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Abstract. In this paper, we propose an exact solution method to gener-
ate fair policies in Multiobjective Markov Decision Processes (MMDPs).
MMDPs consider n immediate reward functions, representing either in-
dividual payoffs in a multiagent problem or rewards with respect to dif-
ferent objectives. In this context, we focus on the determination of a
policy that fairly shares regrets among agents or objectives, the regret
being defined on each dimension as the opportunity loss with respect
to optimal expected rewards. To this end, we propose to minimize the
ordered weighted average of regrets (OWR). The OWR criterion indeed
extends the minimax regret, relaxing egalitarianism for a milder notion
of fairness. After showing that OWR-optimality is state-dependent and
that the Bellman principle does not hold for OWR-optimal policies, we
propose a linear programming reformulation of the problem. We also
provide experimental results showing the efficiency of our approach.

Keywords: Ordered Weighted Regret, Fair Optimization, Multiobjec-
tive MDP.

1 Introduction

Markov Decision Process (MDP) is a standard model for planning problems un-
der uncertainty [15,10]. This model admits various extensions developed to ad-
dress different questions that emerge in applications of Operations Research and
Artificial Intelligence, depending on the structure of state space, the definition of
actions, the representation of uncertainty, and the definition of preferences over
policies. We consider here the latter point. In the standard model, preferences
over actions are represented by immediate rewards represented by scalar num-
bers. The value of a sequence of actions is defined as the sum of these rewards
and the value of a policy as the expected discounted reward. However, there are
various contexts in which the value of a sequence of actions is defined using sev-
eral reward functions. It is the case in multiagent planning problems [2,7] where
every agent has its own value system and its own reward function. It is also the
case of multiobjective problems [1,13,3], for example path-planning problems un-
der uncertainty when one wishes to minimize length, time, energy consumption
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and risk simultaneously. In all these problems, n distinct reward functions need
to be considered. In general, they cannot be reduced to a single reward function
even if each of them is additive over sequences of actions, and even if the value
of a policy can be synthesized into a scalar overall utility through an aggregation
function (except for linear aggregation). This is why we need to develop specific
approaches to determine compromise solutions in Multiobjective or Multiagent
MDPs.

Many studies on Multiobjective MDPs (MMDP) concentrate on the determi-
nation of the entire set of Pareto-optimal solutions, i.e., policies having a reward
vector that cannot be improved on a component without being downgraded on
another one. However, the size of the Pareto set is often very large due to the
combinatorial nature of the set of deterministic policies, its determination in-
duces prohibitive response times and requires very important memory space as
the number of states and/or criteria increases. Fortunately, there is generally
no need to determine the entire set of Pareto-optimal policies, but only spe-
cific compromise policies achieving a well-balanced tradeoff between criteria or
equivalently, in a multiagent context, policies that fairly shares expected rewards
among agents. Motivated by such examples, we study in this paper the deter-
mination of fair policies in MMDPs. To this end, we propose to minimize the
ordered weighted average of regrets (OWR). The OWR criterion indeed extends
the minimax regret, relaxing egalitarianism on regrets for a milder notion of
fairness.

The paper is organized as follows: In Section 2, we recall the basic notions
related to Markov decision processes and their multiobjective extension. In Sec-
tion 3, we discuss the choice of a scalarizing function to generate fair solutions.
This leads us to adopt the ordered weighted regret criterion (OWR) as a proper
scalarizing function to be minimized. Section 4 is devoted to the search of OWR-
optimal policies. Finally, Section 5 presents some experimental results showing
the effectiveness of our approach for finding fair policies.

2 Background

A Markov Decision Process (MDP) [15] is described as a tuple (S,A, T,R) where
S is a finite set of states, A is a finite set of actions, transition function T (s, a, s′)
gives the probability of reaching state s′ by executing action a in state s, reward
function R(s, a) ∈ IR gives the immediate reward obtained for executing action
a in state s.

In this context, a decision rule δ is a procedure that determines which action
to choose in each state. A decision rule can be deterministic, i.e., defined as
δ : S → A, or more generally, randomized, i.e., defined as δ : S → Pr(A) where
Pr(A) is the set of probability distributions over A.

A policy π is a sequence of decision rules (δ0, δ1,. . .,δt,. . .) that indicates which
decision rule to apply at each step. It is said to be deterministic if each decision
rule is deterministic and randomized otherwise. If the same decision rule δ is
applied at each step, the policy is said stationary and is denoted δ∞.
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The value of a policy π is defined by a function vπ : S → IR, called value
function, which gives the expected discounted total reward yielded by applying
π from each initial state. For π = (δ0, δ1, . . . , δt, . . .), they are given ∀h > 0 by:

vπ
0 (s) = 0 ∀s ∈ S

vπ
t (s) = R(s, δh−t(s)) + γ

∑

s′∈S

T (s, δh−t(s), s′)vπ
t−1(s

′) ∀s ∈ S, ∀t = 1, . . . , h

where γ ∈ [0, 1[ is the discount factor. This sequence converges to the value
function of π.

In this framework, there exists an optimal stationary policy that yields the
best expected discounted total reward in each state. Solving an MDP amounts
to finding one of those policies and its associated value function. The optimal
value function v∗ : S → IR can be determined by solving the Bellman equations:

∀s ∈ S, v∗(s) = max
a∈A

R(s, a) + γ
∑

s′∈S

T (s, a, s′)v∗(s′)

There are three main approaches for solving MDPs. Two are based on dynamic
programming: value iteration and policy iteration. The third is based on linear
programming. We recall the last approach as it is needed for the exposition of
our results. The linear program (P) for solving MDPs can be written as follows:

(P)

⎧
⎪⎪⎨

⎪⎪⎩

min
∑

s∈S

μ(s)v(s)

s.t. v(s) − γ
∑

s′∈S

T (s, a, s′)v(s′) ≥ R(s, a) ∀s ∈ S, ∀a ∈ A

where weights μ could be interpreted as the probability of starting in a given
state. Any positive μ can in fact be chosen to determine the optimal value
function. Program P is based on the idea that the Bellman equations imply that
functions satisfying the constraints of P are upper bounds of the optimal value
function. Writing the dual (D) of this program is interesting as it uncovers the
dynamic of the system:

(D)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
∑

s∈S

∑

a∈A

R(s, a)xsa

s.t.
∑

a∈A

xsa − γ
∑

s′∈S

∑

a∈A

T (s′, a, s)xs′a = μ(s) ∀s ∈ S

xsa ≥ 0 ∀s ∈ S, ∀a ∈ A

⎫
⎬

⎭ (C)

To interpret variables xsa, we recall the following two propositions relating fea-
sible solutions of D to stationary randomized policies in the MDP [15].

Proposition 1. For a policy π, if xπ is defined as xπ(s, a) =
∑∞

t=0 γ
tpπ

t (s, a),
∀s ∈ S, ∀a ∈ A where pπ

t (s, a) is the probability of reaching state s and choosing
a at step t, then xπ is a feasible solution of D.
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Proposition 2. If xsa is a solution of D, then the stationary randomized policy
δ∞, defined by δ(s, a) = xsa/

∑
a′∈A xsa′ , ∀s ∈ S, ∀a ∈ A defines xδ∞

(s, a) as in
Proposition 1, that are equal to xsa.

Thus, the set of randomized policies is completely characterized by constraints
(C). Besides, the basic solutions of D correspond to deterministic policies. More-
over, the basic solutions of P correspond to the value functions of deterministic
policies. Those of randomized policies are in the convex hull of those basic solu-
tions. Note that in an MDP, any feasible value function can be obtained with a
randomized policy.

Multiobjective MDP. MDPs have been extended to take into account multiple
dimensions or criteria. A multiobjective MDP (MMDP) is an MDP where the
reward function is redefined as: R:S × A → IRn where n is the number of ob-
jectives, R(s, a) = (R1(s, a), . . . , Rn(s, a)) and Ri(s, a) is the immediate reward
for objective i ∈ O = {1, . . . , n}.

Now, a policy π is valued by a value function V π : S → IRn, which gives
the expected discounted total reward vector in each state. To compare the value
of policies in a given state s, the basic model adopted in most previous studies
[5,17,18] is Pareto dominance defined as follows:

∀x, y ∈ IRn, x �P y iff [x �= y and ∀i ∈ O, xi ≥ yi] (1)

Hence, for any two policies π, π′, π is preferred to π′ in a state s if and only if
V π(s) �P V π′

(s). For a set X ⊂ IRn, a vector x ∈ X is said to be Pareto-optimal
in X if there is no y ∈ X such that y �P x. Due to the incompleteness of Pareto
dominance, there may exist several Pareto-optimal vectors in a given state.

Standard methods for MDPs can be extended to solve MMDPs [18,17]. As
shown by Viswanathan et al. [17], the dual linear program (D) can be extended to
a multiobjective linear program for finding Pareto-optimal solutions in a MMDP
since the dynamics of a MDP and that of a MMDP are identical. Thus, we obtain
the following multiobjective linear program vD:

(vD)

⎧
⎨

⎩
max fi(x) =

∑

s∈S

∑

a∈A

Ri(s, a)xsa ∀i = 1, . . . , n

s.t. (C)

Looking for all Pareto-optimal solutions can be difficult and time-consuming
as there are instances of problems where the number of Pareto-optimal value
functions of deterministic policies is exponential in the number of states [8].

Besides, in practice, one is generally only interested in specific compromise so-
lutions among Pareto-optimal solutions achieving interesting tradeoffs between
objectives. To this end, one could try to optimize one of the objectives subject
to constraints over the other objectives (see for instance [1]). However, this ap-
proach reveals to be cumbersome to reach well-balanced tradeoffs, as the number
of objectives grows. A more natural approach for that could be to use a scalar-
izing function ψ : IRn → IR, monotonic with respect to Pareto dominance, that
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defines the value vπ of a policy π in a state s by: vπ(s) = ψ(V π
1 (s), . . . , V π

n (s)).
The problem can then be reformulated as the search for a policy π optimizing
vπ(s) in an initial state s. We discuss now about a proper choice of ψ in order
to achieve a fair satisfaction of objectives.

3 Fair Regret Optimization

Weighted Sum. The most straightforward choice for ψ seems to be weighted
sum (WS), i.e., ∀y ∈ IRn, ψ(y) = λ · y where λ ∈ IRn

+. By linearity of WS
and that of mathematical expectation, optimizing v is equivalent to solving the
standard MDP obtained from the MMDP where the reward function is defined
as: r(s, a) = λ · R(s, a), ∀s, a. In that case, an optimal stationary deterministic
policy exists and standard solution methods can then be applied. However, using
WS is not a good procedure for reaching balanced solutions as weighted sum is
a fully compensatory operator. For example, with WS, (5, 5) would never be
stricly preferred to (10, 0) and (0, 10) simultaneously, whatever the weights.
MaxMin. In opposition to the previous utilitarist approach, we could adopt egal-
itarianism that consists in maximizing the value of the least satisfied objective
(ψ = min). This approach obviously includes an idea of fairness as for exam-
ple, here, (5, 5) is strictly preferred to both (10, 0) and (0, 10). However, it has
two significant drawbacks: (i) min does not take into account the potentialities
of each objective with respect to the maximum values that each objective can
achieve. For instance, if objective 1 can reach a maximum of 10 while objective
2 can reach a maximum of 6, a solution leading to (6, 6) might be seemed less
fair than another valued by (8, 4) since the second better distributes the oppor-
tunity losses; (ii) reducing a vector to its worst component is too pessimistic and
creates drowning effects, i.e., (1, 0) is seen as equivalent to (10, 0), whereas the
latter Pareto-dominates the former.
Minmax Regret. A standard answer to (i) is to consider Minmax regret (MMR),
which is defined as follows. Let Y be a set of valuation vectors in IRn and I ∈ IRn

denote the ideal point defined by Ii = supy∈Y yi for all i ∈ O. The regret of
choosing y ∈ Y according to objective i is defined by ηi = Ii − yi. Then, MMR
is defined for all y ∈ Y by ψ(y) = maxi∈O(ηi). However, MMR does not address
issue (ii). In order to guarantee the Pareto monotonicity, MMR may be further
generalized to take into account all the regret values according to the Ordered
Weighted Average (OWA) aggregation [19], thus using the following scalarizing
function [20]:

ρw(y) =
∑

i∈O

wiη〈i〉 (2)

where (η〈1〉, η〈2〉, . . . , η〈n〉) denotes the vector obtained from the regret vector η
by rearranging its components in the non-increasing order (i.e., η〈1〉 ≥ η〈2〉 ≥
. . . ≥ η〈n〉 and there exists a permutation τ of set O such that η〈i〉 = ητ(i) for
i ∈ O) and weights wi are non-negative and normalized to meet

∑
i∈O wi = 1.
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Example 1. We illustrate how ρw is computed (see Table 1) with ideal point
I = (9, 7, 6) and weights w = (1/2, 1/3, 1/6). One first computes the regrets η,
then reorders them. Finally, ρw can be computed, inducing the preference order
x � z � y.

Table 1. Example of computation of ρw

1 2 3 η1 η2 η3 η〈1〉 η〈2〉 η〈3〉 ρw

x 8 4 5 1 3 1 3 1 1 12/6
y 9 2 6 0 5 0 5 0 0 15/6
z 6 7 4 3 0 2 3 2 0 13/6

Note that ρw is a symmetric function of regrets. Indeed, weights wi’s are assigned
to the specific positions within the ordered regret vector rather than to the
individual regrets themselves. These rank-dependent weights allow to control
the importance attached to small or large regrets. For example, if w1 = 1 and
w2 = . . . = wn = 0, one can recognize the standard MMR, which focuses on the
worst regret.
Augmented Tchebycheff norm. This criterion, classically used in multiobjective
optimization [16], is defined by ψ(y) = maxi∈O ηi + ε

∑
i∈O ηi where ε is a small

positive real. It addresses issues (i) and (ii). However, it has some drawbacks as
soon as n ≥ 3. Indeed, when several vectors have the same max regret, then they
are discriminated with a weighted sum, which does not provide any control on
fairness.
Ordered Weighted Regret. In order to convey an idea of fairness, we now consider
the subclass of scalarizing functions defined by Equation (2) with the additional
constraints: w1 > . . . > wn > 0. Any function in this subclass is named Ordered
Weighted Regret (OWR) in the sequel. This additional constraint on weights can
easily be explained by the following two propositions:

Proposition 3. [∀y, z ∈ IRn, y �P z ⇒ ρw(y) < ρw(z)] ⇔ ∀i ∈ O,wi > 0

Proposition 4.
[∀y ∈ IRn, ∀i, k ∈ O, ∀ε, s.t. 0 < ε < ηk − ηi,

ρw(y1, . . . , yi −ε, . . . , yk +ε, . . . , yn) < ρw(y1, y2, . . . , yn)
] ⇔ w1 > . . . > wn > 0.

Proposition 3 states that OWR is Pareto-monotonic. It follows from mono-
tonicity of the OWA aggregation [11]. Consequently, OWR-optimal solutions
are Pareto-optimal. Proposition 4 is the Schur-convexity of ρw, a key property
in inequality measurement [12], and it follows from the Schur-convexity of the
OWA aggregation with monotonic weights [9]. In MMDPs, it says that a reward
transfer reducing regret inequality, i.e., a transfer of any small reward from an
objective to any other objective whose regret is greater, results in a preferred
valuation vector (a smaller OWR value). For example, if w = (3/5, 2/5) and
I = (10, 10), ρw(5, 5) = 5 whereas ρw(10, 0) = ρw(0, 10) = 6, which means that
(5, 5) is preferred to the two others. Due to Proposition 4, if x is an OWR-
optimal solution, x cannot be improved by any reward transfer reducing regret
inequality, thus ensuring the fairness of OWR-optimal solutions.
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Due to Propositions 3 and 4, minimizing OWR leads to a Pareto-optimal
solution that fairly distributes regrets over the objectives (see the left part of
Figure 1). Moreover, whenever the objectives (criteria or agents) do not have the
same importance, it is possible to break the symmetry of OWR by introducing
scaling factors λi > 0, ∀i ∈ O in Equation (2) so as to deliberately deliver biased
(Pareto-optimal) compromise solutions (see the right part of Figure 1). To this
end, we generalize OWR by considering:

ρλ
w(y) =

∑

i∈O

wiη
λ
〈i〉 with ηλ

i = λi(Ii − yi) ∀ i ∈ O (3)

where λ = (λ1, . . . , λn) and (ηλ
〈1〉, η

λ
〈2〉, . . . , η

λ
〈n〉) denotes the vector obtained from

the scaled regret vector ηλ by rearranging its components in the non-increasing
order. For the sake of simplicity, ρλ

w is also called an OWR.

I I

Fig. 1. Fair (left) and biased (right) compromises

Using OWR, a policy π is weakly preferred to a policy π′ in a state s (denoted
π �s π

′) iff ρλ
w(V π(s)) ≤ ρλ

w(V π′
(s)). Hence, an optimal policy π∗ in s can be

found by solving:
vπ∗

(s) = min
π
ρλ

w(V π(s)). (4)

As a side note, ρλ
w can be used to explore interactively the set of Pareto solutions

by solving problem (4) for various scaling factors λi and a proper choice of OWR
weights wi. Indeed, we have:

Proposition 5. For any polyhedral compact feasible set F ⊂ IRn, for any fea-
sible Pareto-optimal vector ȳ ∈ F such that ȳi < Ii, ∀i ∈ O, there exist weights
w1 > . . . > wn > 0, and scaling factors λi > 0, ∀i ∈ O such that ȳ is a ρλ

w-optimal
solution.

Proof. Let ȳ ∈ F be a feasible Pareto-optimal vector such that ȳi < Ii, ∀i ∈ O.
Since, F is a polyhedral compact feasible set, there exists Δ > 0 such that for
any feasible vector y ∈ F the implication

yi > ȳi and yk < ȳk ⇒ (yi − ȳi)/(ȳk − yk) ≤ Δ (5)

is valid for any i, k ∈ O [6].
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Let us set the scaling factors λi = 1/(Ii − ȳi), ∀i ∈ O and define weights
w1 > . . . > wn > 0 such that w1 ≥ LΔ

∑n
i=1 wi, where L ≥ λi/λk for any

i, k ∈ O. We will show that ȳ is a ρλ
w-optimal solution.

Suppose there exists a feasible vector y ∈ F with better OWR value ρλ
w(ȳ) =∑

i∈O wiη̄
λ
〈i〉 <

∑
i∈O wiη

λ
〈i〉 = ρλ

w(y). Note that η̄λ
i = λi(Ii − ȳi) = 1 for all

i ∈ O. Hence, ηλ
〈i〉 − η̄λ

〈i〉 = ηλ
τ(i) − η̄λ

τ(i) for all i ∈ O where τ is the ordering
permutation for the regret vector ηλ with ηλ

i = λi(Ii − yi) = 1 for i ∈ O.
Moreover, η̄λ

τ(i) − ηλ
τ(i) = λτ(i)(yτ(i) − ȳτ(i)) and, due to Pareto-optimality of ȳ,

0 > η̄λ
τ(1) − ηλ

τ(1) = λτ(1)(yτ(1) − ȳτ(1)). Thus, taking advantages of inequalities
(5) for k = τ(1) one gets
m∑

i=2

wiλτ(i)(yτ(i)−ȳτ(i)) ≤ −
m∑

i=2

wiLΔλτ(1)(yτ(1)−ȳτ(1)) ≤ −w1λτ1(yτ(1)−ȳτ(1))

which contradicts to the inequality
∑

i∈O wiη̄
λ
〈i〉 <

∑
i∈O wiη

λ
〈i〉 and thereby it

confirms ρλ
w-optimality of ȳ. �

Note that the condition ȳi < Ii, ∀i ∈ O is not restrictive in practice: one can
replace Ii by Ii + ε for any arbitrary small positive ε to extend the result to any
ȳ in F .

4 Solution Method

We now address the problem of solving problem (4). First, remark that, for all
scalarizing functions considered in the previous section (apart from WS), finding
an optimal policy in an MMDP cannot be achieved by aggregating first the
immediate vectorial rewards and solving the resulting MDP. Optimizing OWR
implies some subtleties that we present now.

Randomized Policies. When optimizing OWR, searching for a solution among
the set of stationary deterministic policies may be suboptimal. Let us illustrate
this point on an example where n = 2. Assume that points on Figure 2 represent
the value of deterministic policies in a given state. The Pareto-optimal solutions
are then a, b, c and d. If we were searching for a fair policy, we could consider c as
a good candidate solution. However, by considering also randomized policies, we
could obtain an even better solution. Indeed, the valuation vectors of randomized
policies are in the convex hull of the valuation vectors of deterministic policies,
represented by the light-greyed zone (Figure 3). The dotted lines linking points
a, b and d represent all Pareto-optimal valuation vectors. The dark greyed zone
represents all feasible valuation vectors that are preferred to point c. Those
vectors that are Pareto-optimal seem to be good candidate solutions. Therefore,
we will not restrict ourselves to deterministic policies and we will consider any
feasible randomized policy.

OWR-Optimality is State-Dependent. Contrary to standard MDPs where opti-
mal policies are optimal in every initial state, the optimality notion based on
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a
b

d

c

Fig. 2. Valuation vectors

a
b

c

d

Fig. 3. Better solutions

OWR depends on the initial state, i.e., an OWR-optimal policy in a given initial
state may not be an OWR-optimal solution in another state.

Example 2. Consider the deterministic MMDP represented on Figure 4 with
two states (S = {1, 2}) and two actions (A = {a, b}). The vectorial rewards can
be read on Figure 4.

1 2(0, 2)
a b

(1, 1)
(2, 0)

b

a

(0, 4)

Fig. 4. Representation of the MMDP

Set γ = 0.5, w = (0.9, 0.1) and λ = (1, 1). The ideal point from state 1 is
I1 = (3, 6). Reward 3 is obtained by first choosing a in state 1 and then repeatedly
b in state 2 while reward 6 is obtained by first choosing b in state 1 and then
repeatedly a in state 2. By similar computations, the ideal point from state 2 is
I2 = (2, 4). There are four stationary deterministic policies, denoted δxy, which
consists in choosing action x in state 1 and action y in state 2.

The OWR-optimal policies in state 2 are δ∞aa and δ∞ba with the same value in
state 2: V δ∞

aa(2) = V δ∞
ba(2) = (0, 4) (OWR of 1.8 with I2). One can indeed check

that no randomized policy can improve this score. However, none of these policies
are optimal in state 1 as they are beaten by δ∞bb . Indeed, V δ∞

bb (1) = (1, 5) (OWR of
1.9 with I1) whereas V δ∞

aa(1) = (2, 2) (OWR of 3.7 with I1) and V δ∞
ba(1) = (0, 6)

(OWR of 2.7 with I1). This shows that a policy that is optimal when viewed from
one state is not necessarily optimal when viewed from another.

Therefore the OWR-optimality is state-dependent.
Violation of the Bellman Optimality Principle. The Bellman Optimality Prin-
ciple, which says that any subpolicy of any optimal policy is optimal is not
guaranteed to be valid anymore when optimizing OWR as it is not a linear
scalarizing function. We illustrate this point on Example 2.

Example 2 (continued). We have V δ∞
aa(1)=(2, 2) (OWR of 3.7) and V δ∞

ab(1) =
(3, 1) (OWR of 4.5). Thus, δ∞aa �1 δ

∞
ab (seen from state 1). Now, if we consider

policy (δbb, δ∞aa) and policy (δbb, δ∞ab) that consist in applying δbb first, then policy
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δ∞aa or policy δ∞ab respectively, we get V (δbb,δ∞
aa)(1) = (0, 6) (OWR of 2.7) and

V (δbb,δ∞
ab)(1) = (1, 5) (OWR of 1.9). This means that now (δbb, δ∞aa) ≺1 (δbb, δ∞ab),

which is a preference reversal. The Bellman Optimality principle is thus violated.
As shown by Example 2, π �s π′ does not imply (δ, π) �s (δ, π′) for every
π, π′, δ, s. So, in policy iteration, we cannot prune policy π′ on the argument it
is beaten by π since π′ may lead to an optimal policy (δ, π′). Similar arguments
explain that a direct adaptation of value iteration for OWR optimization may
fail to find the optimal policy.

The above observations constitute the deadlock to overcome to be able to
find efficiently OWR-optimal solutions. This motivates us to propose a solving
method based on linear programming.
Solution Method. In order to use OWR in MMDPs, we first compute the ideal
point I by setting Ii as the optimal value of P with reward function Ri.

Although OWR is not linear, its optimization in MMDPs does not impact the
dynamic of the system, which thus remains linear. Therefore, OWR is optimized
under the same constraints as Program (vD), which gives the following program
(D′):

(D′)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

i∈O

wiη
λ
〈i〉

s.t. ηλ
i = λi

(
Ii −

∑

s∈S

∑

a∈A

Ri(s, a) xsa

) ∀i ∈ O

∑

a∈A

xsa − γ
∑

s′∈S

∑

a∈A

T (s′, a, s)xs′a = μ(s) ∀s ∈ S

xsa ≥ 0 ∀s ∈ S, ∀a ∈ A

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(C′)

where for all i ∈ O, Ii is computed by optimizing objective i with Program (P)
or Program (D). Since OWR is not linear but only piecewise-linear (one piece
per permutation of objectives), a linear reformulation of (D′) can be written.

First, denoting Lk(ηλ) =
∑k

i=1 η
λ
〈i〉 and w′

i = wi − wi+1 for i = 1, . . . , n − 1,
w′

n = wn, (D′) can be rewritten as:

min
ηλ∈E

∑

k∈O

w′
kLk(ηλ) (6)

where E is defined by Constraints (C′). Moreover, as shown by [14], the quantity
Lk(ηλ), for a given vector ηλ, can be computed by the following LP formulations:

Lk(ηλ) = max
(uik)i∈O

{
∑

i∈O

ηλ
i uik :

∑

i∈O

uik = k, 0 ≤ uik ≤ 1} (7)

= min
tk

(dik)i∈O

{ktk +
∑

i∈O

dik : ηλ
i ≤ tk + dik, dik ≥ 0} (8)

where (7) follows from the definition of Lk(ηλ) as the sum of the k largest val-
ues ηλ

i , while (8) is the dual LP with dual variable tk corresponding to equation
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∑
i∈O uik = k and variables dik corresponding to upper bounds on uik. There-

fore, we have:

min
ηλ∈E

∑

k∈O

w′
kLk(ηλ)

= min
ηλ∈E

∑

k∈O

w′
k min

tk

(dik)i∈O

{ktk +
∑

i∈O

dik : ηλ
i ≤ tk + dik, dik ≥ 0} (9)

= min
ηλ∈E

min
(tk)k∈O

(dik)i,k∈O

{
∑

k∈O

w′
k

(
ktk +

∑

i∈O

dik

)
: ηλ

i ≤ tk + dik, dik ≥ 0} (10)

where (9) derives from (8) and (10) derives from (9) as w′
k > 0. Together with

the LP constraints (C′) of set E. This leads to the following linearization of (D′):

min
∑

k∈O

w′
k(ktk +

∑

i∈O

dik)

s.t. λi

(
Ii −

∑

s∈S

∑

a∈A

Ri(s, a)xsa

) ≤ tk + dik ∀i, k ∈ O

∑

a∈A

xsa − γ
∑

s′∈S

∑

a∈A

T (s′, a, s)xs′a = μ(s) ∀s ∈ S

xsa ≥ 0 ∀s ∈ S, ∀a ∈ A; dik ≥ 0 ∀ i, k ∈ O

Therefore, we get an exact LP formulation of the entire OWR problem (D′). The
randomized policy characterized by the xsa’s at optimum is the OWR optimal
policy. Our previous observation concerning the state-dependency of the OWR
optimality tells us that the OWR-optimal solution might change with μ, which
differs from the classical case. When the initial state is not known, distribution μ
can be chosen as the uniform distribution over the possible initial states. When
the initial state s0 is known, μ(s) should be set to 1 when s = s0 and to 0 other-
wise. The solution found by the linear program does not specify which action to
choose for the states that receive a null weight and that are not reachable from
the initial state as they do not impact the value of the OWR-optimal policy.

5 Experimental Results

We tested our solving method on the navigation problem over a grid N × N
(N = 20, 50 or 100 in our experiments). In this problem, a robot has four pos-
sible actions: Left, Up, Right, Down. The transition function models the fact
that when moving, the robot may deviate from its trajectory with some fixed
probability because it does not have a perfect control of its motor.

We ran four series of experiments with 100 instances each time. Unless other-
wise stated, the parameters are chosen as follows. Rewards are two-dimensional
vectors whose components are randomly drawn within interval [0, 1]. The dis-
count factor is set to 0.9 and the initial state is set arbitrarily to the upper
left corner of the grid. We set w = (2/3, 1/3) (normalized vector obtained from
(1, 1/2)) and λ = (1, 1).
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Fig. 5. 1st series (left), 2nd series (right) of experiments

As criteria are generally conflicting in real problems, for the first set of exper-
iments, to generate realistic random instances, we simulate conflicting criteria
with the following procedure: we pick one criterion randomly for each state and
action and its value is drawn uniformly in [0, 0.5] and the value of the other is
drawn in [0.5, 1]. The results are represented on Figure 5 (left). One point (a dot
for WS and a circle for OWR) represents the optimal value function in the initial
state for one instance. Naturally, for some instances, WS provides a balanced
solution but in most cases, WS gives a bad compromise solution. Figure 5 (left)
shows that we do not have any control on tradeoffs obtained with WS. On the
contrary, when using OWR, the solutions are always balanced.

To confirm the effectiveness of our approach, we ran a second set of experi-
ments on pathological instances of the navigation problem. All the rewards are
drawn randomly as for the first set of experiments. Then, in the initial state,
for each action that does not move to a wall, we choose randomly one of the
criteria and add a constant (here, arbitrarily set to 5). Then by construction,
the value functions of all non-dominated deterministic policies in the initial state
are unbalanced. The results are shown on Figure 5 (right). Reassuringly, we can
see that OWR continues to produce fair solutions on the contrary to WS.

Our approach is still effective in higher dimensions. We ran a third set of ex-
periments with three objectives as in higher dimensions, the experimental results
would be difficult to visualize and as in dimension three, one can already show
that OWR can be more effective than Minmax Regret or Augmented Tcheby-
cheff. This last point could not have been shown in dimension two. In this third
set of experiments, we set w = (9/13, 3/13, 1/13) (normalized vector obtained
from (1, 1/3, 1/9)) and λ = (1, 1, 1). The random rewards are generated in order
to obtain pathological instances in the spirit of the previous series of experi-
ments. We set the initial state in the middle of the grid as we need to change
the rewards of three actions. First, all rewards are initialized as in the first series
of experiments (one objective drawn in [0.5, 1], the other two in [0, 0.5]). In the
initial state, for a first action, we add a constant C (here, C = 5) to the first
component of its reward and a smaller constant c (here, c = 4

5C) to its second
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Fig. 6. Experiments with 3 objectives

one. For a second action, we do the opposite. We add c to its first component and
C to its second one. For a third action, we add 5 to its third component and we
subtract 2C from one of its first two ones chosen randomly. In such an instance,
a policy choosing the third action in the initial state would yield a very low
regret for the third objective, but the regrets for the first two objectives would
not be balanced. In order to obtain a policy which yields a balanced profile on
regrets, one needs to consider the first two actions.

The results of this set of experiments are shown on Figure 6. MMR stands for
Minmax Regret and AT for Augmented Tchebycheff. Each point corresponds
to the value of the optimal (w.r.t. MMR, AT or OWR) value function in the
initial state of a random instance. One can notice that MMR and AT give the
same solutions as both criteria are very similar. In our instances, it is very rare
that one needs the augmented part of AT. Furthermore, one can see that the
OWR-optimal solutions are between those optimal for MMR and AT. Although
the OWR-optimal solutions are weaker on the third dimension, they fairly take
into account potentialities on each objective and are better on at least one of
the first two objectives.

For the last series of experiments, we tested our solution method with different
scaling factors on the same instances as in the second series. With λ = (1.75, 1)
(resp. λ = (1, 1.75)), one can observe on the left (resp. right) hand side of Figure 7
that the obtained optimal tradeoffs with OWR now slightly favor the first (resp.
second) objective as it could be expected.

We also perform experiments with more than three objectives. In Table 2, we
give the average execution time in function of the problem size. The experiments
were run using CPLEX 12.1 on a PC (Intel Core 2 CPU 2.66Ghz) with 4GB
of RAM. The first row (n) gives the number of objectives. Row Size gives the
number of states of the problem. Row TW gives the execution time for WS ap-
proach while row TO gives the execution time for OWR. All the times are given in
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Fig. 7. 4th series of experiments (left: λ = (1.75, 1), right: λ = (1, 1.75))

Table 2. Average execution time in seconds

n 2 4 8 16

Size 400 2500 10000 400 2500 10000 400 2500 10000 400 2500 10000

TW 0.2 5.2 147.6 0.10 5.1 143.7 0.1 4.7 146.0 0.12 4.9 143.6
TO 0.4 13.6 416.2 0.65 27.6 839.4 1.4 55.4 1701.7 3.10 111.5 3250.4

seconds as averages over 20 experiments. The OWR computation times increase
proportionally to the number of criteria. Nevertheless, due to the huge number
of variables xsa’s, one may need to apply some column generation techniques [4]
for larger problems.

6 Conclusion

We have proposed a method to generate fair solutions in MMDPs with OWR.
Although this scalarizing function is not linear and cannot be optimized using
value and policy iterations, we have provided an LP-solvable formulation of the
problem. In all the experiments performed, OWR significantly outperforms the
weighted sum concerning the ability to provide policies having a well-balanced
valuation vector, especially on difficult instances designed to exhibit conflicting
objectives. Moreover, introducing scaling factors λi in OWR yields deliberately
biased tradeoffs within the set of Pareto-optimal solutions, thus providing full
control to the decision maker in the exploration of policies.
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