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Abstract. Many important topics in multiobjective optimization and decision
making have been studied in this book so far. In this chapter, we wish to dis-
cuss some new trends and challenges which the field is facing. For brevity, we here
concentrate on three main issues: new problem areas in which multiobjective opti-
mization can be of use, new procedures and algorithms to make efficient and useful
applications of multiobjective optimization tools and, finally, new interesting and
practically usable optimality concepts. Some research has already been started and
some such topics are also mentioned here to encourage further research. Some other
topics are just ideas and deserve further attention in the near future.

16.1 Introduction

Handling problems with multiple conflicting objectives has been studied for
decades (as discussed, e.g., in Chapters 1 to 3); yet there still exist many
interesting topics for future research. There are both theoretical questions as
well as challenges set by real applications to be tackled. Some of the questions
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can be answered, for example, by hybridizing or integrating ideas from the
MCDM and EMO literature.

Here we do not even pursue covering all relevant future challenges but
concentrate on three major topics, mainly due to space limitation. First, we
discuss new and challenging problem domains in which multiobjective opti-
mization and decision making (or decision support) techniques can be applied.
Second, we discuss some new methodologies for multiobjective optimization
which allow a synergetic application of optimization and decision making or
provide a more global approach to optimization. Third, we describe new and
innovative definitions of optimality in multiobjective optimization, which al-
lows one to find a subjective or preferred set of optimal solutions.

Many topics discussed in this chapter are currently under study in various
research groups. We still discuss such topics here mainly from the point of
view of propagating such ideas to more people. We would like to encourage
readers to pursue research along these directions, but our compilation will be
successful if future researchers make due acknowledgment of the cited refer-
ences and this compilation. In our view, the ideas presented are important
and have a long-term implication to the field of multiobjective optimization.
Collaborative and focused research efforts to implement some of such ideas
will be the next step towards making the field more applicable, sustainable
and enjoyable.

16.2 Challenging Multiobjective Optimization Problems

Besides solving typical optimization problems having multiple objectives, mul-
tiobjective optimization methodologies can also be used in other kinds of prob-
lem solving tasks. In this section, we briefly mention some of such research
directions.

16.2.1 New Problem Domains

Multiobjective optimization problems arise in many applied fields of research.
Although many of these problem types are already investigated, there are also
some important new problem classes which deserve to be examined in detail.
In the following, we discuss a few selected problems.

Multiobjective Bilevel Optimization

In multiobjective bilevel optimization (Dempe, 2002) one considers the opti-
mization problem

minimize f(x,y)
subject to y ∈ Y and

x solves
{

minimize g(x,y)
subject to x ∈ X.
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Here Y ⊂ Rn and X ⊂ Rm are given feasible sets possibly defined by in-
equalities and equalities and f : Rm ×Rn → Rk and g : Rm ×Rn → Rl are
vector-valued functions. So, on the “lower level” one has to solve a multiobjec-
tive optimization problem for an arbitrary parameter y ∈ Y . The problem on
the “upper level” is a multiobjective optimization problem where the feasible
set is defined by Y and the whole Pareto optimal set of the lower problem.
Actually, we have two coupled multiobjective problems on two levels. This
so-called multiobjective bilevel problem is difficult to solve because we need
the complete Pareto optimal set of the problem on the lower level for every
parameter y ∈ Y . The use of interactive methods on the lower level is not
helpful in this case. An overview on these complicated problem types in the
single objective case can be found in (Dempe, 2002, 2003).

There are interesting applications for this problem class. The bilevel prob-
lem in its original form goes back to von Stackelberg (1934), who has intro-
duced a special case of these problems. The so-called Stackelberg games are
special bilevel problems. In our case the leader and the follower (in the context
of Stackelberg games) have multiple objectives.

In addition to games and economical applications, there are also various
applications in engineering (Bard, 1998; Dempe, 2002, 2003). For instance,
certain equilibrium problems in chemical engineering can be formulated as
bilevel problems (Dempe, 2002).

Semidefinite Optimization

Semidefinite Optimization is a field in optimization which has rapidly grown
since the beginning of the 1990’s. A multiobjective semidefinite optimization
problem can be formulated as

minimize f(x)
subject to G(x) is positive semidefinite and

x ∈ R
m.

Here we assume that f : R
m → R

k is a vector-valued function and G : R
m →

Sn is a matrix-valued function, where Sn denotes the Hilbert space of symmet-
ric (n, n)-matrices with real coefficients. Although the case that the objective
function is real-valued has been studied in detail and numerical methods are
available for linear and nonlinear semidefinite optimization problems, investi-
gations of the multiobjective case and the development of numerical methods
are still expected.

Many applications lead to semidefinite optimization problems (Jahn,
2007). Among others, we only mention the design of a rib in the front of
the wing of the new Airbus A380. This complicated problem of material op-
timization has been solved by semidefinite optimization where one minimizes
the weight of the structure and the compliance is treated as a constraint.
Thus, the design of one rib is a solution of an ε-constraint problem (see Sec-
tion 1.3.2in Chapter 1), where ε has not been varied. In this sense, this rib is
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a result of a special scalarization technique known from multiobjective opti-
mization.

Set Optimization

Since the end of the 1980’s, multiobjective optimization has been extended to
set optimization. These are problems of the type

minimize F (x)
subject to x ∈ S,

where S ⊂ R
n is a feasible set being defined by inequalities and equalities

and F : R
n ⇒ R

k is set-valued. So, for a given feasible point x the image
F (x) is a set of vectors in R

k. Although there are investigations on these set
problems as an extension of multiobjective optimization, we need new ap-
proaches taking into account that we have to work with partial orderings for
sets (and not only for points). First steps have been taken with the KNY
(Kuroiwa-Nishnianidze-Young) partial ordering (Jahn, 2004) but many sig-
nificant theoretical questions are still open.

Problems of this type may occur if the objective is not clearly defined
but only specified in a vague set-oriented way. If one cannot define a function
value of the objective but only the range for this value, one has to solve a set
problem.

An example of an industrial application is the navigation of autonomous
transportation robots. Here one uses ultrasonic sensors determining the small-
est distance to an obstacle in the emission cone. Since the direction of the ob-
ject cannot be identified in the cone, the location of the object is set-valued.
Therefore, questions of navigation may lead to problems of set optimization.

Further Problem Types

There are many other multiobjective problem types to be explored more inten-
sively. Among others, we need more investigations in multiobjective dynamic
optimization. Dynamic optimization is a significant field of optimization with
important applications and it has been used for decades. It is essential to ex-
tend these studies to the multiobjective case and only a few studies exist to
date (Bingul, 2007; Deb et al., 2007a; Farina et al., 2000; Palaniappan et al.,
2001).

Another problem class can be called multiobjective clustering (Delattre
and Hansen, 1980). If one applies cluster analysis to a set of points in order to
find out appropriate clusters, in some cases standard methods do not give the
desired result. Recent investigations on multiobjective clustering show that
the use of multiple objectives may result in better clusters (e.g., formulating a
biobjective optimization of minimizing intra-cluster distance and maximizing
inter-cluster distance and finding a set of trade-off solutions will provide solu-
tions not accessible by methods that optimize only one of the criteria) (Handl
and Knowles, 2007). This topic is certainly a future challenge as well.
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16.2.2 Large-Scale Problems

By large-scale problems we understand problems with many variables, con-
straints or objectives. In general, an exact lower bound for the number of
variables, constraints or objectives is not specified. These problems arise very
naturally in concrete applications. For instance, if one discretizes a system
of partial differential equations defining the constraints one gets immediately
many constraints and many variables. If the considered variable of our prob-
lem is a function, the discretization of this function leads to many variables.
In order to get a good approximation one has to work with many variables in
this case.

Problems with many objectives may occur, for example, in engineering.
For instance, the design of suspension bridges may lead to several hundred
objectives being difficult to handle. Other problems in material optimization
also belong to this class of large-scale problems. Standard methods of multi-
objective optimization cannot be applied to these large-scale problem types
without simplifying the original problem. Therefore, we need new methods
being able to treat problems with many variables, constraints or objectives.

It seems to be difficult to design interactive methods for large-scale prob-
lems. There are various reasons. For the decision maker (DM) it is difficult to
handle a lot of objectives (or variables). The auxiliary problems which have to
be solved during every calculation phase may be so time-consuming that an
interaction with the DM does not make sense. Here we have to find new con-
cepts for interaction. Let us add that in some problems function evaluations
may be very costly even though the dimensions are small. From the compu-
tational point of view, such problems can also be regarded as large-scale ones
and interaction may suffer as discussed above.

Like in the case of single objective optimization, one important step for
the reduction of computation time in multiobjective optimization is the paral-
lelization of algorithms and their implementation with a distributed comput-
ing system. Some earlier studies have demonstrated the use of a distributed
computing paradigm for the parallel computation of automatically allocated
non-overlapping regions of the Pareto optimal set (Deb et al., 2003; Branke
et al., 2004b). A successful treatment of large-scale problems can be reached
by using computers in parallel. New approaches such as grid computing allow
to use entire networks of computers as one huge parallel computer. New meth-
ods have to be designed for parallel architectures. The change from sequential
structures to parallel structures will accelerate in the future. More discus-
sions on possibilities of parallel multiobjective optimization can be found in
Chapter 13.

16.2.3 Using Multiobjective Optimization to Aid in Other
Problem Solving Tasks

Besides solving multiobjective optimization problems, multiobjective concepts
and approaches can also be exploited to solve other optimization problems:
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• Constraint handling: In single objective optimization problems, an addi-
tional objective of minimizing the overall constraint violation can be em-
ployed. Furthermore, in problems where the constraints form an empty
feasible region, the constraints can each be converted as objective func-
tions. This enables solving the problem by taking constraint violations as
objectives to be minimized (Miettinen et al., 1998).

• Optimization with an additional requirement: In many problems, although
the goal is to minimize or maximize a single or multiple objectives, the
solution should also exhibit other desirable properties. For example, in the
context of evolving computer programs for performing a task using the
genetic programming approach, the goal is often to execute the task as
accurately as possible but with a hidden agenda of developing a strategy
(program) which is as simple as possible. Bleuler et al. (2001) minimized
the size of a genetic program in addition to the supplied objective func-
tions. Since the minimization of the program size is also an important
objective, the genetic programming attempts to find the optimal program
without making the program unnecessarily large.

• Improving the search landscape: Furthermore, some recent studies (Knowles
et al., 2001; Neumann and Wegener, 2005) have shown that decomposing
the original single objective function carefully into multiple functionally
different objectives and treating the problem as a multiobjective optimiza-
tion problem makes the problem easier to solve than the usual single ob-
jective optimization procedure.

• Revisit traditional problems with multiple objectives for a better and more
informative solution strategy: Sometimes, adding extra objectives as so-
called helper (or proxy) objectives allows a better handling of single ob-
jective optimization problems (Jensen, 2004). Certain problems are tra-
ditionally solved using a particular procedure. A reconsideration of such
problems using a multiobjective optimization strategy can be useful in
many problem solving tasks, like the multiobjective clustering problem
discussed earlier.

• Knowledge discovery from multiobjective optimization results: A recent
concept of innovization, innovation through optimization, makes a post-
optimality analysis of obtained trade-off solutions for deciphering princi-
ples which are commonly appearing in most obtained trade-off solutions
(Deb and Srinivasan, 2006). Since the solutions obtained by an EMO or
an a posteriori MCDM method are close to being (or are) Pareto opti-
mal, they are expected to have certain features which remain common to
qualify these solutions to be close to the Pareto optimal set and certain
features which allow them to have a trade-off among objectives. An effort
to try to decipher such valuable information from a set of trade-off near-
optimal solutions is a unique way of discovering salient information about
“how to solve a problem in a near-optimal manner?”. In many engineering
design problems and game playing problems, interesting and new design
principles and strategies can be unearthed by such a procedure.
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The possibility of adding additional objectives to make the search more flex-
ible or even deleting one or more objectives to restrict the search in certain
directions provides flexible ways of performing various search tasks (Fliege,
2007). These possibilities certainly open up new avenues and new ways of
solving problems and should be exploited more in the near future. The above
and a number of other possibilities of aiding different problem solving tasks
through multiobjective optimization are discussed in (Knowles et al., 2008).

16.3 Challenging Methods of Finding Optimal Solutions

Having discussed new problem domains for multiobjective optimization, we
now discuss new and challenging methodologies of arriving at optimal solu-
tions to multiobjective optimization problems.

16.3.1 Hybrid Methods

As mentioned earlier in this book, in the MCDM literature, solving multiobjec-
tive optimization problems has typically been understood as a task of helping
a DM in finding the most preferred solution in the presence of conflicting ob-
jectives. In this kind of a problem setting, DM’s preference information plays
an important role. However, until recently, EMO approaches have mostly con-
centrated on approximating the whole set of Pareto optimal solutions. This
brings about a natural question of how MCDM and EMO approaches can com-
plement each other. For example, EMO methodologies can be used to include
preference information (Fonseca and Fleming, 1998; Parmee et al., 2000) (see
Chapter 6 for more studies). As an example of hybridizing ideas and meth-
ods of MCDM and EMO fields, we can mention that some reference point
(see Section 2.3 in Chapter 2) based EMO methods have already been intro-
duced (Deb et al., 2006; Thiele et al., 2007), but there is much more potential
in preparing new hybrid methods. Other examples of augmenting interactive
MCDM methods with EMO ideas include (Deb and Kumar, 2007a,b), where
the reference direction approach (Korhonen, 1988) and the “light beam search”
(Jaszkiewicz and Słowiński, 1999) are utilized, respectively. Overall, the goal is
to analyze the strengths of different approaches and utilize and combine them.

A very simple hybridizing idea is to use continuous local search meth-
ods (with scalarizing functions used in MCDM, see Chapter 1) together with
EMO. This can be useful, for example, in order to improve (or even guarantee
Pareto optimality of) different solutions produced by an EMO algorithm.

Hybridizations of approximation algorithms (approximating the Pareto
optimal set) and interactive MCDM methods have, for example, been given
in (Klamroth and Miettinen, 2008; Miettinen et al., 2003). Similar ideas can
be applied with EMO and interactive MCDM methods. By first using an
approximation algorithm, the DM gets a general understanding about the
problem as a whole, its possibilities and limitations and it is easier for him/her
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to specify preference information for the interactive method used. It is, for
example, easier to specify the starting point for the interactive method or to
specify a reference point.

One possibility of creating hybrid methods is to apply MCDA methods
developed for dealing with a discrete set of solution alternatives (Olson, 1996)
to the set of solutions generated by an EMO algorithm or a subset thereof.
In this way, decision support tools of MCDA could help the DM in analyzing
multidimensional objective vectors and finding the most preferred solution.
For an example, see (Thiele et al., 2007), where using the reference direction
based VIMDA method (Korhonen, 1988) is discussed. A simple implemen-
tation of an EMO-MCDA hybrid procedure is also suggested in (Deb and
Chaudhuri, 2007).

Sometimes, it is difficult for DMs to move from one Pareto optimal solu-
tion to another because this necessitates giving up in some objective function
values. If, for example, an EMO algorithm is used to generate an approxima-
tion of the Pareto optimal set, the solutions in the population produced are
not yet necessarily Pareto optimal. This leads to an idea of a method with
a natural win-win situation. Namely, populations generated during the EMO
search are shown to the DM, (s)he can direct the search and get better and
better solutions.

16.3.2 Global Solvers

Many multiobjective optimization problems arising in engineering are prob-
lems defined by nonconvex, nondifferentiable and multi-modal functions.
These functions are highly nonlinear. In this case, we must be able to em-
ploy a global solver to find the globally optimal solutions. Often, the auxiliary
single objective problems which have to be solved as subproblems in mul-
tiobjective methods do not have the necessary mathematical structure, like
generalized convexity, ensuring that computed points are global solutions. In
many algorithmic investigations the question whether a global solution of the
auxiliary problems can be determined, is very often not discussed. But in
practice this is a significant point. In single objective optimization, locally
optimal solutions can still be of some use, as economists or engineers already
accept a computed point if a drastic reduction of costs can be obtained by the
obtained (local or global) solution. But in multiobjective optimization finding
global solutions is crucial, as often the optimization task is followed by a de-
cision making task. If the solvers used do not compute global solutions, one
obtains an approximation of the set of Pareto optimal points which may be
completely awkward to make decisions with (see also discussion in Chapter
1). Such an ill-functioning appears, for example, if the set of Pareto optimal
points is not connected, that is, it consists of several disconnected parts. Then
the gaps between these parts are difficult to identify from a numerical point
of view. Evolutionary or stochastic optimization methods are better equipped
in dealing with such problems and must be investigated more rigorously.
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Let us point out that instead of using solvers that can guarantee only
the local optimality of solutions generated, it is possible to use some global
single objective solver for solving the auxiliary problems produced by MCDM
methods, for example, evolutionary algorithms or a hybrid solver where a local
solver is used after an evolutionary algorithm, both suggested by Miettinen
and Mäkelä (2006).

In the context of single objective optimization, a recent study (Eremeev
and Reeves, 2003) has suggested that after a solution is found by using an ap-
proximate solver (such as an evolutionary algorithm), a validation procedure
must be used to support the result. The study suggested a sampling proce-
dure to estimate the frequency of falling into local optima. Extensions of such
studies can be made in the context of multiobjective optimization. However,
there still is much to do in this field in order to find the most appropriate
solvers to be used in each problem considered.

In general, because evolutionary algorithms or stochastic methods are po-
tential global solvers, the question of interest is how to improve their algo-
rithmic behavior with techniques using derivatives. The above-mentioned way
is the simplest possibility. For instance, if one applies an evolutionary algo-
rithm to a complicated problem with smooth functions, it certainly makes
sense to combine the evolutionary algorithm with a local solver which uses
information on derivatives. Such a combination may improve the evolutionary
algorithm. These memetic algorithms are difficult to design because one has to
determine when to switch from the evolutionary algorithm to the local solver
and back. For example, memetic methods combining an evolutionary algo-
rithm with the well-known sequential quadratic programming (SQP) method
produce promising results. Here we need comprehensive investigations on the
interface of these evolutionary methods and derivative-based methods being
qualified for such a combination. These investigations should lead to modern
metaheuristic approaches resulting in new global solvers. For instance, hybrid
solvers involving simulated annealing and the (local) proximal bundle method
are introduced in (Miettinen et al., 2006).

Based on the remarks listed, there is a need for efficient global solvers (as
also concluded by Aittokoski and Miettinen (2008)). We should develop hybrid
methods combining standard methods with global strategies. These global hy-
brid solvers are very desirable and they would bring a breakthrough in finding
guaranteed global Pareto optimal solutions in multiobjective optimization.

16.4 New Trends in Optimality

Finally, let us devote some thoughts to a few new trends in defining optimality
in the context to multiobjective optimization: subjective preferences, different
optimality concepts, and robust solutions.
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16.4.1 Subjective Preferences

The MCDM literature typically places the DM at the center of the solution
process of a multiobjective decision problem (as, e.g., Belton and Stewart
(2001)). The DM’s preferences determine which objective functions are more
or less important, and how different objective values are to be rated. Conse-
quently, aggregation across objectives has to be performed in a way which is
consistent with the DM’s preferences. This subjectivity is often seen as one
of the characteristic features of multiobjective optimization problems, which
distinguish this area from single objective optimization, where an objectively
optimal solution can be found.

This subjective view is not entirely shared in the EMO literature, or more
generally in multiobjective optimization. When solving multiobjective opti-
mization problems, the aggregation across the individual objectives is often
specified by model developers, with little involvement of the actual DMs. From
a subjective perspective, this might seem a grave omission: an analyst who
selects an aggregation mechanism across objective functions (like an additive
function), and specifies weights of individual objectives to be used in this ag-
gregation, takes away decision authority from the actual DM. Even seemingly
objective concepts like dominance or Pareto optimality contain subjective
elements because dominance requires at least information about the direc-
tion of preference within each objective function. But not all multiobjective
optimization problems exhibit this level of subjectivity. Sometimes, even an
aggregation across objective functions can be performed quite objectively, and
a model developer might be even in a better position to perform such an “ob-
jective” optimization than the actual DM. However, if subjective information
is not available, EMO can be used to get an idea of the Pareto optimal set,
at least in the case of optimization problems with two to four objectives.

Rather than establishing a strict dichotomy between “objective” single ob-
jective optimization problems and “subjective” multiobjective problems, we
can propose a taxonomy of different levels of subjectivity in multiobjective
optimization problems as four cases. In this taxonomy, the classical view of
multiobjective problems does not even form an endpoint, but an intermediate
stage.

The proposed taxonomy consists of four cases:

i) Multiobjective optimization problems as a technical solution device.
ii) Multiobjective optimization problems as an approximation of a higher

level objective.
iii) Subjective multiobjective optimization problems.
iv) Problems involving meta-criteria.
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Multiobjective Optimization Problems as a Technical Solution
Device

In some cases, heuristics work better on multiobjective optimization problems
than on problems with a single objective function. In these cases, it might
make sense to perform a “multi-objectivization” of the problem (Knowles et al.,
2001): to split an explicitly given criterion into several functions and solve the
resulting multiobjective optimization problem, as discussed in Section 16.2.3.
Of course, the aggregation procedure in this case is fully determined and has
to reconstruct the original objective function.

Multiobjective Optimization Problems as an Approximation of a
Higher Level Objective

In many applications of multiobjective optimization methods, the DM ac-
tually wants to maximize some higher level criterion, but this criterion can
either not be directly measured, or the relationship of the decision variables to
that higher level criterion is not clear. Therefore, one uses several substitute
criteria and solves a multiobjective optimization problem, instead. For more
details, refer to (Miettinen, 1999). A study on EMO (Handl et al., 2007) called
these substitute criteria ’proxy objectives’. In many MCDM applications in
business, the long run profit of the firm is the ultimate goal. But the impact
of many decisions on a long run profit can hardly be quantified. For exam-
ple, when hiring a new executive, one cannot predict how much a particular
person will contribute to profit, so substitute criteria like education and expe-
rience are used to approximate that person’s productivity. Another example
demonstrating the benefits of using multiobjective optimization is discussed
in (Hakanen et al., 2005), where estimating amortization time and interest
rate for capital is avoided when balancing between investment and running
costs in the case of designing a heat recovery system of a paper mill.

In these cases, neither the choice of a preference model nor the selection
of parameters (e.g., weights) to be used in that model is purely subjective,
but both should approximate the likely relationship of substitute criteria to
the higher level criterion. A higher weight in this case does not indicate that
a substitute (lower level) criterion is considered more important, but that it
is considered to have a stronger influence on the higher level criterion.

Subjective Multiobjective Optimization Problems

Subjective problems are typically considered in MCDM, where the aggregation
of objective functions depends solely on the subjective preferences of the DM.
This type of decision problems are often illustrated by referring to personal
decisions like the purchase of a car, where attributes like comfort, speed or
costs need to be compared.
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In this case, no objective aggregation model exists, which would be valid
for all DMs. Of course, modeling can still be performed by an analyst, but
only in close contact with the actual DM who has to provide the relevant
preference information.

Problems Involving Meta-criteria

Many multiobjective optimization problems are related to decisions in which
the interests of multiple stakeholders have to be taken into account. Such
decisions occur, for example, in public policy. Even when the decision is ulti-
mately made by one individual, for example, a politician, that individual has
to consider the interests of different parties. While in the decision problems
discussed so far, an improvement in any objective function could be considered
to improve the overall evaluation of a decision alternative (this assumption
underlies the whole concept of Pareto optimality), this is no longer true when
aspects like fairness need to be taken into account. Here, further improve-
ments of the situation of stakeholders who are already better off than the
others might be considered as unfair and, thus, make a solution less prefer-
able.

Such “meta-criteria”, which evaluate the distribution of results across sev-
eral criteria, occur not only in multi-person decisions. For example, when time
streams of income are evaluated, income in each period could be considered
as an objective. Apart from maximizing income in each period (which would
correspond to the standard multiobjective formulation), DMs might prefer a
constant income stream over a stream which exhibits large variations over
time. This preference for particular patterns should not be confused with risk
aversion; it can occur even if all payments are known in advance with cer-
tainty. To handle this type of problems, Kostreva et al. (2004) developed the
concept of equitable multiobjective decision making and showed how several
multiobjective optimization methods, in particular reference point methods,
can be extended to handle such problems.

Further Comments on the Taxonomy

Our taxonomy of multiobjective optimization problems has several conse-
quences for the way in which “preferences” are elicited, modelled and ag-
gregated. The first difference concerns the person, or group of persons, from
whom preference information can be obtained. In highly subjective problems,
only the DM him/herself can provide information about preferences. But in
problems where multiple criteria are used to approximate a higher level objec-
tive, it might be reasonable to obtain input from several experts in order to get
a clearer picture of how substitute criteria will actually influence the higher
level objective. In the remaining two cases no real “preference elicitation” can
take place. When multiple criteria are introduced for technical reasons, their
aggregation is also a technical problem. In the case of meta-criteria, the way in
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which individual criteria are aggregated is based on the meta-criteria involved,
which can be considered as axioms an aggregation method must fulfill.

This distinction has also consequences for the likely stability of preference
information. While there is some empirical evidence that individual prefer-
ences towards multiple criteria remain stable over time (Blackmond and Fis-
cher, 1987; San Miguel et al., 2002), they are still subject to more external
influences than causal relationships between substitute criteria and higher
level objective. Consequently, “preference” information obtained for the latter
type of problems, as well as for the other two classes, needs to be elicited less
often in repeated decisions than for subjective problems.

One might also view properties of solution concepts, like efficiency or in-
dependence of irrelevant alternatives, differently in the four cases of our tax-
onomy. In the first case, such axioms are more or less irrelevant. Aggregation
has to reconstruct the original objective, regardless of whether it fulfills com-
mon axioms of decision analysis or not. In the second case, rationality (in
the form of axioms) becomes more important, since in most problems, it can
be expected that the true relationship between substitute criteria and the
actual higher level objective also follows these principles. In the third case,
acceptance of axioms is entirely up to the DM. Empirical research on bias
phenomena in decision making has provided considerable evidence that sub-
jects consciously choose to violate axioms of decision analysis, even when this
violation is pointed out to them (von Winterfeldt and Edwards, 1986). Finally,
in the last case, meta-criteria are themselves axioms, and their acceptance by
all stakeholders is a prerequisite for acceptable solutions.

By formulating the above taxonomy, we have just started to explore the
impact of different levels of subjectivity on the solution process, as well as
the underlying theory of multiobjective optimization, both with MCDM and
EMO methods. This could become an interesting area of future research.

16.4.2 Generalized Dominance and Redefining Optimality

Most multiobjective optimization studies use the concept of Pareto optimal-
ity for driving their search. However, there exist a number of other trends of
redefining the usual Pareto optimality. Such considerations usually reduce the
size of the optimal set and in some occasions make it easier for the search
algorithms to handle the complexity associated with multiobjective optimiza-
tion. Here we discuss a number of such trends of redefining optimality in
multiobjective optimization.

In this book, the basic concept of optimality has been that of Pareto op-
timality, but a closely related, relaxed, concept of weak Pareto optimality
is sometimes used because the latter is computationally simpler and many
straightforward approaches to multiobjective optimization generate weakly
Pareto optimal solutions (see, e.g., Preface and Chapter 1). However, weak
Pareto optimality is not satisfactory for applications because it ignores clear
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possibilities of solution improvement with respect to some objectives. Actu-
ally, even the concept of Pareto optimality may be too weak for many ap-
plications. As discussed in Chapter 1, the notion of proper Pareto optimality
(Geoffrion, 1968) assumes that all the trade-offs are bounded (see also Chap-
ter 2). Sometimes, more useful for applications are solutions that are properly
Pareto optimal with an a priori given bound on trade-offs.

Several dominance (and thereby efficiency or Pareto optimality) concepts
can be introduced as the so-called dominance cone (Yu, 1974) as also briefly
discussed in Chapter 1. The partial order of the dominance relation is implied
by a convex cone D in such a sense that y′ dominates y′′ if and only if y′−y′′ ∈
D \ {0}. The standard Pareto optimality or Pareto dominance is defined by
using an orthant cone (negative orthant for minimization). A narrower cone
restricts the dominance relation thus expanding the corresponding efficient set.
On the other hand, a wider cone enforces more dominated outcome vectors,
thus narrowing down the efficient set.

A corresponding dominance cone can be constructed by combining the
orthant with the half-space (Kaliszewski, 1994; Wierzbicki, 1986). Actually,
the reference point method and many other scalarizing function model such
dominance by taking the sum of objective values (the half space) with a small
weight to regularize the basic term of the max-min aggregation (the orthant).
See also Chapters 1 and 2 as well as (Miettinen, 1999).

Most traditional MCDM approaches to multiobjective optimization seek
for the best solution according to the DM’s preferences while treating the
dominance relation as a common principle of all rational preference models.
Thus the concept of Pareto optimality is rather used as a necessary condi-
tion to establish the boundary of acceptable choices. Therefore, strengthening
the dominance concept is not so crucial for the implementation of interac-
tive MCDM procedures, although still important. On the other hand, EMO
procedures use three different features: emphasis on nondominated solutions
in the current population, emphasis on previously-found nondominated so-
lutions, and emphasis on less crowded solutions in the objective space (see
Chapter 3). Many studies related to different dominance relations and ap-
proaches utilizing them have been published during the years in the MCDM
field. Lately, they have also attracted attention in the EMO field. For example,
wider dominance cones can be used to focus an EMO search on a part of the
Pareto optimal set (Branke et al., 2001; Laumanns et al., 2002), instead on the
complete set. In particular, the cone dominance enables to formalize concepts
of narrowing the Pareto optimal set related to limitations on trade-offs.

Note that the dominance cone can be changed during the solution process.
Such a dominance structure appears, for instance, in the case of a given value
(or utility) function maximization. The dominance structure corresponding to
the comparison of the value function values is represented by the tangent cone
to the isoline contours of the value function at any objective vector. For poorly
characterized preferences in multiobjective problems, it is often desirable to
seek (approximate) optimal solutions for a large class of value functions. So-
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lutions corresponding to the optimal value of a large variety of linear value
functions can be emphasized within the EMO procedure, thereby aiding to
find knee objective vectors in certain problems (Branke et al., 2004a). An ap-
proximate majorization relation enables the search for solutions maximizing
all symmetric concave value functions (Goel and Meyerson, 2006).

There are many applications leading to problems with a large number of
uniform criteria considered impartially which makes the distribution of out-
comes more important than the assignment of several outcomes to the specific
criteria. Such models are generally related to the evaluation and optimization
of various systems which serve many users where quality of service for every
individual user defines the criteria. This applies to various technical and social
systems. An example arises in locating public facilities where the decisions of-
ten concern the placement of a service center or another facility in a position
so that the users are allocated in an impartial way. Thus, we are interested
in comparing distributions of values within the objective vectors rather than
componentwise comparison of objective vectors (Ogryczak, 1999). Note that
having two possible location patterns generating objective vectors (5, 0, 5) and
(0, 1, 0), we would recognize both the location patterns as Pareto optimal in
terms of (distance) minimization. However, the first location pattern generates
two objectives (distances) equal to 5 and one objective equal to 0, whereas the
second pattern generates one objective equal to 1 and two objectives equal to
0. Thus, in terms of the distribution of objective values, the second location
pattern is clearly better.

The need to search for some optimal distribution of objective values is
commonly recognized in problems which may be viewed as resource allocation
models. While allocating limited resources to maximize the system efficiency
they also attempt to provide a fair treatment of all the competing activi-
ties. For instance, in networking, a central issue is how to allocate bandwidth
to flows efficiently and fairly (Denda et al., 2000; Pióro and Medhi, 2004).
Furthermore, uniform individual criteria may be associated with some events
rather than physical users, like in many dynamic optimization problems where
uniform individual criteria represent a similar event in various periods or in
decision problems under uncertainty where uniform individual criteria repre-
sent the outcome realizations under various scenarios. Another type of model
is that of approximation of discrete data by a functional form. The residuals
may be viewed as objectives to be minimized, and there is no reason to treat
them in any way but impartially.

In many models fair consideration of all criteria requires more than only
impartiality. In order to ensure fairness in a system, all system entities have
to be equally well provided with the system’s services. This means that more
equal objective vectors are preferred to unequal ones or, more formally, a
transfer of any small amount from an objective function to any other relatively
worse-off objective results in a more preferred objective vector. For instance,
a solution generating all three objective values equal to 2 is considered better
than any solution generating individual values 4, 2 and 0. This leads to con-
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cepts of fairness expressed by the equitable efficiency as a specific refinement
of Pareto optimality taking into account impartiality and inequality mini-
mization (Kostreva et al., 2004). Thus, seeking for the optimal distribution
of objective values is actually a new multiobjective problem type. However,
the dominance structure for objective vectors does not represent any cone
(Kostreva and Ogryczak, 1999).

Currently, some specific solution concepts are used for various application
areas. Biobjective aggregations to the mean and some dispersion measure are
used in the areas of decisions under risk and location analysis as well. The
max-min approach additionally regularized with the lexicographic order (the
so-called max-min fairness) is commonly used in resource allocation problems
(Luss, 1999). Approaches exploiting the multiobjective nature of distribution
optimization problems are rather rare (Ogryczak et al., 2008). Actually, such
problems are hard for preference modeling and identification within the in-
teractive MCDM methods as well as for the EMO approaches. Nevertheless,
they deserve to be investigated more intensively.

16.4.3 Robust Solutions

A conventional optimization approach that considers only the optimality of
a decision or a design, that is, performance at decision or design condition,
should work fine in a controlled environment. Real-world applications, on
the other hand, inevitably involve errors and uncertainties (be it, e.g., in
the design process, manufacturing process, and/or operating conditions); so
that the resulting performance may be lower than expected. For instance,
the aerodynamic performance of an airplane wing design is very sensitive to
the wing shape and flight conditions and, thus, it may deteriorate drastically
when subject to wing manufacturing errors and wind variations even if the
wing design is optimized.

Several approaches have been developed to deal with uncertain or impre-
cise data. The approaches focused on the quality or on the variation (stability)
of the solution for some data domains are considered robust. The notion of
robustness applied to decision problems was first introduced almost 50 years
ago by Gupta and Rosenhead (1968). Practical importance of the performance
sensitivity against data uncertainty and errors has later attracted consider-
able attention to the search for robust solutions. Actually, as suggested by Roy
(1998), the concept of robustness should be applied not only to solutions but,
more generally to various assertions and recommendations generated within
a decision support process. A brief comparison between conventional opti-
mization and robust optimization is illustrated in Fig. 16.1 a). Solution A
obtained by a conventional optimization is the best in terms of optimality,
but disperses widely in terms of the objective function against the dispersion
of design variable or environmental variable, and this dispersion may extend
to an infeasible range. On the other hand, solution B obtained by a robust
optimization is moderately good in terms of optimality and also good in terms
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of robustness, that is, dispersion of objective function is narrow against dis-
persion of design variable.

On the other hand, the optimal solution despite generating objective val-
ues dispersed quite widely may be clearly better than a solution not dispersed
at all. As depicted in Fig. 16.1 b), solution A though characterized by dis-
persed results remains under all conditions better than the stable solution B.
Hence, solution B is obviously dominated and it cannot be considered a robust
optimal solution.

O
bj

ec
tiv

e 
Fu

nc
tio

n

Design Variable or
Environmental Variable

Fe
as

ib
le

In
fe

as
ib

le

Sol. A
Sol. B

Optimal Robust
Optimal

O
bj

ec
tiv

e 
Fu

nc
tio

n

Design Variable or
Environmental Variable

Fe
as

ib
le

In
fe

as
ib

le

Sol. A

Sol. B

Optimal NOT
Robust Optimal

Fig. 16.1. Comparison between conventional optimization and robust optimization
(for a minimization problem): a) conventional optimal solution A vs. robust optimal
solution B; b) stable but not robust optimal solution B.

The precise concept of robustness depends on the way the uncertain data do-
mains and the quality or stability characteristics are introduced. Typically, in
robust analysis one does not attribute any probability distribution to repre-
sent uncertainties. Data uncertainty is rather represented by non-attributed
scenarios, which means there is no specific rule to determine the data uncer-
tainty characteristics. Since one wishes to optimize results under each scenario,
robust optimization might be in some sense viewed as a multiobjective op-
timization problem where objectives correspond to the scenarios. However,
despite of many similarities of such robust optimization concepts to multiob-
jective models, there are also some significant differences (Hites et al., 2006).
Actually, robust optimization is a problem of optimal distribution of objec-
tive values under several scenarios (c.f. Section 16.4.2) rather than a standard
multiobjective optimization model.

A conservative notion of robustness focusing on worst case scenario re-
sults is widely accepted and the min-max optimization is commonly used to
seek robust solutions. The worst case scenario analysis can be applied ei-
ther to the absolute values of objectives (the absolute robustness) or to the
regret values (the deviational robustness) (Kouvelis and Yu, 1997). The lat-
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ter, when considered from the multiobjective perspective, represents a simpli-
fied reference point approach with the utopian (ideal) objective values for all
the scenario used as aspiration levels. Recently, a more advanced concept of
ordered weighted averaging was introduced into robust optimization (Perny
et al., 2006), thus, allowing to optimize combined performances under the
worst case scenario together with the performances under the second worst
scenario, the third worst and so on. Such an approach exploits better the en-
tire distribution of objective vectors in search for robust solutions and, more
importantly, it introduces some tools for modeling robust preferences. Actu-
ally, while more sophisticated concepts of robust optimization are considered
within the area of discrete programming models, only the absolute robustness
is usually applied to the majority of decision and design problems.

Taking into account the current computational capabilities of both EMO
and MCDM techniques, one may expect development of new robust optimiza-
tion approaches in many areas. Here, we do not make any attempt to discuss
all such existing implementations.

Dealing with Risk

When an (objective or subjective) probability distribution is specified to char-
acterize the data uncertainty, robust optimization becomes a problem of de-
cision under risk. In this context, robustness is represented by the notion
of risk aversion, and typically by a “strong” risk aversion. There exists a
well-developed methodology for decisions under risk and it can be directly
applied to robust optimization. In particular, the mean-risk (MR) approach
(Markowitz model) quantifies the problem in a lucid form of only two objec-
tives: the mean (expected) outcome µ and the risk �, a scalar measure of the
variability (dispersion) of outcomes. The latter may be equally interpreted as
a robustness measure of solutions, thus allowing the MR model to be read as
mean-robustness in an appropriate setting.

The MR approach allows to formalize robust optimization with two sep-
arate criteria: optimality (µ) and robustness (�). Indeed, in many real-life
problems improvements in optimality and robustness are competing while the
MR model allows to formalize it and to analyze the trade-off between these
two criteria. The classical Markowitz model uses the standard deviation σ (or
variance σ2) as the risk measure. Similarly, the biobjective model min{µ, σ}
is applied for robust optimization, although frequently in the scalarized form
min{µ + ασ} with the trade-off parameter α < 0. Unfortunately, while the
mean-variance model is well suited for normal distributions, it may lead to
inferior conclusions in general. Referring to the case depicted in Fig. 16.1 b),
one may notice that obviously a worse solution B is characterized by σ = 0,
thus, in terms of the biobjective MR model it is not dominated by solution A
with a positive measure of dispersion, despite the fact that the latter is clearly
better under all scenarios. This flaw of MR models may be overcome by the
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use of asymmetric dispersion measures focused only on disturbances negative
to the optimization and combining them with the mean values.

For instance, the biobjective model min{µ, µ + σ̄} with σ̄ representing the
upper side standard deviation will generate only solutions with nondominated
distributions of results (Ogryczak and Ruszczyński, 1999), namely, solutions
which cannot be improved under all scenarios simultaneously. One may no-
tice that, while considering the maximum upper deviation (from the mean)
∆ as a probability independent dispersion measure, one gets the criterion
µ + ∆ expressing the worst case scenario result, that is, the classical conser-
vative notion of robustness. Multiobjective approaches to decisions under risk
(Ogryczak, 2002) allow to model various robust solution concepts.

Shimoyama et al. (2005) have proposed a multiobjective robust optimiza-
tion approach called design for multiobjective six sigma (DFMOSS). The DF-
MOSS builds on the ideas of design for six sigma (DFSS) (Engineous Software,
Inc., 2002), coupled with an EMO algorithm (Deb, 2001), for an enhanced
capability to reveal trade-off information considering both optimality and ro-
bustness of design. Jin and Sendhoff (2003) have also discussed the trade-off
between optimality and robustness in the context of multiobjective optimiza-
tion. The DFSS is based on the “six sigma” concept, which was originally
established as a measure of excellence for business processes. The aim is to
achieve a process with such a small dispersion that the range of ±6σ (where σ
is standard deviation) around the mean value µ is included in an acceptable
range for the performance parameter. The level of dispersion can be defined
as “sigma level n” satisfying the following constraints:

µ− nσ ≥ LSL and µ + nσ ≤ USL, (16.1)

where LSL and USL are lower and upper specification limits, respectively. A
larger sigma level indicates smaller dispersion. In the context of robust design
optimization, smaller dispersion translates to a more robust characteristic.

For a general single objective optimization problem where an objective
function f(x) of design variable x must be minimized, the DFMOSS deals
with the biobjective optimization problem where the mean value (µf ) and the
standard deviation (σf ) of f(x) must be minimized when x disperses around
the design condition due to errors and uncertainties. During the optimization
process itself, multiple solutions (individuals) are dealt with simultaneously
using EMO. For each individual, µf and σf are evaluated as two separate ob-
jective functions from f(x) at the sample points around x. From them, better
solutions are selected based on the Pareto optimality concept between µf and
σf . New solutions for the next step are reproduced by crossover and muta-
tion from the selected solutions. This optimization process is iterated until
the trade-off relation between µf and σf has converged, and multiple robust
optimal solutions have been obtained. After the optimization, the sigma level
n satisfying (16.1) is post-evaluated for the obtained optimal solutions. This
allow one to select a robust solution with the highest sigma level (preferably
with the level 6).
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Note that some optimization problems do not have robust solutions that
satisfy six sigma. In such cases, it is preferable to find a solution with a sigma
level n as high as possible, even if it is less than six sigma. In addition, (16.1)
can still be considered during the µf–σf optimization; it is better to do this
when n to be satisfied is strongly determined by a certain design requirement.
Let us also mention that Deb and Gupta (2005) have suggested two types
of robustness in the context of multiobjective optimization. Certainly, many
other variations are possible.

Uncertainty in Presence of Constraints

Uncertainty in problem parameters may affect not only the objective functions
but also the feasible set, thus, threatening the feasibility of solutions. Solving
such problems is frequently referred to as reliability-based optimization, where
one seeks the best solution among those remaining feasible for various data
perturbations. Again, the precise concept of solution depends on the way the
uncertain data domains are introduced. When uncertainty is represented by
non-attributed scenarios, the worst case approach can be applied. When prob-
ability distribution is specified (either objective or subjective) to characterize
the data uncertainty, one gets a typical stochastic programming problem. Fig.
16.2 shows a hypothetical problem with two inequality constraints. Typically,
the optimal solution lies on a constraint boundary or at the intersection of
more than one constraints, as shown in the figure. In the event of uncertain-
ties in design variables (as shown in the figure with a probability distribution
around the optimal solution) in many instances such a solution will be infea-
sible. In order to find a solution which is more reliable (meaning that there
is a very small probability of instances producing an infeasible solution), the
true optimal solution must be sacrificed and a solution interior to the feasible
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Fig. 16.2. The concept of reliability-based optimization.
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region may be chosen. For a desired reliability measure R, it is then desired to
find that feasible solution which will ensure that the probability of having an
infeasible solution instance created through uncertainties from this solution is
at most (1−R). To arrive at such a solution, a stochastic optimization prob-
lem can be converted to its deterministic equivalent (Birge and Louveaux,
1997; Romeijn et al., 2006).

To handle such cases with a large reliability requirement, probabilistic
methodologies involving a double loop, single loop and decoupled methods are
used. For example, one can incorporate a decoupled method with an EMO
procedure (Deb et al., 2007b) to find reliable sets, instead of a sensitive Pareto
optimal set, corresponding to a specified reliability value. More such studies
are needed to make the approach computationally viable and applicable to
practical multiobjective problem solving tasks.

Another issue involving uncertainty in solution evaluation comes from deal-
ing with noisy environments, in which objective and constraint function eval-
uations introduce inherent noise. Although this issue has received a lot of
attention in the context of single objective evolutionary algorithms (see a sur-
vey by Jin and Branke (2005)), some attempts have recently been made in
EMO as well (Bui et al., 2005; Hughes, 2001; Teich, 2001). Clearly, more stud-
ies are needed to fully understand the effect of noise in solution evaluation
procedures in multiobjective optimization.

16.5 Conclusions

In this chapter, we have discussed some ideas for future research in the con-
text of multiobjective optimization and decision making. However, plenty of
research is still needed in many aspects of decision making. In this respect,
some of the future directions mentioned by Miettinen (1999) still stand as
relevant challenges. Let us hope that the future years will bring new light in
them and many other fruitful and rewarding topics.

An important challenge is to increase awareness of the possibilities and
potential of multiobjective optimization because there still are many applica-
tion fields where multiobjective optimization is not used at all or is used in
a very simplistic way even though the problems solved clearly involve mul-
tiple conflicting objectives. Often, the existence of decision support tools is
simply not known to many researchers. Here, the importance of strong and
encouraging case studies cannot be emphasized enough. For people dealing
with applications, case studies give a possibility to see the benefits obtainable
in a concrete and understandable way. A necessary and natural step of bring-
ing multiobjective optimization tools closer to real DMs is the important
challenge of designing user-friendly software for decision support. We need
software that is easily accessible (like the WWW-NIMBUS R© system (Mietti-
nen and Mäkelä, 2000, 2006) operating via the Internet) and this certainly is
a field needing more attention.
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In many applications, multiple objectives are hidden and simplified in the
modeling phase in order to produce a problem that seems to be solvable. In-
creasing awareness of the existence of multiobjective optimization methods
and tools also encourages questioning the existing models in order to avoid
simplifications that blur the possibility of studying the interdependencies be-
tween the conflicting objectives in real problems.

The possibilities and importance of interactive methods have been empha-
sized a lot in this book because interactive methods give the DM a possibility
to learn about the problem considered. If the problem is complex and function
evaluations take a lot of time, the interactive nature of the solution process
may suffer because the DM has to wait for new and improved solutions. This
sets requirements and challenges on the computational efficiency of the meth-
ods used. Besides using meta-modeling (see Chapter 10) and optimization
techniques with increased accuracy (as the solution process proceeds), new
approaches and ideas are needed. For example, ideas related to learning are
discussed in Chapter 15.

One aspect has clearly emerged from the chapters of this book: multiob-
jective optimization using evolutionary algorithms or otherwise and decision
making aids must be put together synergistically, computationally efficiently,
and, above all, interactively for a DM to examine possible candidate solutions
and choose one particular preferred solution at the end. Such a task requires
one to first know both optimization and decision making literature well. This
book has shown a number of possibilities of such mergers from various points
of view. This chapter has also suggested a number of avenues for moving for-
ward in this direction. With collaborative efforts from various research groups
involving multiobjective optimization and decision making, we should witness
more holistic approaches, interactive algorithms and software systems to be
developed for practical use in the coming years.
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