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to be higher. As the results obtained with the class of

rules we propose heavily depend on the order in

which the different states of nature are resolved, a

general rule that accommodates priorities on the

states of nature, and still induces leximin efficient

allocations, can also be designed by following

analogous ideas to those that have been developed

in this article.
Finally, the leximin preferences discussed in this

article compare vectors of allocations. Another inter-

esting possibility is the investigation of leximin

preferences comparing vectors of differences between

claims and allocations. This approach will be appro-

priate to analyse situations in which the worst

allocation for an agent is not the smallest one but the

one that most deviates from his claim.
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Notes

1. A classic rule R is consistent if for each each problem
(N,E, c), and each S�N, if xi¼Ri(N,E, c) for all i2N,
then xi¼Ri(S,

P
i2Sx

i, cS) for all i2S.
2. A classic rule R is resource monotonic if for each

problem (N,E, c), and each E0 such that
E5E0 �

P
i2Nci, R

i(N,E, c)�Ri(N,E0, c) holds for all
i2N.

3. We will only require the following continuity condition:
for each sequence E�, such that E��

P
i2Nci, which

converges to E, R(N,E�, c) converges to R(N,E, c).
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Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the
scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents
a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to
optimise the tail mean thus combining performances under multiple worst scenarios. We show that while
considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents
the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the
corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail
mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail
mean concept to develope linear programming implementable robust solution concepts related to risk averse
optimisation criteria.

Keywords: decisions under uncertainty; robust optimisation; tail means; linear programming; multiple criteria

1. Introduction

Several approaches have been developed to deal with
uncertain or imprecise data in optimisation problems.
The approaches focused on the quality of the solution
for some data domains (bounded regions) are consid-
ered robust (Bertsimas and Thiele 2006; Liesiö, Mild,
and Salo 2007; Ben-Tal, El Ghaoui, and Nemirovski
2009). The notion of robustness applied to decision
problems was first introduced by Gupta and
Rosenhead (1968). Practical importance of perfor-
mance sensitivity against data uncertainty and errors
has later attracted considerable attention to the search
for robust solutions. Robust approaches are also
widely applied in systems analysis and control (Liua,
Fenga, and Maa 2012; Harib and Moustafa in press;
Zhai, Zhang, and Liu in press). Actually, as suggested
by Roy (1998), the concept of robustness should be
applied not only to solutions, but also more generally
to various assertions and recommendations generated
within a decision support process. The precise concept
of robustness depends on the way uncertain data
domains and the quality or stability characteristics are
introduced. Typically, in robust analysis one does not
attribute any probability distribution to represent
uncertainties. Data uncertainty is rather represented
by nonattributed scenarios. Since one wishes to opti-
mise results under each scenario, robust optimisation
might be in some sense viewed as a multiobjective

optimisation problem where objectives correspond to
the scenarios. However, despite of many similarities of
such robust optimisation concepts to multiobjective
models, there are also some significant differences
(Hites, De Smet, Risse, Salazar-Neumann, and Vincke
2006). Actually, robust optimisation is a problem of
optimal distribution of objective values under several
scenarios rather than a standard multiobjective opti-
misation model (Ogryczak 2002).

A conservative notion of robustness focusing on
worst-case scenario results is widely accepted and the
max-min optimisation is commonly used to seek robust
solutions. The worst-case scenario analysis can be
applied either to the absolute values of objectives

(the absolute robustness) or to the regret values (the
deviational robustness) (Kouvelis and Yu 1997).
The latter, when considered from the multiobjective
perspective, represents a simplified reference point
approach with the utopian (ideal) objective values for
all the scenarios used as aspiration levels. Recently, a
more advanced concept of ordered weighted averaging
was introduced into robust optimisation (Perny,
Spanjaard, and Storme 2006), thus allowing to optimise
combined performances under the worst-case scenario
together with the performances under the second worst
scenario, the third worst and so on. Such an approach

better exploits the entire distribution of objective
vectors in search for robust solutions and,
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more importantly, it introduces some tools for model-
ling robust preferences. Actually, while more sophisti-
cated concepts of robust optimisation are considered
within the area of discrete programming models, only
the absolute robustness is usually applied to the
majority of decision and design problems.

In this article we focus on robust approaches where
the probabilities are unknown or imprecise. Having
assumed that the probabilities may vary within given
intervals, we optimise the worst-case expected outcome
with respect to the probabilities perturbation set. For
the case of unlimited perturbations the worst-case
expectation becomes the worst outcome (max-min
solution). In the general case, the worst-case expecta-
tion is a generalisation of the tail mean. Nevertheless, it
can be effectively reformulated as a linear program-
ming (LP) expansion of the original problem.

This article is organised as follows. In Section 2 we
recall the tail mean (conditional value-at-risk, CVaR)
solution concept providing a new proof of the LP
computational model which remains applicable for
more general problems related to robust solution
concepts. Section 3 contains the main results. We
show that the robust solution for only upper bounded
probabilities is a tail �-mean solution for an appropri-
ate � value. For proportional upper and lower limits
on probability perturbation the robust solution may be
expressed as optimisation of appropriately combined
mean and tail mean criteria. Finally, a general robust
solution for any arbitrary intervals of probabilities or
probabilities perturbations can be expressed with an
optimisation problem very similar to that for tail
�-mean and thereby easily implementable with auxil-
iary linear inequalities. In Section 4, we analyse robust
approaches to risk functions optimisation. It turns out
that the robust form of tail �-mean is also a tail mean
with tightened tolerance level � while the robust form
of the mean absolute deviation (MAD) model also can
be represented by a modified tail mean thus preserving
the LP computability.

2. The solution concepts

Consider a decision problem under uncertainty where
the decision is based on the maximisation of a scalar
(real valued) outcome. The simplest representation of
uncertainty depends on a finite set I (jIj ¼m) of
predefined scenarios. The final outcome is uncertain
and only its realisations under various scenarios i2 I
are known. Exactly, for each scenario i the corre-
sponding outcome realisation is given as a function of
the decision variables yi¼ fi(x) where x denotes a
vector of decision variables to be selected from the
feasible set Q�Rn of constraints under consideration.

Let us define the set of attainable outcomes

A¼ {y¼ ( y)i2I: yi¼ fi(x) 8i2 I, x2Q}. We are inter-

ested in larger outcomes under each scenario. Hence,

the problem of decision under uncertainty can be

considered a multiple criteria optimisation problem

(Haimes 1993; Ogryczak 2002)

maxfð y1, y2, . . . , ymÞ : y 2 Ag: ð1Þ

From the perspective of decision making under uncer-

tainty, model (1) only specifies that we are interested in

maximisation of outcomes under all scenarios i2 I. In

order to make the multiple objective model operational

for a decision support process, one needs to assume

some solution concept well-adjusted to the decision

maker’s preferences.
A conservative notion of robustness is focused on

the worst-case scenario results defined by maximisa-

tion of the objective function representing the minimum

(worst) outcome

MðyÞ ¼ min
i2I

yi

and it is not affected by the scenario importance

weights at all. It is widely accepted and max-min

optimisation is commonly used to seek robust

solutions.
Within decision problems under risk it is assumed

that the exact values of the underlying scenario

probabilities pi (i2 I) are given or can be estimated

(Ruszczyński and Shapiro 2003). This is a basis for the

stochastic programming approaches where the solution

concept depends on the maximisation of the expected

value (the mean outcome)

�ðyÞ ¼
X
i2I

yipi ð2Þ

or alternatively some risk function. In particular, the

second-order quantile risk measures are recently used

as such criteria. They have been introduced in different

ways by many authors (Embrechts, Klüppelberg, and

Mikosch 1997; Artzner, Delbaen, Eber, and Heath

1999; Ogryczak 1999; Rockafellar and Uryasev 2000).

They generally represent the (worst) tail mean defined

as the mean within the specified tolerance level

(quantile) of the worst outcomes.
For any probabilities pi and tolerance level � the

corresponding tail mean can be mathematically for-

malised as follows (Ogryczak 2002; Ogryczak and

Ruszczyński 2002). First, we introduce the right-

continuous cumulative distribution function (cdf):

Fyð�Þ ¼
X
i2I

pi�ið�Þ where �ið�Þ ¼
1 if yi � �,

0 otherwise,

�

ð3Þ

W. Ogryczak

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
hn

ik
a 

W
ar

sz
aw

sk
a]

 a
t 0

2:
08

 1
9 

Se
pt

em
be

r 
20

13
 



	 International Journal of Systems Science	 31

more importantly, it introduces some tools for model-
ling robust preferences. Actually, while more sophisti-
cated concepts of robust optimisation are considered
within the area of discrete programming models, only
the absolute robustness is usually applied to the
majority of decision and design problems.

In this article we focus on robust approaches where
the probabilities are unknown or imprecise. Having
assumed that the probabilities may vary within given
intervals, we optimise the worst-case expected outcome
with respect to the probabilities perturbation set. For
the case of unlimited perturbations the worst-case
expectation becomes the worst outcome (max-min
solution). In the general case, the worst-case expecta-
tion is a generalisation of the tail mean. Nevertheless, it
can be effectively reformulated as a linear program-
ming (LP) expansion of the original problem.

This article is organised as follows. In Section 2 we
recall the tail mean (conditional value-at-risk, CVaR)
solution concept providing a new proof of the LP
computational model which remains applicable for
more general problems related to robust solution
concepts. Section 3 contains the main results. We
show that the robust solution for only upper bounded
probabilities is a tail �-mean solution for an appropri-
ate � value. For proportional upper and lower limits
on probability perturbation the robust solution may be
expressed as optimisation of appropriately combined
mean and tail mean criteria. Finally, a general robust
solution for any arbitrary intervals of probabilities or
probabilities perturbations can be expressed with an
optimisation problem very similar to that for tail
�-mean and thereby easily implementable with auxil-
iary linear inequalities. In Section 4, we analyse robust
approaches to risk functions optimisation. It turns out
that the robust form of tail �-mean is also a tail mean
with tightened tolerance level � while the robust form
of the mean absolute deviation (MAD) model also can
be represented by a modified tail mean thus preserving
the LP computability.

2. The solution concepts

Consider a decision problem under uncertainty where
the decision is based on the maximisation of a scalar
(real valued) outcome. The simplest representation of
uncertainty depends on a finite set I (jIj ¼m) of
predefined scenarios. The final outcome is uncertain
and only its realisations under various scenarios i2 I
are known. Exactly, for each scenario i the corre-
sponding outcome realisation is given as a function of
the decision variables yi¼ fi(x) where x denotes a
vector of decision variables to be selected from the
feasible set Q�Rn of constraints under consideration.

Let us define the set of attainable outcomes

A¼ {y¼ ( y)i2I: yi¼ fi(x) 8i2 I, x2Q}. We are inter-

ested in larger outcomes under each scenario. Hence,

the problem of decision under uncertainty can be

considered a multiple criteria optimisation problem

(Haimes 1993; Ogryczak 2002)

maxfð y1, y2, . . . , ymÞ : y 2 Ag: ð1Þ

From the perspective of decision making under uncer-

tainty, model (1) only specifies that we are interested in

maximisation of outcomes under all scenarios i2 I. In

order to make the multiple objective model operational

for a decision support process, one needs to assume

some solution concept well-adjusted to the decision

maker’s preferences.
A conservative notion of robustness is focused on

the worst-case scenario results defined by maximisa-

tion of the objective function representing the minimum

(worst) outcome

MðyÞ ¼ min
i2I

yi

and it is not affected by the scenario importance

weights at all. It is widely accepted and max-min

optimisation is commonly used to seek robust

solutions.
Within decision problems under risk it is assumed

that the exact values of the underlying scenario

probabilities pi (i2 I) are given or can be estimated

(Ruszczyński and Shapiro 2003). This is a basis for the

stochastic programming approaches where the solution

concept depends on the maximisation of the expected

value (the mean outcome)

�ðyÞ ¼
X
i2I

yipi ð2Þ

or alternatively some risk function. In particular, the

second-order quantile risk measures are recently used

as such criteria. They have been introduced in different

ways by many authors (Embrechts, Klüppelberg, and

Mikosch 1997; Artzner, Delbaen, Eber, and Heath

1999; Ogryczak 1999; Rockafellar and Uryasev 2000).

They generally represent the (worst) tail mean defined

as the mean within the specified tolerance level

(quantile) of the worst outcomes.
For any probabilities pi and tolerance level � the

corresponding tail mean can be mathematically for-

malised as follows (Ogryczak 2002; Ogryczak and

Ruszczyński 2002). First, we introduce the right-

continuous cumulative distribution function (cdf):

Fyð�Þ ¼
X
i2I

pi�ið�Þ where �ið�Þ ¼
1 if yi � �,

0 otherwise,

�

ð3Þ

which for any real (outcome) value � provides the

measure of outcomes smaller or equal to �. Next, we

introduce the quantile function F ð�1Þ
y as the left-

continuous inverse of the cumulative distribution

function Fy:

F ð�1Þ
y ð�Þ ¼ inff� : Fyð�Þ � �g for 05� � 1:

By integrating F ð�1Þ
y one gets the (worst) tail mean

��ðyÞ ¼
1

�

Z �

0

F ð�1Þ
y ð�Þd� for 05� � 1, ð4Þ

the point value of the absolute Lorenz curve (Ogryczak

2000). The latter makes the tail means directly related

to the dual theory of choice under risk (Quiggin 1982;

Roell 1987; Yaari 1987).
Within the decision under risk literature the tail

mean quantity is usually called CVaR representing

quantile value F ð�1Þ
y ð�Þ (Pflug 2000). Indeed, if

FyðF ð�1Þ
y ð�ÞÞ ¼ �, then

��ðyÞ ¼ �
�
yjy � F ð�1Þ

y ð�Þ
�
¼ 1

�

X

i2I:yi�F ð�1Þ
y ð�Þ

piyi, ð5Þ

which may be interpreted as the expectation to fall

below the VaR value (given that the outcomes on the

level of F ð�1Þ
y ð�Þ or smaller are considered). The latter

has been introduced as expected shortfall (Embrechts

et al. 1997), tail conditional expectation (Artzner et al.

1999) and finally CVaR (Rockafellar and Uryasev

2000). Although valid for many continuous distribu-

tions, in general, relation (5) cannot serve as a

definition of tail �-mean because � such that

Fy(�)¼ � need not exist, see Ogryczak and

Ruszczyński (2002) for a wider discussion of relations

of tail mean to the classically understood CVaR

measures. Nevertheless the name CVaR, after

Rockafellar and Uryasev (2002), is now the most

commonly used designation for tail �-mean in decision

under risk, and especially related to financial applica-

tions. However, since we will consider the measure

with respect to distributions without a formally defined

probabilistic space we will refer to it as tail mean.
The tail mean maximisation is consistent with the

second-degree stochastic dominance (Ogryczak and

Ruszczyński 2002) and meets the requirements of

coherent risk measurement (Pflug 2000). Apart from

the area of decisions under risk tail means have been

already applied to location problems (Ogryczak and

Zawadzki 2002), to fair resource allocations in net-

works (Ogryczak and Śliwiński 2002; Ogryczak,

Wierzbicki, and Milewski 2008) as well as to planning

aperture modulation for radiation therapy treatment

(Romeijn, Ahuja, Dempsey, and Kumar 2005) and to

statistical learning problems (Takeda and Kanamori
2009).

Maximisation of tail �-mean

max
y2A

��ðyÞ ð6Þ

defines the tail �-mean solution concept. When param-
eter � approaches 0, the tail �-mean tends to the
smallest outcome (lim�!0þ ��ðyÞ ¼ MðyÞ). On the
other hand, for �¼ 1 the corresponding tail mean
becomes the standard mean (�1(y)¼�(y)). Tail mean
represents a generalisation of the importance of
weighted ordered weighted average (WOWA)
(Ogryczak and Śliwiński 2009).

Note that due to the finite number of scenarios tail
�-mean is well-defined by the following optimisation:

��ðyÞ ¼min
ui

�
1

�

X
i2I

yiui :
X
i2I

ui ¼ �, 0� ui � pi 8i 2 I

�
:

ð7Þ

Problem (7) is a linear program for a given outcome
vector y while it becomes nonlinear for y being a vector
of variables as in the case of tail �-mean optimisation
problem (6). It turns out that this difficulty can be
overcome by an equivalent LP formulation of tail
�-mean that allows one to implement tail �-mean
optimisation problem (6) with auxiliary linear inequal-
ities. Namely, the following theorem recalls the
Rockafellar and Uryasev (2000) LP model for contin-
uous distributions which remains valid for a general
distribution (Ogryczak and Ruszczyński 2002). We
introduce a new proof which can be further generalised
for a family of robust solution concepts we consider.

Theorem 2.1: For any outcome vector y with the
corresponding probabilities pi, and for any real value
05�� 1, the tail �-mean outcome is given by the
following linear program:

��ðyÞ ¼ max
t,di

�
t� 1

�

X
i2I

pidi : yi � t� di, di � 0 8i 2 I

�
:

ð8Þ

Proof: The theorem can be proved by taking advan-
tage of the LP dual to (7). Introducing dual variable t
corresponding to the equation

P
i2Iui¼� and variables

di corresponding to upper bounds on ui one gets the LP
dual (8). Due the duality theory, for any given vector y
the tail �-mean ��(y) can be found as the optimal value
of LP problem (8). œ

Frequently, scenario probabilities are unknown or
imprecise. Uncertainty is then represented by limits
(intervals) on possible values of probabilities varying
independently (Dupacova 1987; Jaffray 1989; Yager
and Kreinovich 1999; Guo and Tanaka 2010).
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We focus on such representation to define a robust
solution concept. Generally, we consider the case of
unknown probabilities belonging to the hypercube:

u 2 U ¼
�
ðu1, u2, . . . , umÞ :

X
i2I

ui ¼ 1, Dl
i � ui � Du

i 8i 2 I

�
, ð9Þ

where obviously
P

i2I D
l
i � 1 �

P
i2I D

u
i . Certainly,

such a case covers also the situation when there are
known probabilities �pi but imprecisely. They may be
affected by perturbations varying within given inter-
vals ½���i , �þi �. It is indeed a special case of U with
Dl
i ¼ �pi � ��i and Du

i ¼ �pi þ �þi for all i2 I. However, we
will distinguish the specific case of given probabilities �p
with possible perturbations bounded proportionally
Dl
i ¼ ð1� ��Þ �pi and Du

i ¼ ð1þ �þÞ �pi for all i2 I for
given �þ� 0 and 0� ��� 1. Thus, the probabilities
belonging to the hypercube:

u 2 Uð�pÞ ¼
�
ðu1, u2, . . . , umÞ :

X
i2I

ui ¼ 1,

�pið1� ��Þ � ui � �pið1þ �þÞ 8i 2 I

�
:

Focusing on the mean outcome as the primary
system efficiency measure to be optimised we get the
robust mean solution concept

max
y

min
u

�X
i2I

uiyi : u 2 U, y 2 A

�
: ð10Þ

Further, taking into account that all the constraints of
attainable set A remain unchanged while the probabil-
ities are perturbed, the robust mean solution can be
rewritten as

max
y2A

min
u2U

X
i2I

uiyi ¼ max
y2A

�
min
u2U

X
i2I

uiyi

�
¼ max

y2A
�UðyÞ,

ð11Þ
where

�UðyÞ ¼min
u2U

X
i2I

uiyi

¼min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, Dl
i � ui �Du

i 8i2 I

�

ð12Þ
or respectively

�UðyÞ ¼ min
u2UðpÞ

X
i2I

uiyi

¼ min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1,

�pi � ��i � ui � �pi þ �þi 8i
�

ð13Þ

represent the worst-case mean outcomes for a given

outcome vector y2A with respect to the probabilities

set U. Similar robust solution concepts can be built for

various risk functions used instead of the mean.

3. Tail mean and robust optimisation

Let us consider first the robust mean solution (11) in

the case of unlimited probability perturbations (Dl
i ¼ 0

and Du
i ¼ 1). One may easily notice that the worst-case

mean outcome (12) becomes the worst outcome

�UðyÞ ¼ min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, 0 � ui � 1 8i 2 I

�

¼ min
i2I

yi,

thus, leading to the conservative robust solution

concept represented by the max-min approach.
For the case of probabilities lying in a given box

with relaxed lower limits (Dl
i ¼ 0 8i 2 I) the robust

solution (11) may also be represented as the tail

�-mean with respect to appropriately rescaled proba-

bilities pi ¼ Du
i =
P

i2I D
u
i and tolerance level

� ¼ 1=
P

i2I D
u
i .

Theorem 3.1: The robust solution (12) with relaxed

lower bounds may be represented as the tail �-mean

with respect to probabilities pi ¼ Du
i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i , and it can be found by simple expansion

of the optimisation problem with auxiliary linear

constraints and variables to the following:

max
y, d, t

�
t�

X
i2I

Du
i di : y 2 A; yi � t� di, di � 0 8i 2 I

�
:

ð14Þ

Proof: Note that by simple rescaling of variables

with su ¼
P

i2I D
u
i one gets

�UðyÞ ¼min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, 0� ui �Du
i 8i2 I

�

¼ sumin
u0
i

�X
i2I

yiu
0
i :
X
i2I

u0i ¼
1

su
,0� u0i �

Du
i

su
8i2 I

�
:

Hence, the robust solution may be represented as the

tail (1/su)-mean with respect to probabilities

pi ¼ Du
i =s

u. Following Theorem 2.1, it can be searched

by solving (14). œ

Note that with Du
i ¼ 1 for i2 I we represent the

robust solution (12) as the tail �-mean with pi¼ 1/m

and �¼ 1/m, thus representing the max-min model.

In the case of Du
i ¼ k=m for i2 I we get pi¼ 1/m

and �¼ 1/k.
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We focus on such representation to define a robust
solution concept. Generally, we consider the case of
unknown probabilities belonging to the hypercube:

u 2 U ¼
�
ðu1, u2, . . . , umÞ :

X
i2I

ui ¼ 1, Dl
i � ui � Du

i 8i 2 I

�
, ð9Þ

where obviously
P

i2I D
l
i � 1 �

P
i2I D

u
i . Certainly,

such a case covers also the situation when there are
known probabilities �pi but imprecisely. They may be
affected by perturbations varying within given inter-
vals ½���i , �þi �. It is indeed a special case of U with
Dl
i ¼ �pi � ��i and Du

i ¼ �pi þ �þi for all i2 I. However, we
will distinguish the specific case of given probabilities �p
with possible perturbations bounded proportionally
Dl
i ¼ ð1� ��Þ �pi and Du

i ¼ ð1þ �þÞ �pi for all i2 I for
given �þ� 0 and 0� ��� 1. Thus, the probabilities
belonging to the hypercube:

u 2 Uð�pÞ ¼
�
ðu1, u2, . . . , umÞ :

X
i2I

ui ¼ 1,

�pið1� ��Þ � ui � �pið1þ �þÞ 8i 2 I

�
:

Focusing on the mean outcome as the primary
system efficiency measure to be optimised we get the
robust mean solution concept

max
y

min
u

�X
i2I

uiyi : u 2 U, y 2 A

�
: ð10Þ

Further, taking into account that all the constraints of
attainable set A remain unchanged while the probabil-
ities are perturbed, the robust mean solution can be
rewritten as

max
y2A

min
u2U

X
i2I

uiyi ¼ max
y2A

�
min
u2U

X
i2I

uiyi

�
¼ max

y2A
�UðyÞ,

ð11Þ
where

�UðyÞ ¼min
u2U

X
i2I

uiyi

¼min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, Dl
i � ui �Du

i 8i2 I

�

ð12Þ
or respectively

�UðyÞ ¼ min
u2UðpÞ

X
i2I

uiyi

¼ min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1,

�pi � ��i � ui � �pi þ �þi 8i
�

ð13Þ

represent the worst-case mean outcomes for a given

outcome vector y2A with respect to the probabilities

set U. Similar robust solution concepts can be built for

various risk functions used instead of the mean.

3. Tail mean and robust optimisation

Let us consider first the robust mean solution (11) in

the case of unlimited probability perturbations (Dl
i ¼ 0

and Du
i ¼ 1). One may easily notice that the worst-case

mean outcome (12) becomes the worst outcome

�UðyÞ ¼ min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, 0 � ui � 1 8i 2 I

�

¼ min
i2I

yi,

thus, leading to the conservative robust solution

concept represented by the max-min approach.
For the case of probabilities lying in a given box

with relaxed lower limits (Dl
i ¼ 0 8i 2 I) the robust

solution (11) may also be represented as the tail

�-mean with respect to appropriately rescaled proba-

bilities pi ¼ Du
i =
P

i2I D
u
i and tolerance level

� ¼ 1=
P

i2I D
u
i .

Theorem 3.1: The robust solution (12) with relaxed

lower bounds may be represented as the tail �-mean

with respect to probabilities pi ¼ Du
i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i , and it can be found by simple expansion

of the optimisation problem with auxiliary linear

constraints and variables to the following:

max
y, d, t

�
t�

X
i2I

Du
i di : y 2 A; yi � t� di, di � 0 8i 2 I

�
:

ð14Þ

Proof: Note that by simple rescaling of variables

with su ¼
P

i2I D
u
i one gets

�UðyÞ ¼min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, 0� ui �Du
i 8i2 I

�

¼ sumin
u0
i

�X
i2I

yiu
0
i :
X
i2I

u0i ¼
1

su
,0� u0i �

Du
i

su
8i2 I

�
:

Hence, the robust solution may be represented as the

tail (1/su)-mean with respect to probabilities

pi ¼ Du
i =s

u. Following Theorem 2.1, it can be searched

by solving (14). œ

Note that with Du
i ¼ 1 for i2 I we represent the

robust solution (12) as the tail �-mean with pi¼ 1/m

and �¼ 1/m, thus representing the max-min model.

In the case of Du
i ¼ k=m for i2 I we get pi¼ 1/m

and �¼ 1/k.

For the specific case of given probabilities �p with

possible perturbations bounded proportionally it is

possible to express the corresponding robust solution

(11) as tail mean based on the original probabilities.

Indeed, in the case of Du
i ¼ ð1þ �þÞ �pi we get

pi ¼ Du
i =
P

i2I D
u
i ¼ �pi. Hence, the following corollary

is valid.

Corollary 3.2: The tail �-mean represents a concept of

robust mean solution (13) for proportionally

upper bounded perturbations Du
i ¼ ð1þ �þÞ �pi with

�þ¼ (1��)/� and relaxed the lower bounds Dl
i ¼ 0 for

all i2 I, and it can be found by simple expansion of the

optimisation problem with auxiliary linear constraints

and variables to the following:

max
y,d, t

�
t� ð1þ �þÞ

X
i2I

�pidi : y 2 A;yi � t� di, di � 0 8i
�
:

ð15Þ

Proof: For proportionally bounded upper perturba-

tions Du
i ¼ ð1þ �þÞ �pi and relaxed lower bounds Dl

i ¼ 0

the corresponding worst-case mean outcome (13) can

be expressed as follows:

�UðyÞ ¼min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, 0� ui � �pið1þ �þÞ 8i
�

¼ ð1þ �þÞmin
u0
i

�X
i2I

yiu
0
i :
X
i2I

u0i ¼
1

1þ �þ ,

0� u0i � �pi 8i
�

¼ ð1þ �þÞ� 1
1þ�þ

ðyÞ:

Due to �þ¼ (1��)/�, one gets (1þ �þ)¼ 1/� and

�U(y)¼��(y)/� where, following Theorem 2.1, ��(y)
may be optimised by the LP model (15). œ

In the general case of possible lower limits, the

robust mean solution concept cannot be directly

expressed as an appropriate tail �-mean. It turns out,

however, that it can be expressed by the optimisation

with combined tail �-mean and mean criteria.

Theorem 3.3: The robust mean solution concept (11) is

equivalent to the convex combination of the mean and

the tail �-mean criteria maximisation

max
y2A

�UðyÞ ¼ max
y2A

½��ðyÞ þ ð1� �Þ��ðyÞ� ð16Þ

with

� ¼
X
i2I

Dl
i and � ¼

�
1�

X
i2I

Dl
i

��X
i2I

ðDu
i � Dl

i Þ,

where the tail mean ��(y) is defined according to

probabilities p0i while the mean �(y) is considered with

respect to probabilities p00i :

p0i ¼ ðDu
i � Dl

iÞ
�X

i2I
ðDu

i � Dl
i Þ and

p00i ¼ Dl
i

�X
i2I

Dl
i for i 2 I:

Proof: When introducing scaling factors su ¼
P

i2I D
u
i

and sl ¼
P

i2I D
l
i one gets �¼ sl and �¼ (1� sl)/(su� sl).

The worst-case mean outcome (12) can be expressed as

follows:

�UðyÞ ¼ min
ui

�X
i2I

yiui :
X
i2I

ui ¼ 1, Dl
i � ui � Du

i 8i 2 I

�

¼ min
u0
i

�X
i2I

yiu
0
i :
X
i2I

u0i ¼ 1� sl,

0 � u0i � Du
i �Dl

i 8i 2 I

�
þ
X
i2I

yiD
l
i

¼ ðsu � sl Þmin
u00
i

�X
i2I

yiu
00
i :
X
i2I

u00i ¼
1� sl

su � sl
,

0 � u00i �
Du
i � Dl

i

su � sl
8i 2 I

�
þ sl

X
i2I

yi
Dl
i

sl

¼ ð1� sl Þmin
u00
i

�
1

�

X
i2I

yiu
00
i :
X
i2I

u00i ¼ �,

0 � u00i � p0i 8i 2 I

�
þ sl

X
i2I

yip
00
i

¼ ð1� sl Þ��ðyÞ þ sl�ðyÞ ¼ ð1� �Þ��ðyÞ þ ��ðyÞ,

which completes the proof. œ

Corollary 3.4: The robust mean solution concept (11)

for the specific case of given probabilities �p with possible

perturbations bounded proportionally Dl
i ¼ ð1� ��Þ �pi

and Du
i ¼ ð1þ �þÞ �pi for all i2 I is equivalent to the

convex combination of the mean and tail �-mean criteria

maximisation

max
y2A

�UðyÞ ¼ max
y2A

½����ðyÞ þ ð1� ��Þ�ðyÞ� ð17Þ

with �¼ ��/(�þþ ��) where both the mean �(y) and the

tail mean ��(y) are calculated with respect to the

original probabilities �pi.

Proof: Following Theorem 3.3, for proportionally

bounded perturbations Dl
i ¼ ð1� ��Þ �pi and Du

i ¼
ð1þ �þÞ �pi Equation (16) is fulfilled with

�¼ 1�
P

i2ID
l
iP

i2IðD
u
i �Dl

i Þ
¼ ��

�þþ �� and �¼
X
i2I

Dl
i ¼ 1� ��:
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Further, the tail mean is defined according to

probabilities

p0i ¼
Du
i � Dl

iP
i2IðD

u
i � Dl

i Þ
¼ ð�þ þ ��Þ �pi
�þ
P

i2I �pi þ ��
P

i2I �pi
¼ �pi

as well as the mean is also considered with respect to

probabilities

p00i ¼
Dl
iP

i2I D
l
i

¼ ð1� �li Þ �pi
ð1� �li Þ

P
i2I �pi

¼ �pi,

which completes the proof. œ

Following Theorems 2.1 and 3.3, the robust mean

solution concept (11) can be expressed as an LP

expansion of the original mean problem.

Corollary 3.5: The robust mean solution concept (11)

can be found by simple expansion of the mean problem

with auxiliary linear constraints and variables to the

following:

max
y, d, t

�X
i2I

Dl
iyi þ

�
1�

X
i2I

Dl
i

�
t�

X
i2I

ðDu
i � Dl

i Þdi :

y 2 A; yi � t� di, di � 0 8i
�
: ð18Þ

Proof: Following formula (16) of Theorem 3.3

max
y2A

�UðyÞ ¼ max
y2A

�X
i2I

Dl
iyi þ

�
1�

X
i2I

Dl
i

�
��ðyÞ

�
,

where the tail mean ��(y) is defined with

� ¼ ð1�
P

i2I D
l
iÞ=
P

i2IðD
u
i � Dl

i Þ according to proba-

bilities pi ¼ ðDu
i � Dl

iÞ=
P

i2IðD
u
i � Dl

i Þ. Hence, applying

Theorem 2.1 to express ��(y) as a linear program (8)

one gets formula (18). œ

For the specific case of given probabilities �p with

possible perturbations bounded proportionally for-

mula (18) simplifies accordingly leading to the follow-

ing expression of the robust mean solution concept (13)

as an LP expansion of the original mean problem.

Corollary 3.6: For the specific case of given probabil-

ities �p with possible perturbations bounded proportion-

ally Dl
i ¼ ð1� ��Þ �pi and Du

i ¼ ð1þ �þÞ �pi for all i2 I, the

robust mean solution concept (11) can be found by simple

expansion of the mean problem with auxiliary linear

constraints and variables to the following:

max
y, d, t

�
ð1� ��Þ

X
i2I

�piyi þ ��t� ð�þ þ ��Þ
X
i2I

�pidi :

y 2 A; yi � t� di, di � 0 8i
�
: ð19Þ

Alternatively to formula (17) of Corollary 3.4, one
may build directly an LP model taking advantage of
the fact that the structure of optimisation problem (12)
is very similar to that of the tail �-mean (7). Problem
(12) is an LP for a given outcome vector y while it
becomes nonlinear for y being a vector of variables.
This difficulty can be overcome similar to Theorem 2.1
for the tail �-mean by switching to the corresponding
dual LP problem.

Theorem 3.7: For any arbitrary intervals ½Dl
i,D

u
i �

( for all i2 I) of probabilities, the corresponding robust
mean solution (11) can be given by the following
optimisation problem:

max
y, t, du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i :

y 2 A; yi ¼ t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
: ð20Þ

Proof: The theorem can be proved by taking advan-
tages of the LP dual to (12). Introducing dual variable t
corresponding to the equation

P
i2Iui¼ 1 and variables

dui and dli corresponding to upper and lower bounds on
ui, respectively, one gets the following LP dual to
problem (12):

�UðyÞ ¼ max
t,du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i :

yi ¼ t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
, ð21Þ

which completes the proof. œ

Note that formulation (20) of Theorem 3.7 is
equivalent to model (17) of Corollary 3.4. Indeed,
eliminating from formulation (20) variables dli with
substitution dli ¼ yi � tþ dui and renaming simply dui
with di one gets model (17) of Corollary 3.4. On the
other hand, model (20) of Theorem 3.7 can be further
relaxed to the form:

max
y, t, du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i : y 2 A;

yi � t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
: ð22Þ

It follows from the fact, that while building the LP dual
to (12) with dual variable t corresponding to the
equation

P
i2Iui¼ 1 and variables dui and dli corre-

sponding to upper and lower bounds on ui, respec-
tively, one may take into account that variables ui in
(12) are actually non-negative, due to non-negative
lower bounds Dl

i. This leads us to inequality dual
constraint yi � t� dui þ dli replacing the corresponding
equation in (21).
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Further, the tail mean is defined according to

probabilities

p0i ¼
Du
i � Dl

iP
i2IðD

u
i � Dl

i Þ
¼ ð�þ þ ��Þ �pi
�þ
P

i2I �pi þ ��
P

i2I �pi
¼ �pi

as well as the mean is also considered with respect to

probabilities

p00i ¼
Dl
iP

i2I D
l
i

¼ ð1� �li Þ �pi
ð1� �li Þ

P
i2I �pi

¼ �pi,

which completes the proof. œ

Following Theorems 2.1 and 3.3, the robust mean

solution concept (11) can be expressed as an LP

expansion of the original mean problem.

Corollary 3.5: The robust mean solution concept (11)

can be found by simple expansion of the mean problem

with auxiliary linear constraints and variables to the

following:

max
y, d, t

�X
i2I

Dl
iyi þ

�
1�

X
i2I

Dl
i

�
t�

X
i2I

ðDu
i � Dl

i Þdi :

y 2 A; yi � t� di, di � 0 8i
�
: ð18Þ

Proof: Following formula (16) of Theorem 3.3

max
y2A

�UðyÞ ¼ max
y2A

�X
i2I

Dl
iyi þ

�
1�

X
i2I

Dl
i

�
��ðyÞ

�
,

where the tail mean ��(y) is defined with

� ¼ ð1�
P

i2I D
l
iÞ=
P

i2IðD
u
i � Dl

i Þ according to proba-

bilities pi ¼ ðDu
i � Dl

iÞ=
P

i2IðD
u
i � Dl

i Þ. Hence, applying

Theorem 2.1 to express ��(y) as a linear program (8)

one gets formula (18). œ

For the specific case of given probabilities �p with

possible perturbations bounded proportionally for-

mula (18) simplifies accordingly leading to the follow-

ing expression of the robust mean solution concept (13)

as an LP expansion of the original mean problem.

Corollary 3.6: For the specific case of given probabil-

ities �p with possible perturbations bounded proportion-

ally Dl
i ¼ ð1� ��Þ �pi and Du

i ¼ ð1þ �þÞ �pi for all i2 I, the

robust mean solution concept (11) can be found by simple

expansion of the mean problem with auxiliary linear

constraints and variables to the following:

max
y, d, t

�
ð1� ��Þ

X
i2I

�piyi þ ��t� ð�þ þ ��Þ
X
i2I

�pidi :

y 2 A; yi � t� di, di � 0 8i
�
: ð19Þ

Alternatively to formula (17) of Corollary 3.4, one
may build directly an LP model taking advantage of
the fact that the structure of optimisation problem (12)
is very similar to that of the tail �-mean (7). Problem
(12) is an LP for a given outcome vector y while it
becomes nonlinear for y being a vector of variables.
This difficulty can be overcome similar to Theorem 2.1
for the tail �-mean by switching to the corresponding
dual LP problem.

Theorem 3.7: For any arbitrary intervals ½Dl
i,D

u
i �

( for all i2 I) of probabilities, the corresponding robust
mean solution (11) can be given by the following
optimisation problem:

max
y, t, du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i :

y 2 A; yi ¼ t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
: ð20Þ

Proof: The theorem can be proved by taking advan-
tages of the LP dual to (12). Introducing dual variable t
corresponding to the equation

P
i2Iui¼ 1 and variables

dui and dli corresponding to upper and lower bounds on
ui, respectively, one gets the following LP dual to
problem (12):

�UðyÞ ¼ max
t,du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i :

yi ¼ t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
, ð21Þ

which completes the proof. œ

Note that formulation (20) of Theorem 3.7 is
equivalent to model (17) of Corollary 3.4. Indeed,
eliminating from formulation (20) variables dli with
substitution dli ¼ yi � tþ dui and renaming simply dui
with di one gets model (17) of Corollary 3.4. On the
other hand, model (20) of Theorem 3.7 can be further
relaxed to the form:

max
y, t, du

i
, dl

i

�
t�

X
i2I

Du
i d

u
i þ

X
i2I

Dl
id

l
i : y 2 A;

yi � t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
: ð22Þ

It follows from the fact, that while building the LP dual
to (12) with dual variable t corresponding to the
equation

P
i2Iui¼ 1 and variables dui and dli corre-

sponding to upper and lower bounds on ui, respec-
tively, one may take into account that variables ui in
(12) are actually non-negative, due to non-negative
lower bounds Dl

i. This leads us to inequality dual
constraint yi � t� dui þ dli replacing the corresponding
equation in (21).

Corollary 3.8: For the specific case of given probabil-

ities �p with possible perturbations bounded proportion-

ally Dl
i ¼ ð1� ��Þ �pi and Du

i ¼ ð1þ �þÞ �pi for all i2 I, the

robust mean solution concept (11) can be found by simple

expansion of the mean problem with auxiliary linear

constraints and variables to the following:

max
y, t, du

i
, dl

i

�
t� ð1þ �þÞ

X
i2I

�pid
u
i þ ð1� ��Þ

X
i2I

�pid
l
i : y 2 A;

yi � t� dui þ dli, dui , d
l
i � 0 8i 2 I

�
:

4. Robust optimisation of risk functions

Robust solution concepts can be built for various risk

functions instead of the mean. While considering the

tail mean as the basic optimisation criterion (CVaR

optimisation), in order to allow for imprecise proba-

bilities we have to deal with the robust tail mean

solution concepts:

max
y2A

�U
� ðyÞ, ð23Þ

where

�U
� ðyÞ ¼ min

u2U
min
u0
i

�
1

�

X
i2I

yiu
0
i :
X
i2I

u0i ¼ �,

0 � u0i � ui 8i 2 I

�
: ð24Þ

It turns out that this robust solution concept for any

arbitrary perturbation set U (9) may be expressed as

the standard tail mean with appropriately defined

tolerance level and probabilities.

Theorem 4.1: The robust tail �-mean solution (24) with

arbitrary U set (9) may be represented as the tail

�0-mean with respect to probabilities p0i ¼ Du
i =
P

i2I D
u
i

and �0 ¼ �=
P

i2I D
u
i .

Proof: Indeed, one may easily notice that

�U
� ðyÞ ¼min

u2U
min
u0
i

�
1

�

X
i2I

yiu
0
i :
X
i2I

u0i ¼ �,

0� u0i � ui 8i 2 I

�

¼min
u0
i

�
1

�

X
i2I

yiu
0
i :
X
i2I

u0i ¼ �, 0� u0i � Du
i 8i 2 I

�

¼
P

i2ID
u
i

�
min
u00
i

�X
i2I

yiu
00
i :
X
i2I

u00i ¼
�P
i2ID

u
i

,

0� u00i �
Du
iP

i2ID
u
i

8i 2 I

�
: ð25Þ

Hence, the robust tail �-mean solution (24) may be
represented as the standard tail mean with respect to
probabilities p0i ¼ Du

i =
P

i2I D
u
i and the tolerance level

�=
P

i2I D
u
i . œ

Corollary 4.2: The robust tail �-mean solution (24)
with arbitrary U set (9) can be found by simple
expansion of the optimisation problem with auxiliary
linear constraints and variables to the following:

max
y,d, t

�
t� 1

�

X
i2I

Du
i di : y 2 A; yi � t� di, di � 0 8i 2 I

�
:

ð26Þ
Corollary 4.3: The robust tail �-mean solution concept
(24) for the specific case of given probabilities �p with
possible perturbations upper bounded proportionally
Du
i ¼ ð1þ �þÞ �pi and arbitrary lower bounded (any

Dl
i � �pi) for all i2 I is equivalent to the tail �0-mean

with respect to probabilities �p and �0 ¼ �/(1þ �þ), and it
can be found by simple expansion of the optimisation
problem with auxiliary linear constraints and variables
to the following:

max
y, d, t

�
t� 1þ �þ

�

X
i2I

�pidi : y 2 A;

yi � t� di, di � 0 8i 2 I

�
: ð27Þ

Let us consider the MAD related risk function
based on the downside mean semideviation (Mansini,
Ogryczak, and Speranza 2003)

�dðyÞ ¼ �ðyÞ �
X
i2I

maxf�ðyÞ � yipi, 0g

¼
X
i2I

minf�ðyÞ, yigpi, ð28Þ

which is consistent with the second degree stochastic
dominance (Ogryczak and Ruszczyński 2001) and
thereby coherent (Artzner et al. 1999). The corre-
sponding robust MAD solution can be expressed as

max
y2A

�U
d ðyÞ, ð29Þ

where �U
d ðyÞ is the robust downside mean

�U
d ðyÞ ¼ min

u2U

X
i2I

min

�X
i2I

uiyi, yi

�
ui: ð30Þ

Theorem 4.4: The robust downside mean (30) with
arbitrary U set (9) may be represented as the standard
robust solution of the worst mean truncated distribution
of outcomes

�U
d ðyÞ ¼ �UðyUÞ where

yU ¼ ðminfy1,�UðyÞg, . . . , minfym,�UðyÞgÞ:
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Proof: Let �u¼ argminu2U
P

i2I uiyi, i.e.
P

i2I �uiyi¼
�U(y). Note that �u minimises also

P
i2I ui min{�, yi}

for any real �. Moreover, �0 5�00 implies
P

i2I ui
min{�0, yi}�

P
i2I ui min{�00, yi} for any u2U. Hence,

X
i2I

min

�X
i2I

�uiyi,yi

�
�ui¼min

u002U

X
i2I

min

�X
i2I

�uiyi,yi

�
u00i

¼min
u02U

min
u002U

X
i2I

min

�X
i2I

u0iyi,yi

�
u00i

¼min
u2U

X
i2I

min

�X
i2I

uiyi,yi

�
ui

¼�U
d ðyÞ:

Thus, �u is the robust downside mean minimiser.

Therefore,

�U
d ðyÞ ¼

X
i2I

min

�X
i2I

�uiyi, yi

�
�ui

¼ min
u2U

X
i2I

min

�X
i2I

�uiyi, yi

�
ui

¼ min
u2U

X
i2I

minf�UðyÞ, yigui ¼ �UðyUÞ,

which completes the proof. œ

Following Theorem 4.4, the robust downside

mean (30) is a downside extension of the standard

robust solution concept, similar to extended downside

risk measures (Krzemienowski and Ogryczak 2005).

Therefore, in the case of relaxed lower bounds the

robust MAD solution (29) may be represented as tail

�-mean of the tail �-mean truncated distribution of

outcomes and thereby it is LP implementable.

Corollary 4.5: The robust MAD solution (29) with

relaxed lower bounds may be represented as the tail

�-mean of the tail �-mean truncated distribution of

outcomes

�U
d ðyÞ ¼ ��ððminfy1,��ðyÞg, . . . , minfym,��ðyÞgÞÞ

ð31Þ
with respect to probabilities pi ¼ Du

i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i , and it can be found by simple expansion

of the optimisation problem with auxiliary linear

constraints and variables to the following:

max
y2A

�U
d ðyÞ ¼ max

y, d, d0, t, t0

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

t0 �
X
j2I

Du
j d

0
j � t� di 8i 2 I

yi � t0 � d0i, d0i � 0 8i 2 I

�
: ð32Þ

Proof: Following Theorem 3.1 �U(y) for relaxed
lower bounds may be represented as tail �-mean
with respect to probabilities pi ¼ Du

i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i . Thus, Equation (31) is valid.

Moreover, following Theorem 3.1

max
y2A

��ðyÞ ¼ max
y, d, t

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

�
:

Therefore,

max
y2A

�U
d ðyÞ ¼max

y2A
��ðyUÞ

¼max
yU,d,t

�
t�
X
i2I

Du
i di : y

U
i � t�di, di � 0 8i2 I

�
,

where

yUi ¼ min

�
yi, max

d0, t0

�
t0 �

X
j2I

Du
j d

0
j : yj � t0 � d0j,

d0j � 0 8j 2 I

�
for y 2 A:

Hence,

max
y2A

�U
d ðyÞ ¼ max

y, d, t

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

max
d0, t0

�
t0 �

X
j2I

Du
j d

0
j : yj � t0 � d0j,

d0j � 0 8j 2 I

�
� t� di 8i 2 I

�
,

thus leading us to LP formulation (32), which com-
pletes the proof. œ

Actually, as for arbitrary upper and lower limits on
the probabilities the robust mean solution may be
represented by optimisation of combined mean and tail
mean criteria (Theorem 3.3), following Theorem 4.4
the robust MAD solution (29) may also be sought by
the LP optimisation.

Corollary 4.6: The robust downside mean (30) with
arbitrary U set (9) may be found by the following
expansion of the optimisation problem with auxiliary
linear constraints and variables:

max
y, yU, d, d0, t, t0

�
ð1� sl Þ

�
t� 1

�

X
i2I

p0idi

�
þ sl

X
i2I

p00i y
U
i :

y 2 A; yUi � t� di, di � 0 8i 2 I
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Proof: Let �u¼ argminu2U
P

i2I uiyi, i.e.
P

i2I �uiyi¼
�U(y). Note that �u minimises also

P
i2I ui min{�, yi}

for any real �. Moreover, �0 5�00 implies
P

i2I ui
min{�0, yi}�

P
i2I ui min{�00, yi} for any u2U. Hence,

X
i2I

min

�X
i2I

�uiyi,yi

�
�ui¼min

u002U

X
i2I

min

�X
i2I

�uiyi,yi

�
u00i

¼min
u02U

min
u002U

X
i2I

min

�X
i2I

u0iyi,yi

�
u00i

¼min
u2U

X
i2I

min

�X
i2I

uiyi,yi

�
ui

¼�U
d ðyÞ:

Thus, �u is the robust downside mean minimiser.

Therefore,

�U
d ðyÞ ¼

X
i2I

min

�X
i2I

�uiyi, yi

�
�ui

¼ min
u2U

X
i2I

min

�X
i2I

�uiyi, yi

�
ui

¼ min
u2U

X
i2I

minf�UðyÞ, yigui ¼ �UðyUÞ,

which completes the proof. œ

Following Theorem 4.4, the robust downside

mean (30) is a downside extension of the standard

robust solution concept, similar to extended downside

risk measures (Krzemienowski and Ogryczak 2005).

Therefore, in the case of relaxed lower bounds the

robust MAD solution (29) may be represented as tail

�-mean of the tail �-mean truncated distribution of

outcomes and thereby it is LP implementable.

Corollary 4.5: The robust MAD solution (29) with

relaxed lower bounds may be represented as the tail

�-mean of the tail �-mean truncated distribution of

outcomes

�U
d ðyÞ ¼ ��ððminfy1,��ðyÞg, . . . , minfym,��ðyÞgÞÞ

ð31Þ
with respect to probabilities pi ¼ Du

i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i , and it can be found by simple expansion

of the optimisation problem with auxiliary linear

constraints and variables to the following:

max
y2A

�U
d ðyÞ ¼ max

y, d, d0, t, t0

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

t0 �
X
j2I

Du
j d

0
j � t� di 8i 2 I

yi � t0 � d0i, d0i � 0 8i 2 I

�
: ð32Þ

Proof: Following Theorem 3.1 �U(y) for relaxed
lower bounds may be represented as tail �-mean
with respect to probabilities pi ¼ Du

i =
P

i2I D
u
i and

� ¼ 1=
P

i2I D
u
i . Thus, Equation (31) is valid.

Moreover, following Theorem 3.1

max
y2A

��ðyÞ ¼ max
y, d, t

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

�
:

Therefore,

max
y2A

�U
d ðyÞ ¼max

y2A
��ðyUÞ

¼max
yU,d,t

�
t�
X
i2I

Du
i di : y

U
i � t�di, di � 0 8i2 I

�
,

where

yUi ¼ min

�
yi, max

d0, t0

�
t0 �

X
j2I

Du
j d

0
j : yj � t0 � d0j,

d0j � 0 8j 2 I

�
for y 2 A:

Hence,

max
y2A

�U
d ðyÞ ¼ max

y, d, t

�
t�

X
i2I

Du
i di : y 2 A;

yi � t� di, di � 0 8i 2 I

max
d0, t0

�
t0 �

X
j2I

Du
j d

0
j : yj � t0 � d0j,

d0j � 0 8j 2 I

�
� t� di 8i 2 I

�
,

thus leading us to LP formulation (32), which com-
pletes the proof. œ

Actually, as for arbitrary upper and lower limits on
the probabilities the robust mean solution may be
represented by optimisation of combined mean and tail
mean criteria (Theorem 3.3), following Theorem 4.4
the robust MAD solution (29) may also be sought by
the LP optimisation.

Corollary 4.6: The robust downside mean (30) with
arbitrary U set (9) may be found by the following
expansion of the optimisation problem with auxiliary
linear constraints and variables:

max
y, yU, d, d0, t, t0

�
ð1� sl Þ

�
t� 1

�

X
i2I

p0idi

�
þ sl

X
i2I

p00i y
U
i :

y 2 A; yUi � t� di, di � 0 8i 2 I

yUi � yi, yUi � ð1� sl Þ
�
t0 � 1

�

X
j2I

p0jd
0
j

�

þ sl
X
j2I

p00j yj 8i 2 I

yi � t0 � d0i, d0i � 0 8i 2 I

�
,

where su ¼
P

i2I D
u
i , s

l ¼
P

i2I D
l
i, while �, p

0
i and p00i are

defined according to Theorem 3.3, i.e. �¼ (1� sl)/
(su� sl), p0i ¼ ðDu

i � Dl
iÞ=ðsu � sl Þ and p00i ¼ Dl

i=s
l for i2 I.

5. Conclusions

We have analysed the robust mean solution concept
where uncertainty is represented by limits (intervals) on
possible values of scenario probabilities varying inde-
pendently. Such an approach, in general, leads to
complex optimisation models with variable coefficients
(probabilities). We have shown, however, that the
robust mean solution concepts can be expressed with
auxiliary linear inequalities, similar to the tail �-mean
solution concept based on maximisation of mean in �
portion of the worst outcomes. Actually, the robust
mean solution for upper limits on probabilities turns
out to be tail �-mean for an appropriate � value. In the
case of specified both upper and lower limits the robust
mean solution may be sought by optimisation of
appropriately combined mean and tail mean criteria.
Thus, a general robust mean solution for any arbitrary
intervals probabilities can be expressed with an opti-
misation problem very similar to that for tail �-mean
and thereby easily implementable with auxiliary linear
inequalities.

Our analysis has shown that the robust mean
solution concept is closely related to tail mean which is
the basic equitable solution concept (Kostreva,
Ogryczak, and Wierzbicki 2004). It corresponds to
recent approaches to robust optimisation based on the
use of equitable optimisation (Perny et al. 2006;
Miettinen et al. 2008; Takeda and Kanamori 2009).
Further study on equitable solution concepts and their
relations to robust solutions seems to be a promising
research direction. In particular, more complex robust
preferences can be modelled by combining with various
weights the corresponding tail means for larger and
smaller perturbations, thus leading to combinations of
multiple CVaR measures (Mansini, Ogryczak, and
Speranza 2007) or to the generalised importance of
WOWA (Ogryczak and Śliwiński 2009).
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Ogryczak, W., and Ruszczyński, A. (2002), ‘Dual Stochastic
Dominance and Quantile Risk Measures’, International

Transactions on Operational Research, 9, 661–680.
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