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ABSTRACT 

This paper deals with the roundingerror analysis of the simplex method for 
solving linear-programming problems. We prove that in general any simplex-type 
algorithm is not well behaved, which means that the computed solution cannot be 
considered as an exact solution to a slightly perturbed problem. We also point out that 
simplex algorithms with well-behaved updating techniques (such as the Bartels-Golub 
algorithm) are numerically stable whenever proper tolerances are introduced into the 
optirnality criteria. This means that the error in the computed solution is of a similar 
order to the sensitivity of the optimal solution to slight data perturbations. 

1. INTRODUCTION 

This paper deals with the rounding-error analysis of the simplex method 
for solution of linear-programming (Lp) problems. We consider computations 
performed in floating-point (fl) arithmetic (see [ZO]). This arithmetic is 
characterized by the relative computer precision E. In the case of binary fl 
arithmetic with t-digit mantissa, E is equal to 2-‘. 

We summarize the results of this paper. The concepts of numerical 
stability and good behavior in linear programming are made precise in 
Section 2. In Section 3 we give a necessary condition for good behavior of 
linear-programming algorithms. 

Section 4 contains the principal result of the paper. In this section we 
show that each simplex-type algorithm is not well behaved on a sufficiently 
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general class of LP problems (i.e., whenever degeneracy can occur). This 
result is rather unexpected since the Bartels-Golub simplex algorithm [2] and 
some others [5-7,9] preserve good behavior of basic solutions throughout all 
iterations. We show, however, that this property is not sufficient for good 
behavior of the whole simplex algorithm. 

In Section 5 we state some sufficient conditions for numerical stability of 
simplex-type algorithms. We show also that the Bartels-Golub simplex al- 
gorithm is numerically stable provided that some reasonable tolerances are 
used in fl implementation of the algorithm and cycling does not occur. 

2. PRELIMINARIES 

In this section we define what we mean by numerical stability and good 

behavior of an algorithm for solving LP problems. We deal with LP problems 
in the standard form 

min{cTx:Ax=b,x~O}, (2.1) 

where 

A is an m X n matrix, 
b is an m-dimensional vector, 
c is an n-dimensional vector, 
x is an n-dimensional vector of variables. 

We shall denote the feasible set of the LP problem by Q and the optimal set 
by S, i.e., 

Q= {x-":kr=b,x>o}, 

S= {xEQ:cTx<cTzforeachzEQ}. 

We consider only stable LP problems which are solvable and remain 
solvable for small but otherwise arbitrary perturbations in the data A, b, c. 
Stability of an LP problem is equivalent to the so-called regularity conditions 
(see [19]) imposed on the constraints of the problem (2.1) and its dual 

max{bTy:ATy < C} (2.2) 

where y is an tndimensional vector of (dual) variables. Namely, the problem 
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(2.1) is stable if and only if the following conditions are satisfied: 

(1) the matrix A has full row rank; 
(2) there exists a positive feasible vector x0, i.e., Ax0 = b, x0 > 0; 
(3) there exists a vector y” that satisfies strongly all the dual constraints, 

i.e., Ary’ < c. 

We shall denote the class of all the regular problems (2.1) by Do. 
Throughout this paper II*II denotes the spectral norm and dist(x, U) 

denotes the distance between the vector x and set U, i.e., 

dist(x,U)=inf{Ilx-ull:uEU}. 

Further, for any number k let 

w+= {:, if k>O, 

otherwise. 

The operator ( .)+ applied to a vector will be understood to be applied 
componentwise. 

Given regularity of the problem, we can consider feasible and optimal sets 
to slightly perturbed LP problems. We introduce the slightly perturbed 
feasible set Q’= Q’(k,, k,) and the slightly perturbed optimal set S’ = 
S’(k,, k,, k3) defined as follows: 

Q’(k,, k,) = {x E R”:x > 0 and (A+ SA)x = b+ 6b for some data per- 
turbations 6A and 6b such that 116All Q klel/All 

and IIWI d ~z4lbll~~ 

W,, k,, ks) = {r E QV,, kz):h ere exists a perturbation SC such that 
llScl[ < k&ll and (c+ SC)~X <(c+ SC)~Z 
for each z E QYk,, k,)}, 

where k,, k,, k, are some arbitrary numbers. Note that S” c Q’ and both sets 
are nonempty for each sufficiently small E. 

Let F be an algorithm that gives for any data complex d = (A, b, c) E ID,, 
in a finite number of elementary operations, an optimal solution to the 
problem (2.1). Let xe denote the vector (solution) generated by the algorithm 
F with all computations performed in fl arithmetic (with the relative preci- 
sion e). Apart from the trivial case when b = 0 and therefore S = Q = {0}, 
the feasible set Q does not include the zero vector. Therefore, we shall 
assume that xe # 0. Good behavior and numerical stability of the algorithm F 
are defined as follows. 
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DEFINITION 2.1. An algorithm F is called well behaved (or equivalently 
F has good behavior) on a class D c I&, if there exist constants ki = k,(D) 
(i = 0,1,2,3) such that for each d E D and for each sufficiently small E the 
computed solution x ’ satisfies 

dist(x’, S”(k,, k,, k3)) < k,,E((xE(J. 

DEFINITION 2.2. An algorithm F is called numerically stable on a class 
IID c KD, if there exist constants ki = k,(D) (i = 1,2,3) such that for each 
d E [ID and for each sufficiently small E the computed solution xF satisfies 

dist(x’, S) < k,[e]]x’]]+sup{dist(x, S):x ESE(kl, k,, k,)}]. 

In other words, a well-behaved algorithm generates a slightly perturbed 
solution to a slightly perturbed data complex, whereas a numerically stable 
algorithm generates a solution with the same error bound as a well-behaved 
algorithm (see [13]). It is easy to verify that good behavior implies numerical 
stability but not, in general, vice versa. 

Recall now some elementary facts connected with numerical solution of 
linear systems. An algorithm for solving a linear system Bx = b with m X m 
nonsingular matrix B is well behaved if it gives a computed solution xE 
satisfying 

(B+SB)x”=b+ab 

with ]]6B]( of order e]]B]] and I(Sb(l of order s]]b]]. The vector xE generated by 
a well-behaved algorithm approximates the exact solution B- ‘b with relative 
error of order e]]B]] ]]B-‘I] IF’]], where ](B(] ]]B-‘I] = x is the condition number 
of the matrix B. This property is usually treated as a definition of numerical 
stability. 

3. NECESSARY CONDITION FOR GOOD BEHAVIOR 

In this section we give a necessary condition for good behavior of an 
algorithm for solving LP problems. This condition has crucial meaning for the 
proof of our principal result in the next section. 

According to Definition 2.1 an algorithm F is well behaved if dist(xE, Se) 
is of order e])xe]]. The set S’ is, however, a subset of Q”, and therefore the 
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inequality 

dist(x’, S’) > dist(xE, Q”) 

holds. Thus we can state the following remark. 

REMARK 3.1. If an algorithm F is well behaved on a class D c ID,,, then 
there exist constants ki = k,(D) (i = 0,1,2) such that for each d E D and for 
each sufficiently small E the computed solution x” satisfies 

In other words, a well-behaved algorithm for solving LP problems is also 
well behaved with respect to solving the simpler problems: find a feasible 
vector x. For this reason, we analyze in detail good behavior with respect to 
solving linear systems 

Ax=b, 

x>o, 

(34 

(3.2) 

as a necessary condition for good behavior with respect to solving the whole 
LP problem (2.1). 

It is known (see e.g. [21]) that an algorithm for solving a linear system 
Bx = b with a square matrix B is well behaved if and only if 

J]b - Bx’]] is of order E( llBl[ It’ll + llbll). 

We extend this residual condition to the system (3.1)-(3.2). In this system 
there are two separate residual vectors: the vector b - Ax connected with the 
equality kr = b, and the vector ( - x), connected with the inequality x z 0. 
Lemma 3.2 utilizes both these vectors to state the residual criterion of good 
behavior with respect to solving linear system (3.1)-(3.2). 

LEMMA 3.2. For each algorithm F the following statements are equiv- 
alent: 

(1) thereexi&crmstantski=k,(6D),(i=0,1,2)suchthutforeachd~D 
and for each sufj3ciently small E the computed solution xE satisfies 

di.+, Q”(k,, k,>) < k_,4IX’II; 
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(2) there exist constants ki = k,(D) (i = 5,6) such that for each d E D 
and for each sufficiently small E the computed solution xF satisfies 

lb - WI 6 k,(llAll llxEII+ llbll) (3.3) 

and 

IIt - x’) + II Q k3WII~ (3.4) 

Proof. Assume that statement (1) is valid. It means that there exist 
constants k,, k,, k, such that for each d E D and for sufficiently small E 

there exist perturbations SA, Sb, Sx such that 

0w G kOWll~ (3.5) 

IIWI =s k,44l~ (3.6) 

IIW =s k4lblL 

(A+ SA)(x’- 6x) = b+ Sb, 

(3.7) 

(3.8) 

XE - sx >, 0. (3.9) 

From these relations we get 

l(b - Ax’11 = IlSb - SAX” +ASx+ SASxll 

G bAlbll+ @, + k, + ~kok~)4All llx’ll 

and 

Il( - x’) + 11 G ll~xll G k,d’fll. 

Thus statement (2) is valid. 
Assume now that the statement (2) is valid. We shall define perturbations 

SA, Sb, and SC satisfying the conditions (3.5)-(3.9). At first let Sx = 
- ( - xe)+. Due to (3.4), the inequality (3.5) holds with the constants 
k, = k,. Further, due to (3.3) we can define the perturbation Sb such that 

IIWI G k,4lbll 
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lb+ a - A41 d kAlAll Ilx’ll. 

So the inequality (3.7) holds with the constant k, = k,. Furthermore, we 
define the perturbation 6A as follows: 

1 

6A = (xe)T(X’)+ 
[b+6b-A(x’)+](xE):. 

One can easily verify that the conditions (3.8) and (3.9) are satisfied for such 
perturbations. Moreover 

II(x”II) + II 
IIWI G <xe>T cxeJ + lb+ a - AbE) + II 

Q ~(~““A”ll~‘ll+ll~llll~ +)+II) 
+ 

k4 + ki 
G 1_44l. 

So, for sufficiently small E the inequality (3.6) holds, and finally, statement (1) 
is valid. 

The proof is completed. 

COROLLARY 3.3. An algorithm for solving the linear systems (3.1)-(3.2) 
is well behaved on a class D c D, if and only if there exist constants 
k i = k i(D) (i = 5,6) such that fm each d E ID and for each sufj%entZy small 
E tht? computed so&on xe satisj&?s the inequulities (3.3) and (3.4). 

COROLLARY 3.4. Zf an algorithm F is well behaved on a class D c ID,, 
then there exist constants ki = ki(D) (i = 5,6) such that for each d E D and 
for each sufj%iently small E the computed solution xe satisfies the inequali- 
ties (3.3) and (3.4). 

In the next section we shall use the necessary condition stated by 
Corollary 3.4 in order to show that any simplex-type algorithm is not well 
behaved on a sufficiently general class of LP problems. 
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4. PRINCIPAL RESULT 

The essence of the simplex method is that only basic solutions are 
considered and the best basic solution is chosen as optimal. In this section we 
show that each method that generates some basic solution as an optimal 
solution is not well behaved on any sufficiently general class of LP problems. 

Recall that a basic solution to the system (3.1) is defined as follows. Let B 
be a basis of the matrix A, i.e., an m X m nonsingular matrix consisting of 
some columns of the matrix A. The nonbasic part of A we shall denote by N. 
The basic solution generated by the basis B is defined by the linear system 

Bx,=b and x,=0 (4.1) 

where xn and xN denote the basic and nonbasic parts of vector x, respec- 
tively. In other words, nonbasic coefficients of the basic solution are directly 
defined as equal to zero, while basic coefficients are defined as a solution of 
the basic linear system Bx n = b. Any algorithm for solving the LP problem 
(2.1) or the linear system (3.1)-(3.2) that generates a solution according to 
this scheme will be called a simplex-type algorithm. 

The basic solution is feasible if xa = B-lb > 0. Roundoff errors can cause 
the computed vector xrr to violate this inequality even if the exactly calcu- 
lated vector would be feasible. For this reason, small negative coefficients of 
the computed vector xrr are sometimes set equal to zero. Such an algorithm 
we shall also regard as a simplex-type algorithm. 

DEFINITION 4.1. An algorithm for solving the LP problem (2.1) or the 
linear system (3.1)-(3.2) is said to be simpler-type if it generates a solution x 
in such a way that for some basis B: 

(l) xN = 0, 
(2) xa=w or xn=(w)+, where w is a solution of the basic system 

Bw=b. 

In theoretical considerations one frequently makes an assumption that all 
the feasible basic solutions are nondegenerate, i.e., the vectors xn = B-lb are 
strictly positive. This assumption significantly simplifies the simplex method 
but it is not necessary for convergence of the method. Furthermore, this 
assumption stands in contradiction with linear-programming practice, since 
in practical LP models degeneracy usually occurs. So it is necessary to allow 
degeneracy of the problem in analyzing computational properties of the 
simplex method. For this reason, we do not regard as sufficiently general any 
class of nondegenerate LP problems. 
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Further, we do not treat as sufficiently general any class of LP problems 
with a special structure of the matrix, in the following sense: we assume that 
in a sufficiently general class of problems a quantity of order s]]B]] ]]B-‘]I (]xe]] 
cannot be considered as a quantity of order .s]]x’]]. 

Having defined what we mean by a simplex-type algorithm and a 
sufficiently general class of LP problems, we can state the following principal 
result. 

THEOREM 4.2. lf a class D of regular LP problems is sufficiently 
general, then simpk-type algorithms are not well behaved on the cluss D. 

Proof. According to Definition 4.1 a simplex-type algorithm imple- 
mented in fl arithmetic generates a solution xe such that 

(1) xh = 0, 
(2) x’B= wE or xb = (wE)+, where we is a solution of the system Bw = b 

(computed in fl). 

Suppose that for each d E D and for each sufficiently small E the proper 
basis B is identified as optimal. If that is not true, then the distance dist(xe, S) 
does not tend to zero as E tends to zero, and so the algorithm is obviously not 
stable and not well behaved. 

Even if the linear system Bw = b is solved by a well-behaved technique, 
we get a solution we with error ]]we- B-lb]] of order s]]B]] ]]B-‘I] ]iw’]]. So if 
degeneracy of the basis occurs, then (- wE)+ is of order s]]B]] ]]B-‘I] ]]we]J. 
Thus the simplex-type algorithm with directly defined basic solution 
(i.e., xb = we) is not well behaved (by Corollary 3.4), since the inequality 
(3.4) is not valid. 

If the basic solution is defined with truncation [i.e., xi = (we)+ 1, then the 
inequality (3.4) holds but the inequality (3.3) is not valid. So in this case too 
the algorithm is not well behaved. 

Thus the proof is completed. W 

Note that the proof of Theorem 4.2 is based on Lemma 3.2. So our result 
is also valid for simplex-type algorithms considered with respect to solving 
linear systems (3.1)-(3.2). 

In the 1970s there were published a few papers (see [2,3,5-71) which 
presented some well-behaved forms of the simplex method. The most famous 
and widely used is the Bartels-Colub algorithm [2] with LU basis decomposi- 
tion. However, in these papers good behavior of simplex algorithms was 
considered only with respect to updating of the basis factorization. It was 
clearly shown for the Bartels-Colub algorithm (see [l]). In other words, these 
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algorithms guarantee only that throughout all simplex steps the basic system 
Bw = b and its dual analogue are solved by a well-behaved technique. 

Thus our analysis does not contradict these results. Rather, it can be 
considered as an extension, since we analyze whether good behavior in 
solving basic systems is sufficient for good behavior of the whole simplex 
algorithm or not. The results of our analysis allow us to conclude that if a 
sufficiently general class of LP problems is considered, then none of the 
known simplex algorithms (including the Bartels-Golub algorithm) are well 
behaved and there is no possibility of constructing a simplex-type algorithm 
that shall be well behaved on this class. 

5. NUMERICAL STABILITY OF THE SIMPLEX METHOD 

In the previous section we have shown there does not exist any simplex- 
type algorithm that is well behaved on a sufficiently general class of LP 
problems. Nevertheless, a simplex-type algorithm can be numerically stable 
with respect to Definition 2.2. In this section we give some sufficient 
conditions for numerical stability of simplex-type algorithms. As the back- 
ground of our analysis we use the following theorem. 

THEOREM 5.1. Let ID C D, be an arbitrary class of regular LP problems. 
Zf for each d E D and fo7 each sufFciently small E a simplex-type algorithm 
F produces a solution xe generated by the true optimal basis B, and if the 
basic system Bw = b is solved by a well-behaved technique, then the 
algorithm F is numerically stab,% on the class ID. 

Proof. Since the optimal basis B is properly identified and the basic 
system Bw = b is solved by a well-behaved technique, we state that 

dist(x’, S) is of order ~llBll IIB-‘ll IBell. 

More precisely, there exists a constant k, = k,(D) such that for each d E D 
and for each sufficiently small E the computed solution xe satisfies 

dist(x’, S) Q k,+3II IIB-‘II IIxelI. 

On the other hand, for each optimal basis there exist perturbations 6A, 6b, 
and SC of order ellAlI, ellbll, elbll, respectively, such that this basis remains 
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optimal for the perturbed problem. So we can state that 

suP{d+x, S) :x E S’(k,, k,, ks)} > k,sllBII IIB-‘11 I(B-‘bll 

for some k, = k,(k,, k,, k3). 
Finally, we state that there exist constants ki = ki(D) (i = 1,2,3,4) such 

that for each d E ID and for each sufficiently small E the computed solution xE 
satisfies 

dist(xe, S) < k&xel)+sup{dist(x, S):x E S’(k,, k,, k,)}]. 

Thus the proof is completed. n 

By Theorem 5.1 we conclude that the Bartels-Golub algorithm and the 
other simplex algorithms with well-behaved techniques for updating the basis 
factorization are numerically stable provided that they properly identify an 
optimal basis. However, in papers dealing with numerical analysis of the 
simplex method the problem of optimal basis identification was usually not of 
interest. We now concentrate on this problem. 

Any simplex method (primal, dual, selfdual, etc.) has the same general 
scheme. According to some rule (specific to the method) a sequence of bases 
is generated. For each basis B the basic solution x and the dual solution y (the 
so-called vector of simplex multipliers) are calculated, i.e., the linear systems 

Bx,=b (5.1) 

and 

B=y=c, (5.2) 

are solved. The basis B is identified as optimal if the solutions of linear 
systems (5.1) and (5.2) satisfy inequalities 

x,20 (5.3) 

and 

c - A=y a 0, (5.4) 

i.e., if both primal and dual basic solutions are feasible. The quantities 
d, = cj - yTAr, where A j denotes column j of the matrix A, are referred to 
as reduced costs. 
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Certainly, if the linear systems (5.1) and (5.2) are solved in fl arithmetic, 
then roundoff errors may cause the inequalities (5.3) and (5.4) not to be valid 
for any computed basic solution. In other words, it is possible that no basic 
solution will be found to be optimal. Therefore, in practice it is necessary to 
introduce some tolerances into the optimality criteria (5.3) and (5.4). In 
effect, we get inequalities 

fl((B-‘b)i) > - ti for i=1,2 ,..., m, (5.5) 

fl(cj - c;B-‘Aj) >, -t; for j=1,2 ,..., n, (5.6) 

where ti and tf are tolerances for feasibility and optimality (dual feasibility), 
respectively. The tolerances, obviously, take some positive values. They may 
be defined once for the whole algorithm or redefined at each simplex step. All 
linear-programming codes use such tolerances (see [14,17]). Thus the prob- 
lem of optimal basis identification in fl arithmetic can be considered as a 
problem of tolerance definition. It turns out that a natural approach to 
tolerance definition leads to numerical stability of the simplex method. 
Definition 5.2 formalizes a property of the tolerances sufficient for numerical 
stability. 

DEFINITION 5.2. The tolerances tj and tj* are called error-estimating if 
they are of similar order to the bounds on computational errors of the 
corresponding quantities, i.e., if 

(i) one has 

ti > (fl((B-‘b)i) - (B-‘b)il for i=1,2,...,m; 

(ii) one has 

t~>)fl(~~-c~B-h~)-(c~-c$,B-~A~)~ for j=1,2,.. 

(iii) ti and tj* tend to zero as E tends to zero. 

(5.7) 

n; (5.8) 

THEOREM 5.3. Let D c Do be an arbitrary class of regular LP problems. 
Zf for each d E D a simplex algorithm F produces a solution x” generated by 
a basis B for which the inequalities (5.5) and (5.6) are sati.$ed with some 
error-e&muting tolerances, and if the basic systems Bw = b and B*y = cg 
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are solved by well-behaved techniques, then the algorithm F is numerically 
stable on the class D. 

Proof. Since the tolerances ti and tj* are on the level of the correspond- 
ing error bounds, each optimal basis satisfies the inequalities (5.5) and (5.6). 

Consider now the computed vectors (xE)+ and y” generated by some 
basis B (perhaps nonoptimal for the original problem) that satisfies the 
inequalities (5.5) and (5.6). They can be treated as exact solutions of linear 
systems 

Ax=b+r and B=y=c,+r,“, 

where r = A(xe)+ -bandr,*=B=y’-c,. Further, the vectors (x’)+ and y’ 
can be also treated as optimal solutions (primal and dual, respectively) to the 
perturbed LP problem 

P,:mh{(c+r*)‘x:ku=b+r,x>o}, 

where rg = (NTy”- cN)+. 
The norms llrlj and l)r*ll are obviously proportional to E, since the 

tolerances ti and tf are error-estimating. So, by the theory of LP stability 
(see [19]) there exists a constant k, such that for each sufficiently small E 

dkt(((x’)+,y’), S x S*) G kgE, 

where S* denotes the optimal set to the dual problem (2.2). On the other 
hand, there exists a constant k,, such that for sufficiently small E 

11(x’) + - B-%11 < k,g 

and 

llye - B-=c,ll < ho&. 

Taking into account all the above inequalities, we conclude that for each 
d E CD and for each sufficiently small E only optimal bases satisfy the 
inequalities (5.5) and (5.6). 

Thus by Theorem 5.1 the proof is completed. W 

Note that any simplex algorithm with a well-behaved technique for 
basis-factorization updating satisfies the assumptions of Theorem 5.3, pro- 



54 WLODZIMIERZ OGRYCZAK 

vided that the inequalities (5.5) and (5.6) with error-estimating tolerances are 
used as optimality criteria and cycling does not occur. The latter is necessary 
in order to guarantee that after a finite number of steps the algorithm will 
find a basis that satisfies the optimality criteria, i.e., the algorithm generates 
some solution. We formalize this result for the Bartels-Golub algorithm. 

COROLLARY 5.4. Let D c ID, be an arbitrary class of regular LP prob- 
lems. Zf cycling does not occur and if the inequalities (5.5) and (5.6) with 
error-estimating tolerances are used as optimality criteria, then the Bartels- 
Golub algorithm is numerically stable on the class ID. 

Analyzing carefully the inequalities (5.7) and (5.8), one can easily find 
(see [15] or [16] for details) that the simplest formulae for error-estimating 
tolerances take the following form: 

ti = ll(B-‘Jill IIBxk -bll for i=1,2 ,..., m, (5.9) 

llB=~~-csll for nonbasic j, (5.10) 

where (B-‘)i denotes the ith row of B-‘, and ej is the jth unit vector in the 
(R - m )-dimensional space of nonbasic variables. The basic residual vectors 
Bx’, - b and BTy ’ - cg are usually computed at each simplex step for control 
of the so-called reinvert mechanism. Large values of their norms mean the 
loss of accuracy of basic solutions and indicate the need for refactorization of 
the current basis. The factors 

II(B-‘Jill ad 

are available in advanced simplex algorithms, since they are used in the pivot 

selection mechanism. The vectors 
i i 

‘I;1 (for nonbasic indices j) point 

down the n - m edges of the feasible s’et that emanate from the current 
vertex x. Similarly, the vectors (B-‘)i (for = 1,2,. . . , m) point down the m 
edges of the dual feasible region that emanate from the current vertex y. 
Their spectral norms are used as normalizing scales in the so-called steepest- 
edge strategy, which is known to be very effective in reducing the number of 
simplex steps. The direct computation of all the normalizing scales at each 



SIMPLEX METHOD 55 

simplex step is too expensive. However, they can be cheaply computed by 
some special updating formulae, especially when triangular basis factorization 
is used (see [8]). Most linear-programming codes compute the normalizing 
scales only approximately, using the so-called DEVEX technique (see [lo]). 
Thus all the quantities used in the formulae (5.9)-(5.10) can be estimated in 
advanced simplex codes. 

Unfortunately, it turns out that commercial LP codes do not always allow 
the user to define appropriate error-estimating tolerances. For instance, our 
experience with solving hard (ill-conditioned) LP problems with the 
MPSX/370 package [ 111 shows that its tolerances are independent of the 
global error bounds. The package is equipped with relative tolerances, but 
they work in a specific manner. Namely, the relative tolerances define the 
value ti or tj* as a product of a given parameter by the largest absolute value 
of elements computed in solving the linear system (5.1) or (5.2), respectively. 
In such a definition of the tolerances the condition number of the correspond- 
ing linear system is ignored. In other words, the tolerances are too closely 
related to error bounds for single operations instead of being related to global 
error bounds. As a result, there is a clear failure of the simplex procedure on 
ill-conditioned LP problems (see [15]). 

Note that Theorem 5.3 does not require good behavior of basis factoriza- 
tion updating. Only basic solutions generated by bases that satisfy the 
optima&y criteria must be calculated with high accuracy (i.e., by a well- 
behaved technique). So numerical stability of the whole simplex algorithm 
can also be achieved for an unstable updating technique, provided that the 
tolerances are properly defined and the accuracy of solutions that satisfy the 
optimality criteria is improved by using a direct well-behaved technique or 
the iterative refinement process (see [12]). This unexpected conclusion sug- 
gests that a proper definition of the tolerances seems to have greater 
importance for numerical stability of the simplex algorithm than a well- 
behaved technique for basis factorization updating. This can be regarded as 
some explanation for why practitioners have preferred to sacrifice good 
behavior of updating for apparent advantages in storage and computational 
effort (see [4]). Of course, an implementation of the simplex method may 
never reach a basis satisfying the optima&y criteria if an unstable updating 
procedure is used. 

6. CONCLUSION 

The importance of numerical stability in methods used for the solution of 
LP problems was appreciated in the 1979s. There were proposed a few 
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well-behaved techniques for updating the basis factorization in the simplex 
method. The best known was the Bartels-Golub algorithm, which was also 
successfully adapted to handling sparsity of the matrix (see e.g. [ 181). Stability 
analysis for these algorithms was, however, limited to several simplex steps. 
In other words, the Bartels-Golub algorithm, and others like it, generate by 
well-behaved techniques all the quantities used at each simplex step. 

In our analysis we have concentrated on stability of the whole simplex 
algorithm. We have shown that simplex-type algorithms cannot be well 
behaved on a sufficiently general class of LP problems. On the other hand, 
we have also shown that simplex algorithms with well-behaved updating 
techniques (such as the Bartels-Golub algorithm) are numerically stable 
provided that some reasonable tolerances are introduced into the optima&y 
criteria. 

Z am indebted to G. H. Golub, A. Kielbasiriski, H. Woz%akowski, and the 
referee for their comments and help during the preparation of this paper. 
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