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Abstract

In th epast decade, increasing interest in equity issues resulted in new methodologies
in the area of operations research. This paper deals with the concept of equitably efficient
solutions to multiple criteria optimization problems. Multiple criteria optimization usually
starts with an assumption that the criteria are incomparable. However, many applications
arise from situations which present equitable criteria. Moreover, some aggregations of criteria
are often applied to select efficient solutions in multiple criteria analysis. The latter enforces
comparability of criteria (possibly rescaled). This paper presents aggregations which can be
used to derive equitably efficient solutions to both linear and nonlinear multiple optimization
problems. An example with equitable solutions to a capital budgeting problem is analyzed
in detail. An equitable form of the reference point method is introduced and analyzed.

Key words. Multiple Criteria, Efficiency, Equity, Ordered Weighted Averaging, Lexicographic
Minimax, Reference Point Method

1 Introduction

The problem of multiple criteria optimization has been studied for many years, and the tech-
niques of multiple criteria analysis have found success in many diverse applications [19, 20]. The
standard approach starts with an assumption that the criteria are incomparable, i.e. having no
basis of comparison. However, there are many applications in which the criteria are uniform
in the sense of the scale used and their values are directly comparable. Moreover, the criteria
are considered impartially which makes the distribution of outcomes more important than the
assignment of several outcomes to the specific criteria. Such models express ideas of allocation
of resources and try to achieve some equitable allocation of resources [7]. More generally, the
models are related to the evaluation of various systems which serve many users where quality
of service for every individual user defines the criteria. An example arises in location theory, in
which the clients of a system are entitled to equitable treatment according to community regu-
lations. In such problems, the decisions often concern the placement of a service center or other
facility in a position so that the users are treated in an equitable way, relative to certain criteria
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[12]. Another type of model is that of approximation of discrete data by a functional form. The
residuals may be viewed as objectives to be minimized, and in the classical approach, there is
no reason to treat them in any way but equitably. Moreover, uniform individual objectives may
be associated with some events rather than physical users, like in many dynamic optimization
problems where uniform individual criteria represent a similar event in various periods.

Recently, one may notice an increasing interest in equity issues in the area of operations
research. Several research publications dealing with the issue with respect to various application
areas have appeared [2, 7, 12, 13]. Some of them directly related equity to the multiple criteria
optimization methodology. Finally, the novel and distinct mathematical approach denoted by
equitable efficiency has been developed to provide solutions to these examples of multiple criteria
optimization. The formalization of the equitable efficiency was introduced in our earlier paper
[3], which analyzes the basic solution properties and the basic generation techniques. This has
already allowed the solution of problems arising in location theory [4, 12] as well as in portfolio
optimization [13]. Further progress made in generation techniques [16] extends possible areas of
application of the equitable multiple criteria optimization.

The concept of equitably efficient solution is a specific refinement of the Pareto-optimality.
Hence, equitable multiple criteria techniques focus on some selection of Pareto-optimal solutions.
It turns out, however, that the techniques are often applied to select efficient solutions in general
multiple criteria optimization. Indeed, in approaches which seek to scalarize the multiple criteria,
some effort is always placed to replace the original objective functions with some individual
achievements which are combined to form a final scalar objective function to be optimized.
This is done in order to make the physical units of the individual achievements uniform, so
that they can be added or otherwise composed. This phase of the modeling discipline seldom
questions the process or the consequences of such a uniformization. One of the results of our
research is to trace the consequences of this uniformization beyond the process of aggregation
of functions for scalarization. We will show that every efficient solution of a multiple criteria
optimization problem can be identified by the optimization of an equitable aggregation applied
to appropriately defined individual achievements.

The paper is organized as follows. In the next section we recall and explain in detail the
concept of equitable dominance and equitably efficient solutions to multiple criteria optimiza-
tion problems. Section 3 is devoted to equitable aggregations. It is shown that while various
L, norms can be used as equitable aggregations for positive outcomes, the ordered weighted
aggregations are applicable for general (positive or negative) outcomes. Further, in Section 4
we examine various applications of equitable optimization to multiple criteria analysis. First we
show that several multiple criteria problems require, in fact, equitable preferences models and
equitable aggregation may result in an efficient solution procedure. Next, we analyze equitable
approaches to general multiple criteria problems which by introducing individual achievements
are transformed into uniform and equitable problems. The latter covers in particular the refer-
ence point and goal programming methodology.
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2 Pareto-optimality and equitable efficiency

Consider a decision problem defined as an optimization problem with m objective functions
fi(x). For simplification we assume, without loss of generality, that the objective functions are
to be minimized. The problem can be formulated as follows

min {f(x) : x€Q} (1)

where

f(x) is a vector—function that maps the decision space X = R" into the criterion space
Y =R™,

Q C X  denotes the feasible set,

xeX denotes the vector of decision variables.

We refer to the elements of the criterion space as outcome vectors.

Model (1) only specifies that we are interested in minimization of all objective functions f;
fori € I ={1,2,...,m}. In order to make it operational, one needs to assume some solution
concept specifying what it means to minimize multiple objective functions. The solution concepts
are defined by properties of the corresponding preference model. We assume that solution
concepts depend only on evaluation of the outcome vectors while not taking into account any
other solution properties not represented within the outcome vectors. Thus, we can limit our
considerations to the preference model in the criterion space Y.

The preference model is completely characterized by the relation of weak preference [9],
denoted hereafter with <. Namely, the corresponding relations of strict preference < and indif-
ference 2 are defined by the following formulas

y <y & (yY=y" and noty” <y’ (2)
y=y' & (Y Xy" and y"=<y') (3)

The preference model related to the standard Pareto—optimal solution concept also assumes
that the preference relation =< is reflexive

y =y (4)
transitive
(yl j yll a.nd y_II j ylll) = yl j yIII (5)
and strictly monotonic
y—ce; <y fore>0,i1€l (6)

where e; denotes the i—th unit vector in the criterion space. The last assumption expresses
the fact that for each individual objective function less is better (minimization). The preference
relations satisfying axioms (4)—(6) are called hereafter rational preference relations. The rational
preference relations allow us to formalize the Pareto—optimal solution concept with the following
definitions. We say that outcome vector y’ € Y rationally dominates y” € Y (y' <, y"), iff
y' < y" for all rational preference relations <. We say that a feasible solution x € @Q is
a Pareto—optimal (or efficient) solution of the multiple criteria problem (1), iff y = f(x) is
rationally nondominated.
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The relation of weak rational dominance <, may be expressed in terms of the vector in-
equality : y’' <, y" iff y; < v for all ¢ € I. As a consequence, we can state that a feasible
solution x° € @Q is a Pareto-optimal solution of the multiple criteria problem (1), if and only
if, there does not exist x € @Q such that f;(x) < fi(x°) for all i € I where at least one strict
inequality holds. The latter refers to the commonly used definition of the Pareto-optimal solu-
tions as feasible solutions for which one cannot improve any criterion without worsening another
[19]. However, the axiomatic definition of the rational preference relation allows us to introduce
additional properties of the preferences related to the uniform and equitable outcomes.

While dealing with uniform criteria, we assume that the preference model is impartial (anony-
mous, symmetric). In terms of the preference relation it may be written as the following axiom

(y‘r(l)a yT(2)7 .. 1y’r(m)) = (yb Y2, ... aym) (7)

for any permutation 7 of I. Further, according to the theory of equity measurement [10], the
preference model should satisfy the (Pigou-Dalton) principle of transfers. The principle of
transfers states that a transfer of any small amount from an outcome to any other relatively
worse—off outcome results in a more preferred outcome vector. As a property of the preference
relation, the principle of transfers takes the form of the following axiom

Yp >y = y—ceypteen <y for0<e<yy—ym (8)

The preference relations satisfying all axioms (4)—(8) we will call hereafter equitable rational
preference relations.

Requirements of impartiality (7) and the principle of transfers (8) do not contradict the
multiple criteria optimization axioms (4)—(6). Therefore, we can consider equitable multiple
criteria optimization [3] based on the preference model defined by axioms (4)—(8). The equitable
rational preference relations allow us to define the concept of equitably efficient solution, similar
to the standard efficient (Pareto—optimal) solution defined with the rational preference relations.
We say that outcome vector y' equitably dominates y" (y' <e y"), iff y' < y” for all equitable
rational preference relations <. We say that a feasible solution x € @ is equitably efficient (is
an equitably efficient solution of the multiple criteria problem (1)), if and only if there does not
exist any x’ € @Q such that f(x') <. f(x). Note that each equitably efficient solution is also a
Pareto—optimal solution, but not vice verse.

The relation of equitable dominance <. can be expressed as a vector inequality on the
cumulative ordered outcomes. This can be mathematically formalized as follows. First, in-
troduce the ordering map © : R™ — R™ such that O(y) = (0:(y),02(y),-..,0mn(y)), where
01(y) > 02(y) > --- > 0iu(y) and there exists a permutation 7 of set I such that 0;(y) = y,(;
for i =1,...,m. Next, apply to ordered outcomes O(y), a linear cumulative map thus resulting
in the cumulative ordering map O(y) = (01(y),02(y), - - -,0m(y)) defined as

Oi(y) =) 0i(y) fori=1,...,m (9)
j=1

The coefficients of vector ©(y) express, respectively: the largest outcome, the total of the two
largest outcomes, the total of the three largest outcomes, etc.

The relation O(y’) < O(y”) was extensively analyzed within the theory of majorization [10],
where it is called the relation of weak submajorization. The theory of majorization includes the
results which allow us to derive the following theorem [3].

4
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Theorem 1 Qutcome vector y' € Y equitably dominates y" € Y, if and only if 0;(y') < 0;(y")
for all i € I where at least one strict inequality holds.

Vector O(y) can be viewed graphically with a piecewise linear curve connecting point (0,0)
and points (i/m, 0;(y)/m) for i = 1,...,m. Such a curve represents the (upper) absolute Lorenz
curve which can be mathematically formalized as follows. First, we introduce the left-continuous
right tail cumulative distribution function:

1 ify;>d

0 otherwise (10)

Fy(d) = Z %&'(d) where §;(d) = {

=1

which for any real value d provides the measure of outcomes greater or equal to d. Next, we in-
(-1)

troduce the quantile function Fy_1
function Fy:

as the right-continuous inverse of the cumulative distribution

F§_1)(n) =sup {d: Fy(d) >n} for0<n<1

By integrating F)(,_l) one gets:
n
F20)=0 and FS 2 = / F{ Y(a)da for0<n<1 (11)
0

Graphs of functions F)(TQ) (n) (with respect to 1) take the form of concave curves (Fig. 1),
the (upper) absolute Lorenz curves. In our case of m outcomes, the absolute Lorenz curve is
completely defined by the values F)(,_Q) (t¢/m) = %G_i(y) for i = 1,...,m where F§_2)(1/m) =
6,(y) = 01(y) represent the worst outcome and F}(,_Z)(l) =10,(y) =237, 0i(y).

—m

9¢(Y)

m

0 2 m=1 1] 4
m m m

1
m

Figure 1: O(y

~—

as the upper absolute Lorenz curves

In income economics the Lorenz curve is a cumulative population versus income curve [10].
A perfectly equal distribution of income has the diagonal line as the Lorenz curve and no
outcome vector can be better. The absolute Lorenz curves, used in the equitable optimization,
are unnormalized taking into account also values of outcomes. Vectors of equal outcomes are
distinguished according to the value of outcomes. They are graphically represented with various
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ascent lines in Fig. 1. Hence, with the relation of equitable dominance an outcome vector of small
unequal outcomes may be preferred to an outcome vector with large equal outcomes. This allows
to overcome the common flaws of the approaches based on a strict inequality minimization.

Note that Theorem 1 permits one to express equitable efficiency for problem (1) in terms of
the Pareto-optimality for the multiple criteria problem with objectives O(f(x))

min {(,(£(x)), G2 (£(x)), ..., 0n(f(x))) : x€Q} (12)

Corollary 1 A feasible solution x € @ is an equitably efficient solution of the multiple criteria
problem (1), iff it is a Pareto-optimal solution of the multiple criteria problem (12).

Corollary 1 provides the relationship between equitable efficiency and Pareto—optimality.
Moreover, the multiple criteria problem (12) may serve as a source of techniques generating
equitable efficient solutions to the original problem (1). Although the definition of quantities
01(y), used as criteria in (12), are very complicated they can be modeled with simple auxiliary
variables and constraints. It is commonly known that the worst (largest) outcome may be
defined by the following optimization: 6;(y) = min {¢t : ¢ >y fori = 1,...,m}, where
t is an unrestricted variable. It turns out that this approach can be generalized to provide
an effective modeling technique for quantities 0 (y) with arbitrary k [17]. Namely, for a given
outcome vector y the quantity 6;(y) may be found by solving the following linear program:

m
Oc(y) =min {kt + > df : t+df >y, df >0 fori=1,...,m}, (13)

=1

where t is an unrestricted variable while nonnegative variables d;" represent, for several outcome
values y;, their upside deviations from the value of ¢. Independently from the formal proof [17],
this formula can be justified as follows. It is obvious that min(kt + Y., d;) = 0 (y) whenever
no more than k£ — 1 deviations d;-" are strictly positive. On the other hand, for any ¢ and dZT"
feasible to (13) one can define an alternative feasible values: #; =t + A and Jj’ =df — A for
di; > 0, where A is an arbitrary small positive number. For at least k positive values one gets
k??k + Z:’il (Z]”' < kty + Z:’ll dyi, which justifies (13).

Formula (13) allows us to formulate problem (12) as the following multiple criteria optimiza-
tion problem:

min (z1,22,.-.,2%m) (14)
subject to x€ Q
m
=ty +»  dfy fork=1,....m (15)
=1
ty+d} > fi(x), df >0 fori,k=1,....m (16)

Note that problem (14)-(16) belongs to the class of convex programs provided that the feasible
set () is convex and all the original criteria f; are convex functions. In the case of a linear
multiple criteria problem (1) the resulting formulation (14)-(16) remains in the class of linear
programs.
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3 Equitable aggregations

Typical solution concepts for multiple criteria problems are defined by aggregation functions
g :' Y — R to be minimized. Thus the multiple criteria problem (1) is replaced with the
minimization problem

min {g(f(x)) : x€Q} (17)

In order to guarantee the consistency of the aggregated problem (17) with minimization of all
individual objective functions in the original multiple criteria problem, the aggregation function
must be strictly increasing with respect to every coordinate, i.e.

y;<yz = g(yla"'ayi—layz{ayi—i—la"'aym) <g(ylay2a"'7ym) foriel (]‘8)

Every optimal solution to the aggregated problem (17) is then a Pareto-optimal solution of the
original multiple criteria problem.

The aggregated problem (17) and its corresponding preference model are defined by the
relation: y' < y” iff g(y') < g(y"). In order to guarantee equitable rationality of this preference
relation, the aggregation function must be strictly increasing and symmetric (impartial)

9Yr()s Yr@)s- -+ »Yr(m)) = 9(Y1,Y2,-- -, Yym) for any permutation 7 of T (19)

as well as equitable (to satisfy the principle of transfers)

Iy, Y — i 5oy Um) < 9(Y1, Y2, -+ Ym)  for 0 < e < yy —ym (20)

In the case of an aggregation function satisfying all the requirements (18), (19) and (20), we call
the corresponding problem (17) an equitable aggregation of problem (1). Every optimal solution
to the equitable aggregation (17) is an equitably efficient solution of the original multiple criteria
problem. Note that symmetric functions satisfying the requirement

g(yla"'ayi’_57"',yi”+€a"'7ym)Sg(ylay%'“aym) for0<€<yi’_yi" (21)

are called (weakly) Schur-convex [10] while the stronger requirement of equitability (20), we
consider, is related to strictly Schur-convex functions. In other words, an aggregation (17) is
equitable if it is defined by a strictly increasing and strictly Schur-convex function g.

The simplest aggregation functions commonly used for the multiple criteria problem (1) are
defined as the sum of outcomes

9y) = v (22)
=1

or the worst outcome
g(y) = max ;. (23)

i=1,....,m

The sum (22) is a strictly increasing function while the maximum (23) is only nondecreasing.
Therefore, the aggregation (17) using the sum of outcomes always generates a Pareto-optimal
solution while the minimization of the worst outcome may need some additional refinement [14].
Both the functions are symmetric and satisfy the requirement (21), although they do not satisfy
the equitability requirement (20). Hence, they are Schur-convex but not strictly Schur-convex.
Therefore, the corresponding aggregation (17), in the general case, may generate solutions which
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are not equitably efficient. To generate equitably efficient solutions, some convexification is
required.
For any strictly convex, increasing function s : R — R, the function

gly) = Z s(ys) (24)

=1

is a strictly monotonic and strictly Schur-convex function [10]. This defines a family of the
equitable aggregations according to the following corollary [3].

Corollary 2 For any strictly convez, increasing function s : R — R, the optimal solution of
the problem

m
min {Z s(fi(x)) @ xeQ} (25)
i=1
is an equitably efficient solution of the multiple criteria problem (1).

Various convex functions s can be used to define the aggregation (25). In the case of the
outcomes restricted to positive values, any p-power of is a strictly positive and convex function
for p > 1. This justifies the well-known Holder L, norms

Iyl = (Z \ym)p (26)

as a source of equitable aggregations. Specifically, the minimization of ||y||, is equivalent to
the minimization of ||y|[§ = >, |u;|P which is a strictly increasing and strictly Schur-convex
function for 1 < p < co and positive arguments y;.

Note that the sum of outcomes (22) and the worst outcome (23) also represent the L,
norms for p = 1 and p = oo, respectively. Hence, they are limiting cases of the strictly Schur-
convex aggregations related to 1 < p < co. As the limiting cases they satisfy the corresponding
weak requirements. Actually, L is strictly monotonic but only weakly Schur-convex while L is
weakly monotonic and weakly Schur-convex. On the other hand, these two norms can be directly
extended to piecewise linear aggregation functions (22) and (23) which are well defined for any
outcome values (including negative ones) preserving their properties of (weak) monotonicity and
Schur-convexity. The strictly Schur-convex L, norms are nonlinear and there is no direct way to
extend them for negative outcomes preserving their strict monotonicity properties. For general
(positive and negative) outcomes, one may consider aggregations

Sp(y) = (Z (max{0,yi})? ) p (27)

=1

which are monotonic and Schur-convex but not strictly. Hence, we have two limiting piecewise
linear limiting aggregations and a family of nonlinear functions to build intermediate preferences.
We will argue further that the space between the piecewise linear aggregation functions (22) and
(23) can be filled out with a family of piecewise linear functions which are well defined for any
outcome values (including negative ones) maintaining their properties of strict monotonicity and
Schur-convexity.
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Another way to build equitable aggregations is based on the use of the cumulative ordered
outcomes 0;(y). Note that Corollary 1 allows one to generate equitably efficient solutions of
(1) as efficient solutions of problem (12). The aggregation minimizing the sum of outcomes,
corresponds to minimization of the last (m—th) objective in problem (12). Similar, the minimax
scalarization corresponds to minimization of the first objective in (12). In general, one may con-
sider increasing functions of cumulative ordered outcomes 6;(y). In particular, for the weighted
sum on gets

Z w;0;(y) (28)

Note that, due to the definition of map © with (9), the above function can be expressed in
the form with weights v; = Z;":Z wj (¢ = 1,...,m) allocated to coordinates of the ordered
outcome vector. Such an approach to aggregation of outcomes was introduced by Yager [23] as
the so—called Ordered Weighted Averaging (OWA). When applying OWA to problem (1) we get

min {Z v0;(f(x)) : x€Q} (29)
=1

The OWA aggregation is obviously a piecewise linear function since it remains linear within
every area of the fixed order of arguments.

Theorem 2 If weights v; are strictly decreasing and positive, i.e. v1 > Vg > -+ > Vp_1 > U >
0, then each optimal solution of the OWA problem (29) is an equitably efficient solution of (1).

Y2

(a) s (b) U1 = ’02\
Y2

Y2 = Y1

al

V1 >712\

V1 > V9

Lo Lo Ly W \ \y1

Figure 2: Isoline contours for equitable aggregations: (a) L, norms, (b) OWA aggregations

While equal weights define the linear aggregation, several decreasing sequences of weights
lead to various strictly Schur-convex and strictly monotonic aggregation functions. Thus, the
monotonic OWA aggregations provide a family of piecewise linear aggregations filling out the
space between the piecewise linear aggregation functions (22) and (23) as shown in Fig. 2.
Actually, formulas (28) and (13) allow us to formulate any monotonic (not necessarily strictly)
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OWA problem (29) as the following LP extension of the original multiple criteria problem:

min Zwkzk (30)
k=1

subject to x€Q
m

2 =ktp+»_ df fork=1,...,m (31)
i=1

te +di > fi(x), df >0 fori,k=1,....,m (32)

where wy, = vy, and wg = vg — vg41 for k=1,...,m — 1 (compare [16] for further details).

When differences among weights tend to infinity, the OWA aggregation approximates the
leximin ranking of the ordered outcome vectors [1, 24]. That means, as the limiting case of the
OWA problem (29), we get the lexicographic problem:

lexmin {O(f(x)) : x€ @} (33)

which represents the lexicographic minimax approach (called also the nucleolar approach [8])
to the original multiple criteria problem (1). Problem (33) is a regularization of the standard
minimax scalarization (23), but in the former, in addition to the largest outcome, we minimize
also the second largest outcome (provided that the largest one remains as small as possible),
minimize the third largest (provided that the two largest remain as small as possible), and so
on. Due to (9), problem (33) is equivalent to the problem :

lexmin {O(f(x)) : x € Q} (34)

As the lexicographic optimization generates efficient solutions, due to Corollary 1, the opti-
mal solution of the lexicographic minimax problem (33) is an equitably efficient solution of the
multiple criteria problem (1). In other words, the minimax aggregation (23) can be lexicograph-
ically regularized to guarantee that the corresponding preference relation meets both the strict
monotonicity and the principle of transfer (strict Schur-convexity) requirements.

The lexicographic minimax solution can be considered in some sense the “most equitable
solution”. One may wish to look for a strictly monotonic and Schur-convex regularization of
the minisum aggregation (22) thereby generating the “least equitable solution” . This can be
achieved by applying reverse lexicographic minimization to the problem (12), i.e. solving the
lexicographic problem

lexmin {(0,, (f(x)), Om_1(£(x)),...,0:(F(x))) : x€Q} (35)

where first ,,(f(x)) is minimized, next ,,_1(f(x)) and so on. Note, that in the lexicographic
optimization problem dividing objectives by constants does not affect the solution and 6;(y) /4
represents the mean of ¢ largest coefficients in the outcome vector y. Therefore, we refer to
problem (35) as the lexicographic mean problem. It follows from Corollary 1 that the optimal
solution of the lexicographic mean problem (35) is an equitably efficient solution of the multiple
criteria problem (1).

10
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4 Applications

Recently, there have appeared a number of papers dealing with issues of equity and even some
papers which consider multiple criteria models ([2, 6, 7, 12, 13] and references therein). In
some of these papers, the solutions presented are equitably efficient, but the authors do not
acknowledge this fact (c.f. references in [7]), while in other papers, computed Pareto-optimal
solutions are criticized for their lack of equity [2, 6] and the authors replace the search for
an equitably efficient solution by minimization of some inequality measures or even formally
abandon the entire multiple criteria model. Since the Pareto-optimal set is very large in some
models, it is quite possible to compute efficient solutions which are very far from the equitable
efficient solutions. Thus, even though some quite appealing equitably efficient solutions may
exist, they may be ignored in favor of solutions which are less appealing, and less justified by
mathematical principles. In Section 4.1 we show the real-life case of the budget redistribution
[2] may be effectively solved with the use of equitable aggregations.

On the other hand, several multiple criteria optimization methods build the individual
achievement functions which measure actual achievement of each outcome with respect to the
corresponding preference parameters. Thus all the original outcomes are transformed into a
uniform scale of individual achievements allowing one to use some impartial aggregation tech-
niques. This applies, in particular, to the wide family of the Reference Point Method and Goal
Programming approaches. For these approaches, equity among the individual achievements has
been raised as an important issue (c.f. [14] and references therein). In Section 4.2 we will show
that every efficient solution to any multiple criteria problem can be found by equitable opti-
mization of appropriate individual achievement functions. We especially focus on the reference
point methods taking advantages of this relation.

4.1 Equitable preferences

Budgets, in the administration of organizations, have become increasingly dynamic. Cuts in
budgets get increased publicity, and equity is sought in how to apply these cuts. However,
budgets may also reflect increases, which should also be applied in a fair (equitable) manner.
In this section we examine the case treated by Fandel and Gal [2], and we show that it may be
solved in quite a satisfying way by means of equitably efficient solutions. Fifteen state univer-
sities in North Rhine-Westphalia together with the German Ministry of Science and Research
participated in the redistribution of a part of the budget for teaching and research. The authors
reported on how the redistribution problem has been treated by methods of operations research
and how the final solution was reached in a process of negotiations between the Ministry and
participating universities. The decision makers agreed on a set of 5 measures of university per-
formance. The measures were calculated for each of the 15 universities, resulting in constants
that were combined using attribute shares g1, go,.-., g5. These shares were treated as decision
variables in the subsequent models of the decision problem.

The universities participating in the redistribution requested that the resulting distribution
should be as close as possible to the original distribution. Thus, the problem was modeled using
15 criteria | z;|, which represent the absolute deviation of the new budget from the original budget
of each university. These criteria are obviously impartial and equitable. Actually, several L,
norms have been applied while looking for a solution [2]. We present these solutions in the first
three rows of Table 1. None of the solutions have been accepted by the Ministry. Finally, the

11
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optimization was abandoned and after the negotiation process a solution (reported in the table
as ‘chosen’) has been selected, that satisfied additional requirements of the decision makers,
which will be discussed below.

Table 1: Solutions found by simple OWA models

Model | g1 92 93 94 g5 max; |zi| Y|zl Do lal
Ly 0.0000 0.2614 0.5120 0.1746 0.0520 1.30 6.39 4.74
Lo 0.5030 0.2647 0.4648 0.1720 0.0482 1.19 6.86 4.52
L 0.1546 0.1348 0.5051 0.2045 0.0000 0.92 7.90 5.19

chosen | 0.20 0.20 0.35 0.20 0.056 1.37 7.90 6.25

minimax | 0.15 0.15 0.50 0.20 0.00 0.95 7.83 5.44
minisum | 0.00 0.30 0.45 0.20 0.05 1.22 6.61 4.71

OWA-1 | 0.05 0.30 0.45 0.15 0.05 1.26 6.97 4.67

OWA-2 | 0.00 0.30 0.50 0.15 0.05 1.39 6.82 4.80

OWA-3 | 0.10 0.25 0.45 0.15 0.056 1.12 7.18 4.62

optimal | 0.10 0.30 0.35 0.15 0.10 1.04 7.26 5.01

We wish to use the case to demonstrate that a consequent application of equitable opti-
mization, particularly the OWA aggregation, could directly lead to acceptable results. For this
purpose we have computed several OWA aggregations of the criteria. For comparability with
the ‘chosen’ solution, we have limited the decision variables g; to the discrete grid of values:
gr € {0.0,0.05,...,0.95,1.0}. Since the equitable OWA aggregation as implementable by LP
(30)-(32) is capable to accommodate additional integer (discrete) constraints, this is easily ac-
complished. Table 1 reports results for some simple OWA models. We have started with the
minimax and minisum approaches as the limiting OWA models defined with weights w; given
by the sequences 1,0,...,0 and 0,...,0,1, respectively. Next we consider models defined by
w; =1 for all 1 (OWA-1), w; = i (OWA-2), and w; = 16 — i (OWA-3). Note that we define the
OWA models by positive weights w; as in Eq. (28) and LP formulation (30)-(32). Hence, in
terms of (29), OWA-1 represents strictly monotonic weights v; decreasing with constant step 1.
In OWA-2 weights v; decrease faster for large 7 which makes the corresponding solution closer
to the minisum result while opposite weights v; decreasing faster for small numbers 7 in OWA-3
makes the solution closer to the minimax model.

While looking for the distribution scheme the decision maker wanted to avoid too large
attribute shares gy allocated to a single decision factor (evaluation criterion) as well as zero
shares excluding some factors from the decision process [2]. We have enforced these additional
requirements by restricting the attribute shares gx to the interval: 0.0 < gx < 0.4. It turns
out that all our OWA models result then in the same equitably efficient solution presented as
‘optimal’ in Table 1. One can easily notice that the solution is much better than ‘chosen’ in terms
of all the L, measures. Actually, the ‘optimal’ solution equitably dominates the ‘chosen’ one, as
clearly shown with the corresponding absolute Lorenz curves in Fig. 3 (note that normalizing
factor 1/15 is ignored for both the axes as well as we start the curves from the first ordered
criterion thus depicting the minimax values). Moreover, the solution ‘optimal’ meets also other
additional requirements and restriction mentioned in [2]. We do not want to question a solution
accepted for that application. We rather wish to show that there exist methodological tools to
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model various equitable preferences.

8 .

' choseﬁ solutioh ——
optimal, 0.0<g_i<0.4 ——~—

7 L

Sum of ordered criteria
N

O Il Il Il Il Il Il Il Il
0 1 3 5 7 9 11 13 15

Ordered criteria

Figure 3: Absolute Lorenz curves: solution ‘chosen’ dominated by ‘optimal’

Table 2: Solutions found by complex OWA models

Model | g1 92 93 94 95 max; [zi] Y|zl Y lal
OWA-4 | 0.00 0.30 0.45 0.20 0.05 1.22 6.61 4.71
OWA-5 | 0.10 0.20 0.50 0.20 0.00 1.09 7.49 4.91
OWA-6 | 0.05 0.25 0.45 0.20 0.05 1.08 6.81 4.67
OWA-7 | 0.10 0.20 0.45 0.20 0.05 0.96 7.06 5.02

To demonstrate wider gamut of the equitable preferences supported by OWA modeling we
have built and solved several more complex models. Table 2 presents results for four such
models. All them were analyzed on the basic decision problem without any upper bound on
gr- Model OWA-4 is defined by weights w; = i?> which makes it closer to the minisum model
than OWA-2. It turns out that the model generates exactly the same solution as the standard
minisum approach. This justifies the minisum solution from Table 1 as the equitably efficient
one. Similarly, one may consider weights w; = (16 —i)? or w; = (16 — i) to strengthen the
OWA-3 model. The latter, denoted as OWA-5, turns out to be closer to the minimax model than
OWA-3 but not very much closer. In order to enforce solutions closer to the minimax model one
may directly increase the weight corresponding to this criterion. The OWA-6 model defined by
weights w; = 2000 and w; = i for i = 2,...,15 has additional stress on the minimax criterion
as it represents a linear combination of the minimax criterion x 1999 plus the OWA-5 criterion.
Similar, the OWA-7 model defined by weights w; = 500 and w; = 1 for 4 = 2,...,15 can be
interpreted as a linear combination of the minimax criterion x 499 plus the OWA-1 criterion.
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The latter turns out to be almost optimal with respect to the minimax criterion (Ly, norm) and
generating better values of the L; and Ly norms than the original minimax solution, while the
former generates even better values of the L; and L9 norms but worsening the minimax criterion.
Note that in terms of the three L, norms, we consider, the OWA-2 and OWA-5 solutions are
worse than the results of OWA-6. Nevertheless, both OWA-2 and OWA-5 are equitably efficient.
The entire absolute Lorenz curves are important to define the equitable dominance and Fig. 4
depicts various plots of the curves showing that the OWA-2 curve is the best for intermediate
numbers of criteria.

8

Sum of ordered criteria
N

T T
min sum |z_i| —e—
min max |z_i| --—--&---

7

9

11

13

15

Ordered criteria

Figure 4: Absolute Lorenz curves for the sample problem.

4.2 Non-equitable preferences

Standard multiple criteria optimization problems with a general preference structure essentially
assume the criteria to be incomparable, i.e. having no basis of comparison. Therefore, they
cannot be directly considered as equitable. Nevertheless, typical multiple criteria optimization
methods aggregate the outcomes with various scalarizing functions [11, 21]. We argue that most
scalarizing functions can be viewed as two-stage transformations of the original outcomes. At
the first stage, the individual achievement functions are built which measure actual achieve-
ment of each outcome with respect to the corresponding preference parameters. Thus, all the
outcomes are transformed into a uniform scale of individual achievements. At the second stage
the individual achievements are impartially aggregated in order to select a better distribution
of achievements. This allows one to apply the equitable techniques to aggregate the individual
achievements. Such an approach is justified by the following assertions.
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Theorem 3 If X € Q is a Pareto-optimal solution to multiple criteria problem (1) and s;
R — R are strictly increasing scaling functions satisfying the requirement

s1(f1(%)) = s2(f2(X)) = ... = sm(fm(X)) = 7 (36)
with some arbitrary real value T, then X is an equitably efficient solution to scaled problem:
min { (s1(f1(x)),---,sm(fm(x))) : x€Q}. (37)

Proof. Suppose that X € @), Pareto-optimal to multiple criteria problem (1) is not equitably
efficient to (37). Then, there exists a feasible x € @ such that y°* = (s1(f1(x)),---, sm(fm(x)))
equitably dominates ¥° = (s1(f1(X)),.-.,Sm(fm(X)))- This means that Gz(ys) < 6;(y°) for

~— —

i = 1,2,...,m with at least one inequality strict. However, due to (36), 0;(¥°) = 7 for all
1=1,2,...,m. Hence,
k k
Zsz(fZ ) <k Z (x)) fork=1,2,....m
and, due to strictly increasing functions s;, one gets f;(x) < fi(x) for ¢ = 1,2,...,m with at
least one inequality strict, which contradicts the Pareto-optimality of x. O

Corollary 3 For any X € ) Pareto-optimal solution to multiple criteria problem (1) there exist
strictly increasing scaling functions such that X is an equitably efficient solution to scaled problem

(37).

Note that as a sample scaling functions satisfying the requirement (36) one may consider
si(yi) = yi — fi(X) or s;(y;) = (yi — bi)/(fi(X) — b;) where b; < f;(X) is an arbitrary parameter.
Thus there exist linear scaling functions meeting the requirements of Theorem 3. Actually, this
type of scaling function is used in the Reference Point Method (RPM) to form the so-called
individual (or partial) achievement functions.

Recall that the idea of RPM is to produce several efficient solutions according to the DM
preferences specified interactively in terms of reference (aspiration) levels. Depending on the
specified reference levels a scalarizing achievement function is built which, when optimized, gen-
erates an efficient solution to the problem. The scalarizing achievement function may be directly
interpreted as expressing utility to be maximized. However, to keep the discussion consistent
with the minimization models we will assume that the scalarizing achievement function is min-
imized (thus representing dis-utility). The generic scalarizing achievement function takes then
the following form:

max, {si(fi(x }+6Z si(fi(x (38)
where ¢ is an arbitrary small positive number and s;(y;) = s;(y;,b;), for i = 1,2,...,m, are

the individual achievement functions measuring actual achievement of the i—th outcome with
respect to the corresponding reference levels b;.

The standard RPM methodology [22] assumes the parameter ¢ in formula (38) to be arbi-
trarily small. Thus, when accepting the loss of a direct utility interpretation, one may consider
a limiting case with ¢ — 04 which results in lexicographic order applied to two separate terms
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of function (38). Therefore, RPM may be also considered as the following lexicographic problem
([14] and references therein):

m
lex min { llg%);b{si(fi(x))}’; Si(fi(x))] tx€eQ } (39)
=

The advantage of the above lexicographic model is that it allows us to generate all efficient
solutions whereas only properly efficient solutions can be obtained with the minimization of
(38).

Various functions s; provide a wide modeling environment for measuring individual achieve-
ments. For the sake of computational robustness, the piecewise linear functions s; are usually
employed. In the simplest models, they take a form of two segment piecewise linear functions:

() — )\?—(yi - b), for y; > b;
silts) = { A (yi — by), for y; <b; (40)

where Af and A, are positive scaling factors corresponding to underachievements and over-
achievements, respectively, for the i—th outcome. It is usually assumed that )\ZT" is much larger
than A;". However, even linear functions

si(yi) = Niys — by) (41)

with positive scaling factors A; represent simplified (but still valid) individual achievement func-
tions. Real-life applications of the RPM methodology usually deals with more complex indi-
vidual achievement functions defined with more than one reference point [22] which enriches
the preference models and simplifies the interactive analysis. In particular, the so-called aspira-
tion/reservation models [5] are used which take advantages of two reference levels. In addition
to the main (aspiration) levels b; they employs also reservation levels r; (r; > b;), so that the
DM can specify desired as well as required values for given outcomes. The piece wise linear
individual achievement function may be defined than as follows [15]:

( R
¥ Y Tz+1, for y; > r;
ri—bi
si(Yi) = 4 I‘;}%_bz', for b; <y; < (42)
i i
=
\ Ty — 04

where 8 and v are arbitrarily defined parameters satisfying 0 < 8 < 1 < <. Independently
from the specific form of the individual achievement functions, their main properties remain.
Namely, for any reference value b;, function s;(y;) must be strictly increasing with respect to
y; (the i—th outcome) and it has to take a common value (usually 0) for y; = b;. Hence, the
following assertion may be derived from Theorem 3.

Corollary 4 For any RPM individual achievement functions s;(y;), if X € Q is a Pareto-
optimal solution to multiple criteria problem (1), then X is also an equitably efficient solution to
the multiple achievement optimization problem:

min { (a1,a2,...,an) : a; =s(fi(x)), i=1,...,m; x € Q} (43)
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with b; = fi(X) fori=1,2,...,m.

In other words, the RPM (individual) achievement functions form a new uniform multiple
criteria problem where the analysis can be focused on equitably efficient solutions. Actually, the
standard RPM model with the analytic scalarizing achievement function (38) can be expressed
as the following OWA model:

min {

Hence, the standard RPM model exactly represents the analytic (utility) form of the equitable
OWA aggregation (29) with strictly decreasing weights in the case of m = 2 (v = 1+€ > v = ¢).
For m > 2 it abandons the differences in weighting of the second largest achievement, the third

m

(1—|—5)01(a)+520i(a) : ai:si(fi(x)), i=1,....,m; x€Q }

=2

largest one etc (vo = v3 = ... = v, = €). This results in an approximation to the equitable
optimization defined by the OWA aggregation satisfying only weak Schur-convexity property
(21).

Similarly, the lexicographic RPM model (39) can be expressed as the following problem:

m
lex min { lel(a), Zﬁi(a)] ca;=8i(fi(x)), i=1,...,m; x€Q }
=2

thus, in the case of two criteria (m = 2), representing exactly the lexicographic minimax (33)
approach to the multiple achievement optimization problem (43). For larger number of criteria
(m > 2) model (39) only approximates the lexicographic minimax (33) as all the lower priority
objective terms are aggregated at the second priority level. Hence, the lexicographic RPM model
(39) fulfills the principle of transfers only in the case of an improvement of the worst individual
achievement.

One may consider the lexicographic minimax problem (33) applied to the multiple criteria
achievement problem (43) as a basis for a corresponding nucleolar RPM model

lex min { [#1(a),82(a),...,0n(a)] : a; =si(fi(x)), i=1,...,m; x€Q } (44)

The nucleolar RPM represents a true equitable optimization of the individual achievements. Ac-
tually it implements the Rawls principle of justice [18]. In order to illustrate modeling advantages
of the nucleolar RPM let us consider two possible achievement vectors: a’ = (10,0,0,—5) thus
representing the solution leaving only one aspiration level not reached and a” = (10, 10, 10, —30)
with three aspiration levels not satisfied. One may easily notice that the first one will be selected
by the nucleolar RPM while a” would be chosen by the standard RPM. Hence, the equitable
optimization implemented within the nucleolar RPM results in much better modeling of the
aspiration levels concept.

The nucleolar RPM model (44) can be expressed in terms of the lexicographic minimization
of the quantities ;(a):

lex min { [6i(a),0(a),...,0n ()] : a; =s;(fi(x)), i=1,....,m; x€Q }

and thereby it is quite easily implementable. Exactly, following the results from Section 2, it
can be considered as a standard lexicographic optimization

lexmin [21, 22, . . ., Zm] (45)
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subject to x€ Q

m

me=ktg+ Y df fork=1,...,m (46)
=1

te +df > si(fi(x)), df >0 fori,k=1,...,m (47)

In the case of convex piecewise linear individual achievement functions (as typically used in
the RPM approaches), the resulting formulation (45)—(47) extends the original constraints with
linear inequalities. Thus, the method can be effectively applied to various multiple criteria
problems including the discrete ones.

5 Concluding remarks

The concept of equitably efficient solutions is a specific refinement of Pareto-optimality. Hence,
equitable multiple criteria techniques focus on some selection of Pareto-optimal solutions. It
turns out, however, that the there are many applications in which the criteria are uniform in
the sense of the scale used and their values are directly comparable. Moreover, the criteria
are considered impartially, which makes the distribution of outcomes more important than the
assignment of several outcomes to the specific criteria. Such models express ideas of allocation
of resources and try to achieve some equitable allocation of resources. We have examined in
detail the case [2] of budget redistribution, and we have shown that it may be solved in quite a
satisfying way by means of equitably efficient solutions.

Moreover, equitable optimization techniques can also be applied to select efficient solutions
in general multiple criteria optimization. Indeed, in approaches which seek to scalarize the
multiple criteria, some effort is always placed to replace the original objective functions with
some individual achievements which are combined to form a final scalar objective function to be
optimized. This is done, for example, in the reference point method, which we have analyzed in
detail. We have shown that every efficient solution of a multiple criteria optimization problem
can be identified by the optimization of an equitable aggregation applied to appropriately de-
fined individual achievements and we have introduced an equitable model of the reference point
method.

Although the examples considered to date have come from linear and integer multiple criteria
optimization, the theory included in the paper elegantly covers also the area of nonlinear multiple
criteria optimization, which has great potential for impact in financial analysis and engineering
design.
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