ð24Þ
is valid for any i; k ¼ 1; . . . ; n.

Proposition 4. For any positive importance weights �i , if �y is properly

nondominated with tradeoffs bounded by �, then there exist positive and strictly

decreasing preferential (OWA) weights !1 > !2 > � � � > !n > 0, aspirations levels r a
i
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and reservation levels r r
i such that �y is an optimal solution of the corresponding

problem (15).

Proof. Let �y be an attainable outcome vector properly nondominated with tradeo®s

bounded by �. Let us set positive and strictly decreasing preferential (OWA)

weights !1 > !2 > � � � > !n > 0 with large enough !1 to ful¯ll inequality � �
n��!1=ð	� 	n��!1Þ where �� ¼ mini¼1...n�i. Further, for all i ¼ 1; . . . ; n, let us set the

reference levels as r a
i ¼ �yi and r r

i ¼ �yi � 1 in the case of maximized criterion and

r r
i ¼ �yi þ 1 in the case of minimized one. We will show that �y together with

disachievements �� i ¼ �ið�yiÞ de¯ned according to formula (9) form an optimal

solution of the corresponding RPM problem (15). Suppose there exists an attainable

outcome vector y such that for its disachievements �i ¼ �iðyiÞ, 8i one gets better

scalarizing disachievement value WOWA!;�ð�Þ <WOWA!;�ð��Þ. Note that �� i ¼ 0

for all i ¼ 1; . . . ; n. Hence, following formula (13):

WOWA!;�ð�Þ �WOWA!;�ð��Þ ¼
Xn
i¼1

wið�; �Þ�hii �
Xn
i¼1

wið�; �Þ��hii

¼
Xn
i¼1

wið�; �Þð�
ðiÞ � ��
ðiÞÞ;

where 
 is the ordering permutation for the disachievement vector �. Moreover, due

to the Pareto-optimality of �y, �y
ð1Þ is a better outcome value than y
ð1Þ and

�
ð1Þ � ��
ð1Þ � ðr a

ð1Þ � r r


ð1ÞÞð�y
ð1Þ � y
ð1ÞÞ � 0. Further, due to formula (9):

�
ðiÞ � ��
ðiÞ � �	ðr a
i � r r

i Þðy
ðiÞ � �y
ðiÞÞ
whenever y
ðiÞ is better than �y
ðiÞ (i.e. ðr a

i � r r
i Þðy
ðiÞ � �y
ðiÞÞ > 0) and �
ðiÞ � ��
ðiÞ � 0

otherwise. Therefore, taking advantages of the proper e±ciency inequalities (24) for

k ¼ 
ð1Þ one gets

Xn
i¼2

wið�; �Þð�
ðiÞ � ��
ðiÞÞ � �
Xn
i¼2

wið�; �Þ�ðr a

ð1Þ � r r


ð1ÞÞð�y
ð1Þ � y
ð1ÞÞ

� �w1ð�; �Þðr a

ð1Þ � r r


ð1ÞÞð�y
ð1Þ � y
ð1ÞÞ
� �w1ð�; �Þð�
ð1Þ � ��
ð1ÞÞ

which contradicts the inequality
Pn

i¼1 wið�; �Þ�hii <
Pn

i¼1 wið�; ��Þ��hii, thus con¯rm-

ing optimality of �y for the corresponding WOWA RPM problem (15).

As our MMDP problems ¯t the LP formulation, there exists � > 0 such that any

Pareto-optimal solution is represented by the properly nondominated outcome

vector with tradeo®s bounded by �.46 Therefore, Proposition 4 justi¯es modeling

preferences with reference levels as any Pareto-optimal policy can be obtained.

However, in an MMDP one has very limited knowledge of criterion values and the

corresponding aspiration and reservation levels can be set only roughly as a function

of the ideal and nadir points. Therefore, an important advantage of the WOWA

RPM-optimality formulation (16) and (17) is the use of importance weights allowing
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the importance of various individual disachievements to be distinguished. Indeed,

one can improve a particular disachievement by increasing the corresponding

importance weight as suggested by the following proposition.

Proposition 5. Let �y be an attainable outcome vector properly nondominated with

tradeo®s bounded by �. Let y be an attainable nondominated outcome vector with

coordinate yio worse than �yio (i.e. �� io < �io). For any positive and strictly decreasing

preferential (OWA) weights !1 > !2 > � � � > !n > 0, for any aspirations levels

r a
i and reservation levels r r

i , and any criterion io, there exist importance weights

�1; . . . ; �n such that WOWA!;�ð��Þ <WOWA!;�ð�Þ.
Proof. Note that, following (20), we have

WOWA!;�ð��Þ �WOWA!;�ð�Þ ¼
Xn
i¼k

!kn L ��; �;
k

n

� �
� L �; �;

k

n

� �� �
;

where !k are positive di®erential OWA weights de¯ned as (21) and

Lð��; �; �Þ � Lð�; �; �Þ ¼ max
u2Uð�;�Þ

Xn
i¼1

�� iui � max
u2Uð�;�Þ

Xn
i¼1

�iui

with Uð�; �Þ ¼ fu ¼ ðu1; . . . ; unÞ :
Pn

i¼1 ui ¼ �; 0 � ui � �i i ¼ 1; . . . ; ng. Hence,

Lð��; �; �Þ � Lð�; �; �Þ �
Xn
i¼1

�� i �uið�Þ �
Xn
i¼1

�i �uið�Þ ¼
Xn
i¼1

ð�� i � �iÞ�uið�Þ;

where �uð�Þ is an optimal solution to the problem maxu2Uð�;�Þ
Pn

i¼1 �� iui.

There exists i such that �i < �� i (otherwise y would be dominated). Then, fol-

lowing (24), �� i � �i � ð�io � �� ioÞ�. As �=	 > 1, �� i � �i � ð�io � �� ioÞ��=	 and

WOWA!;�ð��Þ �WOWA!;�ð�Þ

�
Xn
k¼1

!kn �uio

k

n

� �
� ��

	

X
i 6¼io

�ui
k

n

� �" #
ð�� io � �ioÞ

� n !n�io �
��!1

	

X
i 6¼io

�i

" #
ð�� io � �ioÞ

since �uioðknÞ � 0 for all k, �uioðnnÞ ¼ �io , and �uiðknÞ � �i for all i. Thus, for su±ciently

large �io (e.g. �io > ��!1=ð��!1 þ 	!nÞ) one gets WOWA!;�ð��Þ <WOWA!;�ð�Þ.
As a side note, a better bound for �io can be found when �� io � �� i for all i. Fol-

lowing (24), if �i < �� i, then �� i � �i � �ð�io � �� ioÞ and

Lð��; �; �Þ � Lð�; �; �Þ � �uioð�Þ ��
X
i 6¼io

�uið�Þ
" #

ð�� io � �ioÞ;

where �uioð�Þ ¼ minf�; �iog while �uið�Þ � minf� � �uioð�Þ; �ig for all i 6¼ io. Hence, for

large enough �io (e.g. �io > �=ð1þ�Þ) one gets Lð��; �; �Þ < Lð�; �; �Þ for any 0 <

� � 1 and thereby WOWA!;�ð��Þ <WOWA!;�ð�Þ.
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Proposition 5 states that having an WOWA RPM-optimal solution with not

satisfactory disachievement for criterion io, one may increase importance of this

criterion, e.g. by setting new importance weights � 0
io
¼ ð�io þ �̂Þ=ð1þ �̂Þ and � 0

i ¼
�i=ð1þ �̂Þ for all i 6¼ io. For su±ciently large increment �̂, following Proposition 5 it

will exclude solution with worse disachievements for criterion io.

Recall Example 4, where solution S3 from Table 1 could not to be selected as the

best one when using the standard OWA aggregation of individual disachievements

without importance weights. One may notice that introducing high importance

weight for the fourth criterion (say �4 ¼ 0:85, �1 ¼ �2 ¼ �3 ¼ 0:05) and using the

same OWA weights ! ¼ ð0:5; 0:3; 0:15; 0:05Þ one gets WOWA!;�ð�ðS3ÞÞ <
WOWA!;�ð�ðS2ÞÞ and WOWA!;�ð�ðS3ÞÞ <WOWA!;�ð�ðS1ÞÞ which enables selec-

tion of S3 as the most preferred solution.

5. Experimental Results

We tested our solution method on two di®erent problems: the navigation problem

over an N � N grid and the inventory control problem. All the experiments were run

using CPLEX 12.1 on a PC (Intel Core 2 CPU 2.66Ghz) with 4GB of RAM. In the

partial disachievement function (9), we set � ¼ 10 and 	 ¼ 0:1. The other par-

ameters for an objective i are set with respect to its ideal point v I
i , computed by

optimizing objective i as the single objective. We set r r
i to 25% of v I

i and r a
i to 75% of

v I
i when the ideal value is positive and the reverse otherwise.

5.1. Navigation problem

In the navigation problem over N � N grid, the robot can choose among four actions:

(L)eft, (U)p, (R)ight, (D)own. Figure 9 gives the transitions for action (R)ight. The

whole transition function can then be recovered by symmetry and rotation.

Rewards are two-dimensional vectors whose components are randomly drawn

within interval ½0; 1	. The discount factor is set to 0:9 and the initial state is set

arbitrarily to the upper left corner of the grid. For this problem, we ran two series of

experiments. As in real problems, criteria are generally con°icting. For the ¯rst set of

experiments, to generate realistic random instances, we simulate con°icting criteria

with the following procedure: we pick one criterion randomly for each state and

0.1

0.8

0.1

1 0.9

0.1

1

Moving to three
available squares

Moving to
a wall

Moving to
a corner

Moving to
a wall in a corner

Fig. 9. Transitions.
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action and its value is drawn uniformly in ½0; 0:5	 and the value of the other is drawn

in ½0:5; 1	. The results over 100 experiments are shown in Fig. 10. One point on that

¯gure (a dot when the solution is obtained by maximizing the weighted sum with

equal weights and a circle when optimizing RPM OWA with exponentially

decreasing weights) represents the optimal value function in the initial state in one

instance. Naturally, for some instances, maximizing the weighted sum can yield a

balanced solution. But, in most cases, it gives a bad compromise solution. Figure 10

shows that we do not have any control on tradeo®s obtained with a weighted sum.

On the contrary, when using the RPM OWA, the pro¯le of the solutions seems to be

more balanced.

To show the e®ectiveness of our approach, we ran a second set of experiments on

pathological instances of the navigation problem. All rewards are drawn randomly as

for the ¯rst set of experiments. Then, for each action of the initial state, we choose

randomly one of the criteria and add a constant (here, arbitrarily set to 5). Then by

construction, the value functions of all deterministic policies in the initial state are

unbalanced. The value functions of optimal policies (w.r.t. the weighted sum and

RPM OWA) are represented in Fig. 11. Maximizing the weighted sum only gives

very unbalanced solutions as it can only reach deterministic policies. Reassuringly,

the solutions found by optimizing RPM OWA are still well balanced.

On the navigation problem, we also made some experiments when the RPM

WOWA criterion is used to show a better controllability on the pro¯le of solutions

that one wants to ¯nd. This is done by setting importance weights on objectives. The

results for 100 instances and three sets of importance weights are plotted in Fig. 12.

The circles are the solutions found for RPM WOWA with equal weights (which is

simply RPM OWA). The triangles are the obtained solutions when one gives more

weight for the ¯rst objective (0.75 for the ¯rst objective and 0.25 for the second).

The dots are the solutions found when more weight is given to the second objective

2

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10

WS
RPM OWA

◦◦ ◦◦
◦

◦
◦

◦
◦◦

◦
◦ ◦◦◦◦ ◦◦◦◦◦
◦

◦◦

◦
◦ ◦◦

◦ ◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦◦
◦

◦
◦

◦◦
◦ ◦◦◦ ◦

◦
◦ ◦◦◦

◦
◦◦ ◦◦
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◦

◦
◦◦◦

◦
◦
◦◦◦ ◦◦ ◦◦

◦
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◦◦ ◦
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◦◦ ◦
◦

◦ ◦

◦

Fig. 10. First experiments.
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(0.25 for the ¯rst objective and 0.75 for the second). We can notice that the

importance weights provide some controllability on the optimal tradeo®s contrary to

RPM OWA.

Finally for the navigation problem, we list the average execution time as a

function of the problem size in Table 2. The ¯rst column n shows the number of

objectives. The second column gives the number of states of the problem. Finally,

column TW gives the execution time for the weighted sum approach, column TRO

corresponds to the execution time of RPM OWA and column TRW gives that of

RPM WOWA. All the times are averages over 20 experiments and are given in

seconds.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

WS
RPM OWA

◦
◦

◦◦
◦

◦
◦◦◦
◦ ◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦ ◦
◦
◦

◦
◦ ◦ ◦◦

◦
◦◦ ◦◦◦
◦ ◦◦ ◦◦
◦

◦◦◦ ◦◦ ◦◦◦◦ ◦◦
◦ ◦◦ ◦ ◦

◦
◦◦◦◦◦◦ ◦◦◦◦◦

◦◦◦ ◦◦◦
◦◦◦

◦
◦
◦
◦

◦ ◦◦ ◦◦◦ ◦◦ ◦
◦◦◦◦◦ ◦◦

◦

Fig. 11. Second experiments.
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Fig. 12. Controllability.
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5.2. Inventory problem

We have also tested our approach on the single-product inventory problem. At each

time step, a warehouse manager decides how many products to order subject to a

stochastic customer demand. For simplicity, we assume that there is no delivery

delay. The aim of the DM is to minimize her operating costs: the cost of stocking

unsold products, the cost of ordering products and the shortage cost when the

demand is higher than the stock level. Although these three types of costs are

expressed in monetary terms, we do not sum them as it is customary. These costs

indeed refer to various types of consequences that have di®erent impacts in terms of

storage capacity dimensioning, order policy and client's satisfaction. These various

consequences are not easily commensurable and may not compensate one another.

For this reason, it is often interesting to keep these costs separate and to treat the

inventory problem as a multiobjective one.

This problem can be modeled as an MDP. A state s represents the number of

products in stock when it is positive. For modeling reasons, we assume that s can be

negative, which would mean that the current stock level is null and that at the last

iteration, the customer demands have not completely been met, i.e. s extra products

could have been sold if the stock level were high enough at the previous iteration. So,

the stock level is given by maxð0; sÞ. We assume that M is the maximum capacity of

the warehouse. An action a represents the quantity of ordered products. We assume

that the customer demand D is a random variable, which follows a (stationary)

Poisson law in our experiments. Then, when action a is taken in state s, the next

state s 0 can be expressed as follows:

s 0 ¼ minðM ;maxð0; sÞ þ aÞ � D

as the quantity of products in stock after an order cannot be higher than M . The

transition function can be inferred from the probability distribution of D. Rewards

Rðs; a; s 0Þ (depending on the next state here) are de¯ned as triplets ðRsðs; a; s 0Þ;
Roðs; a; s 0Þ;Rlðs; a; s 0ÞÞ where Rs represents the stock cost, Rs the order cost and Rl

Table 2. Average execution time in

seconds.

n Size TW TRO TRW

2 400 0.17 0.48 0.46

2 2500 5.13 15.06 15.12

2 10000 151.51 417.02 422.06

4 400 0.12 0.75 0.76

4 2500 5.20 28.21 28.27

4 10000 154.00 821.27 829.83

8 400 0.12 1.30 1.30

8 2500 4.96 50.62 50.72

8 10000 158.26 1514.21 1538.19
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the shortage cost. They are de¯ned as follows:

Rsðs; a; s 0Þ ¼ maxð0; s 0Þ � us; ð25Þ
Roðs; a; s 0Þ ¼ ða � uo þ uf ÞIa 6¼0; ð26Þ
Rlðs; a; s 0Þ ¼ �minð0; s 0Þ; ð27Þ

where us is the marginal cost of stocking one product, uo is the marginal cost of

ordering one product, uf is the ¯xed cost of an order, Ia 6¼0 ¼ 1 if a is not null and

Ia 6¼0 ¼ 0 otherwise. For the shortage cost, we simply count the number of unsatis¯ed

demand units as it is di±cult to estimate the costs in dollar term.

In Table 3, we list the computation times (in seconds) for the inventory problem

with di®erent values of M . All the times are averaged over 20 runs.

6. Conclusion

In this paper, we have presented a compromise programming approach to

MMDPs. It relies on a reference point method designed to generate a policy

yielding an expected-utility vector as close as possible to a reference point. One

particularity of our approach is that the overall value of a policy is measured with

the WOWA of individual disachievements, which comprises many standard sca-

larizing functions (weighted sum, OWA, weighted Tchebyche® norm) as special

cases and provides new interesting features in terms of discrimination and con-

trollability. We demonstrated that an RPM optimal policy depends on the initial

state. Moreover, we also explained why standard schemes for MDPs based on

dynamic programming do not apply to RPM WOWA optimality. Besides, we

showed how one can ¯nd better solutions through considering all randomized

policies. All these observations justify using mathematical programming to search

for an RPM-optimal policy. Although the scalarizing function is not linear, we

have provided an LP-solvable formulation of the problem. In all the experiments

performed, the reference point method with ordered aggregations signi¯cantly

outperforms the weighted sum concerning the ability to provide policies having

a well-balanced valuation vector, especially on di±cult instances designed to

exhibit con°icting objectives. Note that the RPM method proposed here is quite

general and could be applied to any other multiobjective problem with linear

constraints.

Table 3. Average execution

time in seconds.

M TW TRO TRW

10 0.02 0.04 0.04

100 0.05 0.17 0.18

1000 9.79 36.96 36.59
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