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Abstract

The Enhanced Index Tracking Problem (EITP) calls for the determination of an optimal
portfolio of assets with the bi-objective of maximizing the excess return of the portfolio above
a benchmark and, simultaneously, minimizing the tracking error. The EITP is capturing a
growing attention among academics, both for its practical relevance and for the scientific
challenges that its study, as a multi-objective problem, poses. Several optimization mod-
els have been proposed in the literature, where the tracking error is measured in terms of
standard deviation or in linear form using, for instance, the mean absolute deviation. More
recently, reward-risk optimization measures, like the Omega ratio, have been adopted for
the EITP. On the other side, shortfall or quantile risk measures have nowadays gained an
established popularity in a variety of financial applications. In this paper, we propose a class
of bi-criteria optimization models for the EITP, where risk is measured using the Weighted
multiple Conditional Value-at-Risk (WCVaR). The WCVaR is defined as a weighted combi-
nation of multiple CVaR measures, and thus allows a more detailed risk aversion modeling
compared to the use of a single CVaR measure. The application of the WCVaR to the EITP is
analyzed, both theoretically and empirically. Through extensive computational experiments,
the performance of the optimal portfolios selected by means of the proposed optimization
models is compared, both in-sample and, more importantly, out-of-sample, to the one of the
portfolios obtained using another recent optimization model taken from the literature.
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1 Introduction

In finance, the expression index funds identifies funds management strategies that have the
objective of tracking the performance of a specific market index (the so-called benchmark),
attempting to match, as much as possible, its returns. This investment strategy, usually called
indexing or index tracking, is a passive form of fund management where the manager has a low
degree of flexibility, and the fund is expected to reproduce the performance of the benchmark
by properly choosing a representative selection of securities. The index tracking problem aims
at minimizing a function, called the tracking error, which measures how closely the portfolio
mimics the performance of the benchmark. Several authors studied the index tracking problem,
proposing different optimization models, mainly based on different formulations of the tracking
error, and solution methods. We refer to Sant’Anna et al. [33] for a recent overview of the
relevant literature on the index tracking problem.

The term enhanced index tracking refers to an investment strategy that, while still attempting
to track the market index, is designed to find a portfolio that slightly outperforms the benchmark.
In other words, the manager of an enhanced index fund enjoys a little of leeway, trying to achieve
a higher return than the benchmark but incurring into a minimal additional risk, as measured
by the tracking error. The Enhanced Index Tracking Problem (EITP) aims at minimizing the
tracking error, while simultaneously maximizing the excess return above the benchmark. A
number of studies highlights that the amount invested in enhanced index funds steadily increased
in the last three decades. The figures reported in Ahmed and Nanda [1] indicate that a sharp
increase occurred in the middle of the ’90s in both the number of enhanced index funds available
and the total net assets under enhanced fund management. The same trend is pointed out
by Jorion [12] who reports the outcomes of a survey conducted among fund managers of US
institutional tax-exempt assets which indicate that, from 1994 to 2000, enhanced index funds
have grown from USD 33 to USD 365 billions, which is a ten-fold factor! The same author also
claims that, over the same period, passively managed funds have grown slower than enhanced
index funds. Koshizuka et al. [14] mention that in the Tokyo stock exchange a significant
amount of funds is managed by enhanced index tracking approaches. The growing popularity
of the enhanced index funds is not only experienced in mature financial markets, but also in
emerging markets. Weng and Wang [39] report a substantial increase in the importance of
enhanced index funds in the Chinese market from 2008 to 2015. It is not surprising that, given
this increasing spread of enhanced index funds, the topic is attracting a growing attention by
the academic community, although the number of papers addressing the EITP, compared to the
ones on the index tracking problem, is still limited and almost all the contributions appeared in
the literature only in the last decade. Indeed, the first formalization of the EITP is due, to the
best of our knowledge, to the paper by Beasley et al. [3], and most of the research proposing
optimization models or solution methods for this problem dates from 2005. We refer to Canakgoz
and Beasley [6] for an overview of the early literature on the EITP, and to Guastaroba et al.
[10] for a review of the recent research. For this reason, we concentrate our literature review
on the additional articles not included in the above references, and briefly mention here only
some of the most relevant papers to the present research. In particular, based on approximated
stochastic dominance conditions, Bruni et al. [4] formulate the EITP as a Linear Programming
(LP) model with an exponential number of constraints. The formulation is solved using a
separation procedure for the latter family of constraints. Along similar lines, Sharma et al. [34]
propose an LP model for the EITP that aims at maximizing the mean portfolio return subject
to constraints that limit the violation of the second order stochastic dominance criterion. Kwon
and Wu [15] propose a mixed-integer second order cone programming formulation for the EITP,
that maximizes the expected portfolio return subject to a limit on the portfolio risk and a bound
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on the tracking error. The portfolio risk is measured using the standard deviation of the portfolio
returns, whereas the tracking error is defined as the standard deviation of the excess return of
the portfolio from the benchmark. Their model includes also a cardinality constraint and buy-in
thresholds, i.e., lower and upper bounds on the portfolio weights. Finally, the authors devise a
robust counterpart of the above model. Computational results are given by solving both models
with Gurobi.

We mentioned above that, at its core, the EITP has a bi-objective nature, like any other
mean-risk portfolio optimization model. Despite this observation, very few authors address
explicitly the EITP as a bi-objective optimization problem. Among them, it is worth citing the
paper by Li et al. [16] where the EITP is formulated as a bi-objective mixed-integer non-linear
optimization model that minimizes the tracking error, given by the downside standard deviation
of the portfolio return from the benchmark, and maximizes the portfolio excess return. Their
model includes, among other features, a cardinality constraint and buy-in thresholds, and is
solved by means of an immunity-based multi-objective algorithm. Filippi et al. [9] cast the EITP
as a bi-objective mixed-integer LP model which maximizes the excess return of the portfolio over
the benchmark, and minimizes the tracking error, here defined as the absolute deviation between
the portfolio and benchmark values. The authors devise a bi-objective heuristic framework for
its solution. Bruni et al. [5] model the EITP as a bi-objective linear program that maximizes the
average excess return of the portfolio over the benchmark, and minimizes the maximum downside
deviation of the portfolio return from the market index. Like any other multi-objective approach,
the methods devised in the former papers do not provide a single optimal solution, but rather
a set of (Pareto) optimal solutions, or a set of near-optimal solutions if the solution method
used is a heuristic. As a consequence, these approaches provide the decision maker with a,
possibly wide, range of alternative solutions. However, this could be seen as a drawback instead
of a point of strength, since they leave the choice of the specific solution to implement to the
subjectivity of the decision maker. To overcome the above limit, some authors propose to cast
the two objective functions of the EITP as a single objective expressed as a reward-risk ratio.
In general terms, these ratios are performance measures that compare the expected returns of
an investment (i.e., the reward) to the amount of risk undertaken to achieve these returns, and
stem from the observation that there exists an inherent trade-off between the risk and the return
of an investment. Nowadays, reward-risk ratios like the Sharpe ratio (see Sharpe [36]) and the
Sortino ratio (see Sortino and Price [37]) are widely used to evaluate, compare and rank different
investment strategies. To the best of our knowledge, Meade and Beasley [22] are the first ones
attempting to use a reward-risk ratio in the context of enhanced indexation. The authors
introduce a non-linear optimization model, based on the maximization of a modified Sortino
ratio, and solve it by means of a genetic algorithm. However, the non-linearity of this model
may represent an undesirable limitation to its use in financial practice, especially when portfolios
have to meet several side constraints (such as cardinality constraints or buy-in thresholds) or
when large-scale instances have to be solved since, in most cases, the inclusion of these features
requires the introduction of binary and integer variables (see the survey by Mansini et al. [20]).
Based on this observation, Guastaroba et al. [10] introduce two mathematical formulations for
the EITP based on the Omega ratio. The Omega ratio is a performance measure introduced
by Keating and Shadwick [13] which, broadly speaking, can be defined as the ratio between the
expected value of the profits, defined as the portfolio returns over a predetermined target τ , and
the expected value of the losses, that are the portfolio returns below τ . The first formulation
introduced in Guastaroba et al. [10] applies a standard definition of the Omega ratio, computing
the ratio with respect to a given target, whereas the second model, called the Extended Omega
Ratio model, formulates the Omega ratio with respect to a random target. The authors show
that both formulations, despite being non-linear in nature, can be transformed into LP models.
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The computational results point out that the portfolios selected by the Extended Omega Ratio
model consistently outperform, in term of out-of-sample performance, those optimized with the
former model.

Since their introduction, quantile risk measures have had a crucial impact on the develop-
ments of new risk measures in finance. Conditional Value-at-Risk (CVaR), which is known also
as Mean Excess Loss, Expected Shortfall, Worst Conditional Expectation, or Tail VaR, is one of
such measures. The name CVaR was introduced in Rockafellar and Uryasev [30] where the risk
measure is developed for continuous distributions, and later extended to general distributions
(i.e., with a possibly discontinuous distribution function) in Rockafellar and Uryasev [31]. A
relevant advantage of the CVaR is that for discrete random variables, i.e., when probabilities
can be represented by using scenarios rather than densities, it can be optimized by means of LP
methods. The success of the CVaR as a measure of risk is related to the theoretical properties
it satisfies and to some practical considerations that make it attractive also among practition-
ers. From a theoretical point of view, the CVaR is a coherent risk measure as shown in Pflug
[28] (see Artzner et al. [2] for the definition of coherent risk measures) and is consistent with
the second-degree stochastic dominance as detailed in Ogryczak and Ruszczyński [27]. From a
practical viewpoint, it is a downside risk measure in the sense that it does not penalize upside
deviations, which are deviations of the portfolio returns above a given target and that any ra-
tional investor perceives as profits. Mansini et al. [19] suggest that the concept of CVaR can be
extended to improve the risk averse modeling capabilities of the measure. Indeed, the authors
show that a more detailed risk aversion modeling can be achieved by considering simultaneously
multiple CVaR measures, each one specified by a given tolerance level, and then combining
them together, as a weighted sum, into a single risk measure. The resulting measure is called
the Weighted multiple CVaR (WCVAR) and is, obviously, LP computable.

Finally, it is worth mentioning the recent paper by Sharma et al. [35] where the concepts of
Omega ratio optimization and CVaR are combined together in the general context of portfolio
optimization, and, hence, not directly related to the EITP addressed in the current paper.
Particularly, Sharma et al. [35] reformulate the original Omega ratio by computing the target
τ (which is predetermined in its classical form) as the CVaR of a benchmark market portfolio.

Contributions. The paper provides several contributions. We introduce a theoretical
framework for risk-reward ratio models, and employ it in the context of the EITP. We propose
a novel class of bi-criteria optimization models expressed in terms of risk-reward ratios, where
the risk measure is based on the WCVaR. More specifically, the WCVaR is a safety measure
and, hence, it has to be maximized. In the proposed optimization models, we consider its
deviation risk counterpart, the so-called weighted conditional drawdown measure. Following
the findings reported in Guastaroba et al. [10], the class of optimization models introduced
here is also designed with respect to a random target. We show that the resulting formulation,
non-linear in nature, can be reformulated as an LP model. To validate the performance of the
optimal portfolios selected by the proposed formulation, we conducted extensive computational
experiments on benchmark instances taken from the literature, and compare their out-of-sample
behavior with that of the portfolios constructed solving a reformulation of the Extended Omega
Ratio model introduced in Guastaroba et al. [10]. Indeed, in the current paper, we express the
Extended Omega Ratio model in terms of a risk-reward minimization, rather than a reward-
risk maximization as it was originally proposed in [10]. Since, at least theoretically, the risk
measure at the denominator of the reward-risk ratio can take null value, Guastaroba et al.
[10] introduced additional constraints to guarantee its positivity and keep the problem always
solvable. Our reformulation avoids such modeling issues. Despite the extensive experiments
carried out, the outcomes do not seem to clearly favor one model over the others. On the other
side, the results indicate a quite satisfactory ex-post performance of the optimal portfolios: all
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the optimal portfolios track very closely the behavior of the benchmark over the out-of-sample
period, often achieving better returns.

Structure of the paper. The remainder of the paper is organized as follows. In Section
2, we introduce the basic notation and some preliminary concepts that will be used throughout
the rest of the paper. Section 3 is devoted to the introduction of the mathematical formulation
for the EITP based on the WCVAR. Computational experiments are reported in Section 4,
where an extensive evaluation and comparison of the out-of-sample performance of the optimal
portfolios is provided. Finally, some concluding remarks are drawn in Section 5.

2 Basic notation and preliminary concepts

This section is devoted to the introduction of some basic concepts and notation required to
introduce the optimization models presented in the following section.

2.1 Basic notation

We consider an investor whose aim is to optimally select a portfolio of securities and hold it
until the end of a specific investment horizon, i.e., the investor follows a so-called buy-and-hold
strategy. Let J = {1, 2, . . . , n} be the set of securities available for the investment. For each
security j ∈ J , its rate of return is represented by a random variable (r.v.) Rj with a given mean
µj = E{Rj}. Let x = (xj)j=1,...,n be the vector of decision variables xj representing the shares
(weights) that define a portfolio of securities. In any feasible portfolio the weights must sum to
one, i.e.,

∑n
j=1 xj = 1, and short sales are not allowed, i.e., xj ≥ 0 for j = 1, . . . , n. Such basic

constraints form a feasible set P. Each portfolio x defines a corresponding r.v. Rx =
∑n

j=1Rjxj
that represents the portfolio rate of return. The mean rate of return for portfolio x is given as
µ(Rx) = E{Rx} =

∑n
j=1 µjxj . We consider T scenarios, each one with probability pt, where

t = 1, . . . , T . We assume that for each r.v. Rj its realization rjt under scenario t is known and

that, for each security j, with j ∈ J, its mean rate of return is computed as µj =
∑T

t=1 rjtpt.
The realization of the portfolio rate of return Rx under scenario t is given by yt =

∑n
j=1 rjtxj .

Although the optimization models that we are going to describe remain valid for any arbitrary
set of scenarios or probability distribution function, we assume that the T scenarios are treated as
equally probable, i.e., we set pt = 1/T for t = 1, . . . , T , and that these scenarios are represented
by historical data observed on a stock exchange market.

Regarding the benchmark, we denote the r.v. representing its rate of return as RI , whereas
its realization under scenario t is denoted as rIt , with t = 1, . . . , T , and its mean rate of return
as µI =

∑T
t=1 r

I
t pt. In enhanced indexation, the investor is interested in determining an optimal

portfolio that outperforms the rate of return of the benchmark. This situation can be modeled
using as a target some reference r.v. Rα = RI + α rather than simply the benchmark rate
of return RI . In these terms, Rα represents the rate of return beating the benchmark by a
given excess return equal to α. Its realization under scenario t is denoted as rαt = rIt + α, with
t = 1, . . . , T , and mean rate of return µα =

∑T
t=1 r

α
t pt. Finally, in the following the notation

(.)+ will denote the non-negative part of a quantity, that is, (Q)+ = max{Q, 0}.

2.2 Risk, safety and ratio measures

In his cornerstone research, Markowitz [21] suggests to model portfolio optimization problems as
mean-risk bi-criteria problems, where the mean portfolio return µ(Rx) is maximized and, simul-
taneously, a risk measure %(Rx) is minimized. In the original Markowitz model, the standard
deviation was used as the risk measure. Since then a number of other deviation risk measures
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have been considered that, akin to the standard deviation, are shift-invariant (i.e., not affected
by any shift of the outcome scale) and are equal to 0 if applied to a risk-free portfolio, while take
positive values for any risky portfolio (see Mansini et al. [17] for further details). A relevant
drawback of such risk measures is that they are not consistent with the stochastic dominance
order paradigms (e.g., see Whitmore and Findlay [40]) or other axiomatic models of risk-averse
preferences (e.g., see Rothschild and Stiglitz [32]) and risk measurement (e.g., see Artzner et al.
[2]).

In stochastic dominance, uncertain returns (modeled as random variables) are confronted by
pointwise comparison of some performance functions constructed from their distribution func-
tions. The first performance function is defined as the right-continuous cumulative distribution

function: F
(1)
Rx

(η) = FRx(η) = P{Rx ≤ η} and defines the first-degree stochastic dominance.

The second function is derived from the first as F
(2)
Rx

(η) =
∫ η
−∞ FRx(ξ) dξ, and defines the

Second-degree Stochastic Dominance (SSD). We say that portfolio x′ dominates x′′ under the

SSD criterion (denoted as x′ �SSD x′′), if F
(2)
Rx′

(η) ≤ F
(2)
Rx′′

(η) for all η, with at least one strict
inequality. The latter relation can be expressed in a weaker form, which claims that portfolio

x′ dominates x′′ under the weak SSD criterion (x′ �SSD x′′), if F
(2)
Rx′

(η) ≤ F
(2)
Rx′′

(η) for all η.

Furthermore, a feasible portfolio x′ ∈ P is said to be SSD efficient if there is no other feasible
portfolio x ∈ P such that x �SSD x′. The concept of stochastic dominance relates the notion
of risk to a possible failure of achieving some targets. As shown by Ogryczak and Ruszczyński

[25], values of function F
(2)
Rx

, used to define the SSD relation can also be presented as the mean
below-target deviations (also called the first-order lower partial moment), that is, we can write

F
(2)
Rx

(η) = E{(η−Rx)+}. The latter is the simplest downside risk criterion that, when computed
for a specific value τ , can be expressed as the mean below-target deviation τ :

δτ (Rx) = E{(τ −Rx)+} = F
(2)
Rx

(τ). (1)

For discrete rates of return represented by their realizations, function δτ (Rx) is, when mini-
mized, LP computable. Other portfolio performance measures have been introduced as safety
measures to be, on the contrary, maximized. As a prominent example, we recall the worst re-
alization studied by Young [41]. Mansini et al. [17] showed that for any risk measure %(Rx) a
corresponding safety measure µ%(Rx) = µ(Rx)−%(Rx) can be defined and vice-versa. Compared
to risk measures, safety measures may be consistent with the above-mentioned formal models
of risk-averse preferences and risk measurement. Furthermore, a safety measure is said to be
risk relevant if for any risky portfolio its value is smaller than the value it takes for a risk-free
portfolio having the same mean rate of return.

We say that a safety measure µ%(Rx) is SSD consistent (or that the risk measure %(Rx) is
SSD safety consistent) if x′ �SSD x′′ implies that µ%(Rx′) ≥ µ%(Rx′′). If a safety measure is SSD
consistent then, except for portfolios with identical values of µ(Rx) and µ%(Rx) (and thereby of
%(Rx)), every efficient solution of the following bi-criteria problem:

max{(µ(Rx), µ%(Rx)) : x ∈ P}

is an SSD efficient portfolio (see Ogryczak and Ruszczyński [25] for further details).
The common approach used to tackle a Markowitz-type mean-risk model is to transform

the objective of maximizing the mean portfolio return into constraint by imposing a minimum
acceptable mean return µ0, while minimizing the risk criterion. An alternative approach is to
seek for a risky portfolio that offers the maximum increase of the portfolio mean return compared
to a given target τ , per unit of risk incurred. Target τ is often represented by the mean return
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Figure 1: Tangency portfolio TPτ by reward-risk ratio maximization (a) and by risk-reward
ratio minimization (b).

of a risk-free asset. The latter approach leads to the following optimization problem expressed
as a ratio:

max

{
µ(Rx)− τ
%(Rx)

: x ∈ P
}
. (2)

The optimal solution of problem (2) is usually called the tangency portfolio or the market
portfolio. An intuitive explanation of the ratio optimization problem (2) is illustrated in Fig. 1(a).
Mansini et al. [18] show that for LP computable risk measures, the reward-risk ratio optimization
problem (2) can be converted into an LP form. When the risk-free rate of return r0 is used instead
of the target τ , ratio optimization problem (2) corresponds to the classical Tobin’s model (cfr.
[38]) of the modern portfolio theory, where the capital market line is the line drawn from the
intercept corresponding to r0 and that passes tangent to the mean-risk efficient frontier. Any
point on this line provides the maximum return for each level of risk. The tangency portfolio
TPr0 is the portfolio of risky assets corresponding to the point where the capital market line is
tangent to the efficient frontier.

Instead of the reward-risk ratio maximization (2), one may formulate the same problem in
terms of risk-reward ratio minimization (see Fig. 1(b)) as follows:

min

{
%(Rx)

µ(Rx)− τ
: x ∈ P

}
. (3)

Even though both ratio optimization models (2) and (3) are theoretically equivalent, the risk-
reward formulation (3) enables an easier control of the denominator positivity by simply intro-
ducing the additional inequality µ(Rx)− τ ≥ ε, with ε > 0.

Note that two feasible portfolios having zero risk are both optimal to the risk-reward ratio
model (3), even if they are characterized by different mean returns. This shortcoming can be
regularized leading to the following formulation:

min

{
%(Rx) + ε

µ(Rx)− τ
: µ(Rx)− τ ≥ ε, x ∈ P

}
. (4)

This regularization of the numerator is useful when for multiple portfolios the risk measure %(Rx)
takes value equal to zero. In these cases, an optimal solution to problem (4) is the portfolio with
the largest mean return. Obviously, the ε introduced in the numerator is, in principle, different
from the one included in the problem constraint. However, to the sake of a simple exposition,
we decided to use the same notation for both. Furthermore, the following theorem is valid.
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Theorem 1 Let x0 be an optimal portfolio to the risk-reward ratio optimization problem (4) that
satisfies condition µ(Rx0) − %(Rx0) ≤ τ . For any deviation risk measure %(Rx), portfolio x0 is
nondominated in terms of the bi-criteria mean-safety maximization max{µ(Rx), µ(Rx)−%(Rx)},
as well as in terms of the bi-criteria mean-risk optimization max{µ(Rx),−%(Rx)}.

Proof. Suppose that there exists a feasible portfolio x, i.e., x ∈ P and µ(Rx) − τ ≥ ε, such
that µ(Rx)− %(Rx) ≥ µ(Rx0)− %(Rx0) and µ(Rx) ≥ µ(Rx0). Note that the objective function
in problem (4) can be written as:

%(Rx) + ε

µ(Rx)− τ
=
τ − (µ(Rx)− %(Rx)) + ε

µ(Rx)− τ
+ 1.

Note that due to the optimality of x0 and the additional condition µ(Rx0) − %(Rx0) ≤ τ ,
in the above ratio both numerator and denominator are positive for solution x0, whereas the
denominator is positive for any feasible portfolio x. Hence, whenever µ(Rx)−%(Rx) > µ(Rx0)−
%(Rx0) or µ(Rx) > µ(Rx0), the following inequality holds:

%(Rx) + ε

µ(Rx)− τ
=
τ − (µ(Rx)− %(Rx)) + ε

µ(Rx)− τ
+ 1 <

τ − (µ(Rx0)− %(Rx0)) + ε

µ(Rx0)− τ
+ 1 =

%(Rx0) + ε

µ(Rx0)− τ

which contradicts the optimality of x0. Therefore, µ(Rx) = µ(Rx0) and %(Rx) = %(Rx0), x is an
equivalent optimal solution to (4), and portfolio x0 is nondominated in terms of the bi-criteria
mean-safety maximization max{µ(Rx), µ(Rx)− %(Rx)}.

Finally, suppose a feasible portfolio x dominates x0 in terms of bi-criteria mean-risk opti-
mization max{µ(Rx),−%(Rx)}, i.e., %(Rx) ≤ %(Rx0) and µ(Rx) ≥ µ(Rx0) with at least one strict
inequality. Then, the two conditions µ(Rx) − %(Rx) ≥ µ(Rx0) − %(Rx0) and µ(Rx) ≥ µ(Rx0)
hold, with at least one strict inequality. Hence, optimal portfolio x0 is also nondominated in
terms of bi-criteria mean-risk optimization max{µ(Rx),−%(Rx)}.

Note that condition µ(Rx0)− %(Rx0) ≤ τ guaranteeing the efficiency of the optimal solution
to the risk-reward ratio optimization problem (4) is equivalent to imposing that the value of
ratio (%(Rx0) + ε)/(µ(Rx0) − τ) is greater than 1. Consequently, any risk-reward ratio model
(4) is well-defined only if this condition is not violated.

Corollary 1 Let x0 be an optimal portfolio to the risk-reward ratio optimization problem (4)
that satisfies condition µ(Rx0) − %(Rx0) ≤ τ . For any deviation risk measure %(Rx) which is
SSD safety consistent, i.e., x′ �SSD x′′ ⇒ µ(Rx′)− %(Rx′) ≥ µ(Rx′′)− %(Rx′′), portfolio x0

is SSD nondominated with the exception of alternative optimal portfolios having the same values
of mean return µ(Rx0) and risk measure %(Rx0).

Proof. Suppose that there exists a feasible portfolio x, i.e., x ∈ P and µ(Rx) ≥ τ + ε,
such that x �SSD x0. This SSD relation implies that µ(Rx) − %(Rx) ≥ µ(Rx0) − %(Rx0) and
µ(Rx) ≥ µ(Rx0). Therefore, following Theorem 1, x �SSD x0 implies that µ(Rx) = µ(Rx0) and
%(Rx) = %(Rx0) and x is an alternative optimal solution to (4).

To apply directly the risk-reward ratio model (4) in the domain of the enhanced indexation,
one should replace the target value τ with the mean rate of return µα, the latter as defined above
in Section 2.1. As already mentioned, Guastaroba et al. [10] have shown that the performance of
the portfolios selected by a ratio optimization model (in their paper the Omega ratio is expressed
in terms of a reward-risk ratio model) can be significantly improved if the models are modified
in order to take into consideration if the portfolio tracks, falls below or beats the benchmark
under multiple scenarios. To this aim, one should formulate the risk-reward ratio model for a
random benchmark return Rα, rather than for the mean rate of return µα. In other words, the
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optimization model is applied to the distribution of the difference (Rx − Rα), thus taking the
following form:

min

{
%(Rx −Rα) + ε

µ(Rx −Rα)
: µ(Rx −Rα) ≥ ε, x ∈ P

}
. (5)

Note that applying model (5) to the deterministic target τ , i.e., replacing Rα = τ , one gets
exactly the standard risk-reward ratio model (4), as µ(Rx−τ) = µ(Rx)−τ and for the deviation
risk measure %(Rx − τ) = %(Rx).

It is worth highlighting that, in the literature, some authors proposed ratio performance
measures based on using the CVaR. In Appendix A, we discuss some of these ratio measures,
and point out their similarities with the ones considered in the present paper.

2.3 Weighted CVaR risk measures

We consider the CVaR defined directly on the distribution of returns Rx. Hence, the CVaR can
be expressed by the following formula (see Ogryczak and Ruszczyński [27]):

Mβ(Rx) =
1

β

∫ β

0
F

(−1)
Rx

(ξ)dξ,

where F
(−1)
Rx

is the quantile function for the portfolio return Rx. It is defined as F
(−1)
Rx

(ξ) =
inf{η : FRx(η) ≥ ξ} for 0 < ξ ≤ 1, i.e., the left-continuous inverse of the right-continuous
cumulative distribution function FRx(η) = P{Rx ≤ η}. According to Mansini et al. [18], the
CVaR can be classified as a safety measure and the corresponding (deviation) risk measure
∆β(Rx) = µ(Rx) − Mβ(Rx) is called conditional drawdown (cfr. Ogryczak and Ruszczyński
[26] and Chekhlov et al. [8]). For a discrete random variable represented by its realizations yt,
with t = 1, . . . , T , both the CVaR Mβ(Rx) and its corresponding risk measure ∆β(Rx) are LP
computable as follows:

Mβ(Rx) = max

{
η − 1

β

T∑
t=1

ptdt : dt ≥ η − yt, dt ≥ 0, t = 1, . . . , T

}
, (6)

and, for the risk measure:

∆β(Rx) = min

{
T∑
t=1

ptyt − η +
1

β

T∑
t=1

ptdt : dt ≥ η − yt, dt ≥ 0, t = 1, . . . , T

}
,

where η is an unbounded variable taking, at the optimum, the value of the β-quantile.
Although the CVaR is risk relevant for 0 < β < 1, it represents only the mean within a part

(tail) of the distribution of returns. Therefore, such a single criterion might present some limits
when it is important to model various risk aversion preferences treating differently events that
are more or less extreme. Aiming at enhancing its modeling capabilities, Mansini et al. [19]
proposed to consider several, say m, tolerance levels 0 < β1 < β2 < . . . < βm < 1 and combine
together the corresponding CVaR measures Mβk(Rx), k = 1, ...,m. The weighted sum is used
in [19] to combine the multiple CVaR criteria, leading to a weighted CVaR objective. The
latter objective has been first introduced by Ogryczak [23] (although without using the name
CVaR that was introduced later by Rockafellar and Uryasev [30]), where a portfolio optimization
model based on historical data, and its LP computability was proven. The concept has been
later extended to general decisions under risk by Ogryczak [24].

9
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The Weighted multiple CVaR (WCVaR), as a weighted sum of several CVaR criteria com-
bined by using positive (and normalized) weights, can be expressed as:

M
(m)
w (Rx) =

m∑
k=1

wkMβk(Rx),
m∑
k=1

wk = 1, wk > 0, k = 1, . . . ,m. (7)

The corresponding deviation risk measure is the weighted sum of the ∆βk(Rx) measures, thus
leading to the following form of the weighted conditional drawdown:

∆
(m)
w (Rx) = µ(Rx)−M (m)

w (Rx) =

m∑
k=1

wk∆βk(Rx),

m∑
k=1

wk = 1, wk > 0, k = 1, . . . ,m. (8)

Since, as mentioned above, the CVaR is coherent and SSD consistent, the same applies to

the WCVaR. In particular, x′ �SSD x′′ implies that M
(m)
w (Rx′) ≥ M

(m)
w (Rx′′) (see Ogryczak

and Ruszczyński [26]).
For returns represented by their realizations, the WCVaR measures are LP computable and

can be represented by the following LP problems:

M
(m)
w (Rx) = max

{
m∑
k=1

wkηk −
m∑
k=1

wk
βk

T∑
t=1

ptdtk

}
,

s.t. dtk ≥ qk − yt, dtk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m,

(9)

and, for the weighted conditional drawdown:

∆
(m)
w (Rx) = min

{
T∑
t=1

ptyt −
m∑
k=1

wkηk +
m∑
k=1

wk
βk

T∑
t=1

ptdtk

}
s.t. dtk ≥ ηk − yt, dtk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m,

where ηk, with k = 1, . . . ,m, are unbounded variables taking, at the optimum, the values of
the corresponding βk-quantiles. Note that model (9) with m = 1 corresponds to the standard
single-criterion CVaR model, whereas using m > 1 and various settings of positive weights
wk enables to model a wide variety of risk averse preferences. Mansini et al. [19] identified
two main classes of WCVaR measures, that primarily differ for the set of weights wk used.
Based on the results reported in their paper, we will use the Tail WCVaR, which is built as
an approximation to the tail Gini measure. In more details, given a grid of m tolerance levels
0 < β1 < · · · < βk < · · · < βm = β, in the Tail WCVaR one may define the weights according to
the following formulas:

wk =
βk(βk+1−βk−1)

β2 k = 1, . . . ,m− 1, and wm = βm(βm−βm−1)
β2 , (10)

where β0 = 0. To the sake of brevity, in the remainder of the paper we will refer to the Tail
WCVaR measure with weights defined as in (10) simply as WCVaR.

3 Optimization models for the Enhanced Index Tracking Prob-
lem

The present section is devoted to the introduction of the optimization models tested in the
computational experiments. The model described in Section 3.1 is the risk-reward version of
the formulation devised in Guastaroba et al. [10] and based on the Omega ratio. To the sake of
brevity, we simply derive the LP formulation of our model and highlight the differences compared
to the model in [10]. In the following Section 3.2, we introduce in detail the new optimization
model based on the WCVaR.

10
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3.1 Extended Omega ratio model

In its standard form, the Omega ratio is defined as the ratio between the expected value of the
profits and the expected value of the losses where, for a predetermined threshold τ , portfolio
returns over the target τ are considered as profits, whereas returns below the threshold are
considered as losses. Ogryczak and Ruszczyński [25] prove that for any target value τ the
following chain of equalities holds:

E{(Rx − τ)+} = µ(Rx)− (τ − E{(τ −Rx)+}) = µ(Rx)− τ + δτ (Rx), (11)

where the last equality is related to the definition of mean below-target deviation expressed in
(1). Thus, we can formulate the (standard) Omega ratio as follows:

Ω(τ,Rx) =
E{(Rx − τ)+}
E{(τ −Rx)+}

=
µ(Rx)− τ + δτ (Rx)

δτ (Rx)
= 1 +

µ(Rx)− τ
δτ (Rx)

.

Hence, the maximization of the above Omega ratio, with the additional restriction requiring
µ(Rx)−τ ≥ ε, is equivalent to the minimization of the mean below-target deviation ratio δτ (Rx)

µ(Rx)−τ .

Note that restriction µ(Rx)− τ ≥ ε along with (11) imply that E{(Rx − τ)+} > E{(τ −Rx)+},
thus limiting the Omega ratio to take only values greater than 1. Actually, the mean below-
target deviation δτ (Rx) is not shift-invariant and, thereby, it is not a deviation risk measure.
Instead of δτ (Rx), one can consider the safety measure µδτ (Rx) = E{min{Rx, τ}} = τ − δτ (Rx),
and then use the corresponding deviation risk measure %τ (Rx) = µ(Rx)−µδτ (Rx) = µ(Rx)−τ+
δτ (Rx). Note that for any τ , the SSD relation x′ �SSD x′′ implies that δτ (Rx′) ≤ δτ (Rx′′) and,
consequently, τ − δτ (Rx′) ≥ τ − δτ (Rx′′). The latter inequality guarantees the SSD consistency
of the safety measure µδτ (Rx).

By replacing δτ (Rx) with %τ (Rx), one can re-formulate the risk-reward ratio and obtain the
following result:

%τ (Rx)

µ(Rx)− τ
=
µ(Rx)− τ + δτ (Rx)

µ(Rx)− τ
= 1 +

δτ (Rx)

µ(Rx)− τ
. (12)

Hence, the minimization of the risk-reward ratio %τ (Rx)
µ(Rx)−τ , with the additional restriction requir-

ing µ(Rx) − τ ≥ ε, is equivalent to the minimization of the mean below-target deviation ratio
δτ (Rx)
µ(Rx)−τ and, in turn, to the maximization of the Omega ratio. Indeed:

%τ (Rx)

µ(Rx)− τ
− 1 =

δτ (Rx)

µ(Rx)− τ
=

1

Ω(τ,Rx)− 1
.

One can apply directly the risk-reward ratio %τ (Rx)
µ(Rx)−τ in the domain of enhanced indexation by

simply replacing τ with µα. Nevertheless, the findings reported by Guastaroba et al. [10] point
out that, as mentioned before, a better performance can be achieved formulating the ratio with
respect to the random target Rα, instead of a deterministic value τ . Replacing in the numerator
of model (5) %(Rx−Rα) with the deviation risk measure %0(Rx−Rα), one obtains the following
problem:

min

{
%0(Rx −Rα) + ε

µ(Rx −Rα)
: µ(Rx −Rα) ≥ ε, x ∈ P

}
. (13)

Note that the following equalities hold: %0(Rx) = µ(Rx) + δ0(Rx) = E{(Rx)+}, where the first
equality is related to the above definition of the deviation risk measure, whereas the second is
due to (11). The deviation risk measure %0(Rx) is SSD safety consistent.

Additionally, note that µ(Rx) − %0(Rx) = −δ0(Rx) ≤ 0. Hence, applying Theorem 1 and
Corollary 1 to the distribution of the difference (Rx − Rα) with τ = 0, one gets the following
corollary.

11
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Corollary 2 Let x0 be an optimal solution to the risk-reward optimization problem (13). Then,
portfolio x0 is nondominated in terms of bi-criteria mean-safety maximization max{µ(Rx −
Rα),−δ0(Rx − Rα)}, and is SSD nondominated with the exception of alternative optimal port-
folios having the same values of mean return µ(Rx0 −Rα) and risk measure %0(Rx −Rα).

Furthermore, given the equivalence described by the chain of equalities (12), we can express
the minimization of the extended Omega ratio as follows:

min

{
δ0(Rx −Rα) + ε

µ(Rx −Rα)
: µ(Rx −Rα) ≥ ε, x ∈ P

}
. (14)

For security returns described by discrete random variables having, for each security j, with
j ∈ J , realization rjt under scenario t, with t = 1, . . . , T , one obtains the following non-linear
optimization model:

min
z1 + ε

z − µα
(15)

s.t. z − µα ≥ ε (16)
n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n (17)

n∑
j=1

µjxj = z (18)

n∑
j=1

rjtxj = yt for t = 1, . . . , T (19)

T∑
t=1

ptdt = z1 (20)

dt ≥ rαt − yt, dt ≥ 0 for t = 1, . . . , T. (21)

Objective function (15) minimizes the risk-reward ratio in (14), whereas constraint (16) imposes
the positivity of the ratio denominator. Constraints (17) ensure that in any feasible portfolio
the sum of the non-negative weights must be equal to one. Constraint (18) defines z as the mean
portfolio rate of return, whereas for each scenario t, with t = 1, . . . , T , constraint (19) defines
the corresponding realization of the portfolio rate of return yt. Moreover, in each scenario t,
with t = 1, . . . , T , constraint (21), along with (20) and objective function (15), forces the non-
negative variable dt to take value equal to max{rαt − yt, 0}. As a consequence, constraint (20)
defines variable z1, minimized in objective function (15), as the mean below-target deviation.

Compared to the optimization model proposed in Guastaroba et al. [10], the main difference
is that the objective function in model (15)-(21) is expressed in terms of a risk-reward mini-
mization, rather than a reward-risk maximization. Although this modification is conceptually
of minor importance, it avoids the introduction of additional constraints and auxiliary binary
variables to deal with those critical situations where the risk measure at the denominator of the
reward-risk ratio may take null value (see Guastaroba et al. [10]).

The non-linear optimization model (15)-(21) can be linearized using the Charnes-Cooper
transformation introduced in [7]. Specifically, we apply the following substitutions v0 = 1/(z −
µα), v1 = z1/(z−µα), v = z/(z−µα), x̃j = xj/(z−µα), d̃t = dt/(z−µα) and ỹt = yt/(z−µα),
divide all the constraints by (z − µα), and add the constraint required by the transformation.

12
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The resulting formulation is the following LP model:

min v1 + εv0
s.t. v − µαv0 = 1

v0 ≤ 1/ε
n∑
j=1

x̃j = v0, x̃j ≥ 0 for j = 1, . . . , n

n∑
j=1

µj x̃j = v

n∑
j=1

rjtx̃j = ỹt for t = 1, . . . , T

T∑
t=1

ptd̃t = v1

d̃t ≥ rαt v0 − ỹt, d̃t ≥ 0 for t = 1, . . . , T,

where the first constraint is a transformed form of the substitution v0 = 1/(z − µα) whose
introduction is required by the Charnes-Cooper transformation. A more compact formulation
can be obtained eliminating variables ỹt, v, v0, and v1, which are defined by equations, leading
to the following LP formulation:

(EOR model) min
T∑
t=1

ptd̃t + ε
n∑
j=1

x̃j

s.t.

n∑
j=1

x̃j ≤
1

ε
, x̃j ≥ 0 j = 1, . . . , n

n∑
j=1

(µj − µα)x̃j = 1

d̃t ≥
n∑
j=1

(rαt − rjt)x̃j , d̃t ≥ 0 t = 1, . . . , T.

(22)

After solving the transformed EOR model (22), the original values of variables xj can be deter-
mined dividing x̃j by

∑n
j=1 x̃j .

3.2 Extended WCVaR ratio model

As a consequence of Theorem 1, risk-reward ratio models are well-defined for deviation type
risk measures. Hence, in a CVaR-based risk-reward ratio model one must use the deviation risk

measure ∆
(m)
w (Rx), i.e., the weighted conditional drawdown, instead of directly the WCVaR

M
(m)
w (Rx). Therefore, the risk-reward ratio model for the EITP based on the WCVaR is the

following:

min

{
∆

(m)
w (Rx −Rα) + ε

µ(Rx −Rα)
: µ(Rx −Rα) ≥ ε,x ∈ P

}
, (23)

where we replaced %(Rx −Rα) in the numerator of (5) with ∆
(m)
w (Rx −Rα) as defined in (8).

Since the weighted conditional drawdown ∆
(m)
w is a SSD safety consistent, applying Theo-

rem 1 and Corollary 1 to the distribution of the difference (Rx − Rα) with τ = 0, one gets the
following corollary.
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Corollary 3 Let x0 be an optimal solution to the risk-reward optimization problem (23) that

satisfies condition µ(Rx0 − Rα)−∆
(m)
w (Rx0 − Rα) ≤ 0. Then, portfolio x0 is nondominated in

terms of bi-criteria mean-safety maximization max{µ(Rx−Rα), µ(Rx−Rα)−∆
(m)
w (Rx−Rα)},

and is SSD nondominated with the exception of alternative optimal portfolios having the same

values of mean return µ(Rx0 −Rα) and risk measure ∆
(m)
w (Rx0 −Rα).

Under the assumption of security returns described by discrete random variables having, for
each security j, with j ∈ J , realization rjt under scenario t, with t = 1, . . . , T , one obtains the
following non-linear optimization model:

min
z − µα − z1 + ε

z − µα
(24)

s.t. (16)− (19)
m∑
k=1

wkηk −
m∑
k=1

wk
βk

T∑
t=1

ptdtk = z1 (25)

dtk ≥ ηk − yt + rαt , dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . ,m. (26)

Objective function (24) minimizes the risk-reward ratio in (23). Particularly, the numerator

represents the deviation risk measure ∆
(m)
w (Rx), and can be obtained by using the first equality

in (8) and the definition of WCVaR in (7). Subsequently, the definition of CVaR, expressed in
(6), is applied, for each k, with k = 1, . . . ,m, to the distribution of the difference (Rx − Rα).
Finally, constraint (25), along with (26), defines variable z1 that, when maximized, represents

the WCVaR measure M
(m)
w (Rx −Rα).

Also the non linear optimization model (24)–(26) can be linearized applying the following
substitutions: v0 = 1/(z − µα), v1 = z1/(z − µα), v = z/(z − µα), x̃j = xj/(z − µα), d̃tk =
dtk/(z − µα), η̃k = ηk/(z − µα), and ỹt = yt/(z−µα), dividing all the constraints by (z−µα), and
adding the constraint required by the Charnes-Cooper transformation, leading to the following
LP formulation:

min v − v1 + (ε− µα)v0
s.t. v − µαv0 = 1

v0 ≤ 1/ε
n∑
j=1

x̃j = v0, x̃j ≥ 0 for j = 1, . . . , n

n∑
j=1

µj x̃j = v

n∑
j=1

rjtx̃j = ỹt for t = 1, . . . , T

m∑
k=1

wkη̃k −
m∑
k=1

wk
βk

T∑
t=1

ptd̃tk = v1

d̃tk ≥ η̃k − ỹt + rαt v0, d̃tk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m,

where the first constraint is a transformed form of the substitution v0 = 1/(z − µα). After
eliminating variables ỹt, v, v0, and v1, which are defined by equations, one obtains the following
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more compact LP formulation:

(EWCVaR model) min

n∑
j=1

(µj − µα + ε)x̃j −
m∑
k=1

wkη̃k +

m∑
k=1

wk
βk

T∑
t=1

ptd̃tk

s.t.

n∑
j=1

x̃j ≤
1

ε
, x̃j ≥ 0 j = 1, . . . , n

n∑
j=1

(µj − µα)x̃j = 1

d̃tk ≥ η̃k −
n∑
j=1

(rjt − rαt )x̃j , d̃tk ≥ 0 t = 1, . . . , T ; k = 1, . . . ,m.

(27)
As for the EOR model, after solving the transformed EWCVaR model (27), the original values
of xj can be determined dividing x̃j by

∑n
j=1 x̃j .

4 Experimental analysis

This section is dedicated to the presentation and discussion of the computational experiments.
They were conducted on a PC Intel XEON with 3.33 GHz 64-bit processor, 12 GB of RAM,
and Windows 7 64-bit as Operating System. Optimization models were implemented in Java,
compiled within NetBeans 8.0.2, and solved by means of CPLEX 12.6. After preliminary exper-
iments, we decided to force CPLEX to not perform any cutting plane pass when solving the root
node (parameter CutPass=-1). We used default values for all the other CPLEX parameters.

The results discussion is organized as follows. In Section 4.1, we briefly describe the instances
and the optimization models we solved in the computational experiments, whereas in Section
4.2 we report on the in-sample characteristics of the optimal portfolios and provide an extensive
validation of their out-of-sample performance.

4.1 Data sets and tested optimization models

In the computational experiments, we used the two data sets tested in Guastaroba et al. [10]
with some small differences, as described below. To make the paper self-contained, we provide
here a brief description of these instances and refer to the above paper for any further detail.

The first data set was introduced in Guastaroba et al. [11] and, from the name of the
authors, is referred to as data set GMS. No change has been made to this data set. The set
consists of 4 instances created from historical rates of return of the 100 securities composing
the FTSE 100 Index. These instances were intentionally selected to span four different market
trends. In particular, the first instance, hereafter called GMS-UU, considers an increasing trend
of the benchmark (i.e., the market index is moving Up) in both the in-sample and the out-of-
sample period. The second instance, from now on referred to as GMS-UD, has an increasing
trend of the benchmark in the in-sample period and a decreasing one (i.e., it is moving Down)
in the out-of-sample period. The third instance, henceforth called GMS-DU, is characterized
by a decreasing trend in the in-sample period and by an increasing one in the out-of-sample
period. Finally, the last instance, referred to as GMS-DD in the following, is characterized by
a decreasing trend in both the in-sample and the out-of-sample periods.

Guastaroba et al. [10] used a second data set, which was generated from the 8 benchmark
instances for the index tracking problem currently belonging to the OR-Library (available at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html). These instances
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consider the securities included in eight different stock market indices: the Hang Seng market
index (related to the Hong Kong stock exchange market), the DAX 100 (Germany), the FTSE
100 (United Kingdom), the S&P 100 (USA), the Nikkei 225 (Japan), the S&P 500 (USA), the
Russell 2000 (USA) and the Russell 3000 (USA). The number of securities included in these
instances ranges from 31, composing the Hang Seng index, to 2151, composing the Russell 3000
index. We found that in the two largest instances there were some securities achieving extremely
large weekly returns (even larger than 1000 %) in one or very few observations. Since rates of
return of this magnitude have a strong impact on the average return of a security, even if realized
in very few observations, we decided to remove the related security from the instance. In the
following, this modified data set is called ORL, and each instance is referred to as ORL-ITβ,
β = 1, . . . , 8. Eventually, we removed two securities from both the ORL-IT7 and the ORL-IT8
instances.

Each of the above instances comprises 2 years of in-sample weekly observations (i.e., 104
scenarios) and 1 year of out-of-sample ones (i.e., 52 realizations). For each instance, the optimal
portfolio composition is first decided by solving one of the optimization models described in
the following and using the in-sample 104 scenarios. Then, the performance of the portfolios is
evaluated by observing their behaviors over the 52 weeks following the date of portfolio selection.

The optimization models that we considered in our computational experiments are the fol-
lowing. To provide some insights on the effectiveness of the EWCVaR model (27), we solved it
using four different sets of values for the tolerance levels {βk}k=1,...,m. More specifically, the first
model considers two tolerance levels (i.e., m = 2) equal to β1 = 0.05 and β2 = 0.25, respectively.
This model is henceforth referred to as EWCVaR(.05, .25). The second model, from now on
denoted as EWCVaR(.05, .25, .50), is based on the choice of three tolerance levels (i.e., m = 3).
We set these three values equal to β1 = 0.05, β2 = 0.25, and β3 = 0.50, respectively. The re-
maining two models consider only one tolerance level (i.e., m = 1). These models are hereafter
called ECVaR(.05) and ECVaR(.50), since they correspond to setting the tolerance level β1
equal to 0.05 and 0.50, respectively. For each of the above models, weights wk were computed
according to (10). Finally, as a basis for comparison with the literature, we also solved the EOR
model (22) on the aforementioned instances.

As mentioned above, the EWCVaR model (27) is valid only if the value of the ratio (23)
is not smaller than 1. To guarantee that this condition is satisfied, we devised the following
pre-processing procedure to choose the value of α to use in the experiments. For each instance,
we solved separately each of the aforementioned EWCVaR models, starting with an initial value
of α equal to 0. Then, we solved iteratively that optimization model increasing the value of α by
1 % (on yearly basis), as long as ratio (23) took a value smaller than 1. Finally, the maximum
among the final value taken by α over all the models is chosen, to guarantee that the above
condition is satisfied for any of the tested EWCVaR models. Computing times to solve the
EWCVaR models, and hence to carry out the above pre-processing procedure, are negligible, as
described in the following section.

Table 1 summarizes the main characteristics of all the tested instances, including the average
in-sample return of the benchmark (column with header µI%) and the value of α used in the
experiments (column α%). For the sake of readability, we expressed the latter two values in
percentage and on yearly basis, even though they are expressed on weekly basis in the instances.

All instances in the two data sets are publicly available on the website of the Operational Re-
search Group at the University of Brescia (http://or-brescia.unibs.it), in section “Bench-
mark Instances”.
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Table 1: The main characteristics of the tested data sets.

Data Set Instance Benchmark n T µI% α%

GMS

GMS-UU FTSE 100 100 104 15.61 5.10
GMS-UD FTSE 100 100 104 17.39 7.21
GMS-DU FTSE 100 100 104 -21.15 4.06
GMS-DD FTSE 100 100 104 -11.81 10.45

ORL

ORL-IT1 Hang Seng 31 104 48.60 0.00
ORL-IT2 DAX 100 85 104 7.16 3.03
ORL-IT3 FTSE 100 89 104 14.20 8.28
ORL-IT4 S&P 100 98 104 6.46 6.15
ORL-IT5 Nikkei 225 225 104 -0.88 10.45
ORL-IT6 S&P 500 457 104 26.07 24.42
ORL-IT7 Russell 2000 1316 104 9.22 74.07
ORL-IT8 Russell 3000 2149 104 23.36 59.30

4.2 Comparing the performance of the optimal portfolios

In Tables 2 and 3, we provide some in-sample and out-of-sample statistics summarizing the
computational results obtained by solving all the tested models with the GMS and ORL data
sets, respectively. Both tables have the same structure, and the meaning of each column header
is as follows. Regarding the in-sample, we report the following statistics:

X Div.: the number of securities selected in the optimal portfolio;

X Min % : the minimum portfolio share (in percentage);

X Max % : the maximum portfolio share (in percentage).

On the other hand, as out-of-sample statistics we report the following ones:

X yt > rIt %: the number of weeks, divided by 52 and in percentage, that the portfolio rate
of return has outperformed the benchmark in the out-of-sample period;

X rav %: the average portfolio return on yearly basis (in percentage);

X Excess Ret. % : the out-of-sample average excess return of the portfolio over the bench-
mark, on yearly basis and in percentage. It is computed as [rav] - [average benchmark
return];

X s-std : the downside semi-standard deviation of the portfolio return compared to the bench-

mark return, computed as
√

1
52

∑52
t=1(yt − rIt )2−;

X Sortino Index : the average excess return divided by the semi-standard deviation s-std.

The above statistics provide a synthetic and clear assessment of both in-sample main char-
acteristics and out-of-sample performance of the optimal portfolios. In both tables, for each
instance, we highlighted in bold the model(s) that achieved the best value of the Sortino index
(the larger, the better). As already mentioned, computing times required to optimally solve the
tested models are always negligible (in the order of fractions of a second), and thus they have
not been reported here. On the other side, one can note that for both the EOR model (22)
and the EWCVaR model (27) the number of variables and constraints increase with the number
of scenarios. Hence, finding an optimal solution for these models may become computationally
challenging when the number of scenarios employed is very large. In Appendix B, we show that,
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taking advantage of LP duality, one can obtain more computationally efficient formulations to
use with a large number of scenarios. Finally, to evaluate and easily compare the out-of-sample
performance of the optimal portfolios over time, we plot in Figures 2–4 the ex-post cumulative
returns yielded by all the selected portfolios and the respective benchmark in each of the 12
tested instances.

Table 2: Optimal portfolios: In-sample and out-of-sample statistics for the GMS data set.

In-Sample Out-of-Sample
yt > Excess Sortino

Instance Model Div. Min % Max % rIt % rav % Ret. % s-std Index

GMS-UU

EOR 32 0.27 9.86 53.85 46.08 0.16 0.0068 0.0031
EWCVaR(.05, .25) 30 0.16 12.12 53.85 44.07 -1.85 0.0069 -0.0358
EWCVaR(.05, .25, .50) 31 0.32 13.31 53.85 43.15 -2.77 0.0079 -0.0468
ECVaR(.05) 33 0.08 10.82 53.85 42.84 -3.08 0.0067 -0.0615
ECVaR(.50) 34 0.10 14.33 55.77 43.62 -2.30 0.0079 -0.0389

GMS-UD

EOR 34 0.26 9.75 61.54 1.39 9.93 0.0041 0.4835
EWCVaR(.05, .25) 36 0.33 10.76 65.38 1.73 10.27 0.0043 0.4749
EWCVaR(.05, .25, .50) 34 0.19 10.56 65.38 -0.18 8.36 0.0043 0.3940
ECVaR(.05) 38 0.21 10.18 67.31 4.45 12.99 0.0044 0.5819
ECVaR(.50) 35 0.14 8.91 65.38 -2.39 6.15 0.0041 0.3070

GMS-DU

EOR 31 0.14 10.50 48.08 31.55 -2.64 0.0034 -0.1133
EWCVaR(.05, .25) 33 0.14 10.11 53.85 33.04 -1.15 0.0034 -0.0491
EWCVaR(.05, .25, .50) 35 0.05 10.45 46.15 32.25 -1.94 0.0032 -0.0877
ECVaR(.05) 37 0.13 10.19 53.85 32.41 -1.78 0.0030 -0.0851
ECVaR(.50) 32 0.10 10.40 53.85 33.59 -0.60 0.0030 -0.0283

GMS-DD

EOR 34 0.06 10.33 53.85 -20.53 2.40 0.0058 0.1019
EWCVaR(.05, .25) 33 0.17 9.76 53.85 -19.86 3.07 0.0061 0.1228
EWCVaR(.05, .25, .50) 33 0.08 9.80 55.77 -21.03 1.90 0.0058 0.0802
ECVaR(.05) 34 0.10 8.22 55.77 -20.94 1.99 0.0052 0.0932
ECVaR(.50) 36 0.13 10.93 59.62 -20.87 2.06 0.0058 0.0869

Table 2 summarizes the results for the GMS data set. Looking at the in-sample portfolio
diversification (column Div.), it is evident that all the portfolios have a similar cardinality. Also
the minimum and maximum portfolio shares (columns Min % and Max %, respectively) take
very similar values in all the instances, with the only exclusion of instance GMS-UU, where
a slightly larger deviation among the values of the maximum share can be identified. Note
that the maximum portfolio share never exceeds the 14.5%, indicating that in all the optimal
portfolios the budget available has been, in a broad sense, well-diversified among the securities.
As far as the out-of-sample performance is considered, after analyzing the figures reported in
Table 2 and the cumulative returns depicted in Figure 2, one can conclude that all the optimal
portfolios perform similarly and well: they closely mimic the benchmark, often outperform it
(even if not for the entire out-of-sample period), and show a limited performance deviation
between each others. Some differences are evident for instance GMS-UD. In this case, all the
optimized portfolios clearly outperform the benchmark, although differently. In more details,
Figure 2(b) shows that the optimal portfolios selected by models EOR and EWCVaR(.05, .25,
.50) achieve the highest cumulative returns in the first part of the ex-post period, whereas they
are clearly outperformed by the portfolio selected by model ECVaR(.05) in the last part of the
ex-post period. Analyzing more in depth the figures reported in Table 2, one can also notice
that for the GMS-UU instance the portfolio selected with the EOR model is the one that yielded
the best ex-post cumulative return, and the only one that achieved a (slightly) positive average
excess return (see column Excess Ret. %).

We now turn our attention to the results regarding the ORL data set, which are summarized
in Table 3 and illustrated in Figures 3 and 4. As far as the four smallest instances of this data
set are considered, Figures 3(a)-3(d) show that all the optimal portfolios replicate quite closely
the ex-post behavior of their benchmark. In more details, regarding instances ORL-IT1 through
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Table 3: Optimal portfolios: In-sample and out-of-sample statistics for the ORL data set.

In-Sample Out-of-Sample
yt > Excess Sortino

Instance Model Div. Min % Max % rIt % rav % Ret. % s-std Index

ORL-IT1

EOR 25 0.24 16.52 59.62 -13.06 2.86 0.0027 0.2383
EWCVaR(.05, .25) 25 0.31 15.37 55.77 -13.29 2.64 0.0026 0.2251
EWCVaR(.05, .25, .50) 25 0.12 16.19 61.54 -13.04 2.89 0.0026 0.2498
ECVaR(.05) 26 0.35 15.35 48.08 -14.19 1.73 0.0025 0.1584
ECVaR(.50) 25 0.09 15.90 61.54 -12.30 3.62 0.0024 0.3437

ORL-IT2

EOR 45 0.05 8.88 63.46 2.08 1.73 0.0017 0.1955
EWCVaR(.05, .25) 51 0.08 9.85 61.54 1.47 1.12 0.0020 0.1072
EWCVaR(.05, .25, .50) 48 0.14 8.24 61.54 2.24 1.90 0.0015 0.2468
ECVaR(.05) 51 0.08 9.85 61.54 1.47 1.12 0.0020 0.1072
ECVaR(.50) 47 0.10 8.42 59.62 2.34 1.99 0.0013 0.2931

ORL-IT3

EOR 47 0.10 6.35 51.92 -5.13 1.40 0.0026 0.1117
EWCVaR(.05, .25) 46 0.08 7.22 50.00 -6.31 0.23 0.0029 0.0160
EWCVaR(.05, .25, .50) 46 0.06 7.46 48.08 -5.73 0.80 0.0030 0.0552
ECVaR(.05) 46 0.08 7.22 50.00 -6.31 0.23 0.0029 0.0160
ECVaR(.50) 45 0.05 5.98 48.08 -4.37 2.16 0.0025 0.1786

ORL-IT4

EOR 47 0.05 6.29 46.15 5.90 0.17 0.0023 0.0133
EWCVaR(.05, .25) 54 0.08 5.15 53.85 5.49 -0.24 0.0020 -0.0223
EWCVaR(.05, .25, .50) 50 0.05 5.62 53.85 6.02 0.29 0.0021 0.0258
ECVaR(.05) 54 0.08 5.15 53.85 5.49 -0.24 0.0020 -0.0223
ECVaR(.50) 46 0.08 8.98 48.08 5.07 -0.66 0.0028 -0.0453

ORL-IT5

EOR 57 0.08 9.04 46.15 -15.06 -3.99 0.0033 -0.2684
EWCVaR(.05, .25) 67 0.08 7.42 44.23 -13.80 -2.74 0.0026 -0.2311
EWCVaR(.05, .25, .50) 62 0.06 7.93 46.15 -14.68 -3.61 0.0030 -0.2627
ECVaR(.05) 67 0.08 7.42 44.23 -13.80 -2.74 0.0026 -0.2311
ECVaR(.50) 58 0.05 8.34 46.15 -15.11 -4.04 0.0032 -0.2752

ORL-IT6

EOR 57 0.10 5.71 57.69 28.34 5.44 0.0044 0.1924
EWCVaR(.05, .25) 60 0.05 5.87 55.77 27.55 4.65 0.0049 0.1474
EWCVaR(.05, .25, .50) 54 0.11 6.34 53.85 27.06 4.16 0.0049 0.1311
ECVaR(.05) 60 0.05 5.87 55.77 27.55 4.65 0.0049 0.1474
ECVaR(.50) 59 0.08 6.26 53.85 23.39 0.49 0.0055 0.0139

ORL-IT7

EOR 74 0.09 5.56 61.54 29.45 16.41 0.0066 0.3993
EWCVaR(.05, .25) 77 0.05 5.03 57.69 25.25 12.22 0.0068 0.2908
EWCVaR(.05, .25, .50) 77 0.05 5.03 57.69 25.25 12.22 0.0068 0.2908
ECVaR(.05) 77 0.05 5.03 57.69 25.25 12.22 0.0068 0.2908
ECVaR(.50) 72 0.07 4.55 55.77 27.51 14.48 0.0080 0.2906

ORL-IT8

EOR 59 0.05 10.39 50.00 38.69 16.84 0.0090 0.2772
EWCVaR(.05, .25) 59 0.05 10.03 61.54 50.83 28.98 0.0095 0.4348
EWCVaR(.05, .25, .50) 57 0.08 10.60 59.62 43.89 22.03 0.0092 0.3498
ECVaR(.05) 59 0.05 10.03 61.54 50.83 28.98 0.0095 0.4348
ECVaR(.50) 60 0.05 10.15 59.62 39.87 18.02 0.0085 0.3126

Table 4: Optimization models: A summary of their out-of-sample rankings.

# # # # #
Model First Second Third Fourth Last

EOR 3 4 2 1 2
EWCVaR(.05, .25) 3 4 2 3 0
EWCVaR(.05, .25, .50) 1 3 3 4 1
ECVaR(.05) 3 2 3 2 2
ECVaR(.50) 4 0 1 2 5
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ORL-IT3, the portfolios that perform best are the ones obtained solving model ECVaR(.50),
achieving an average excess return that ranges from 1.99% to 3.62%, with values of statistic s-std
slightly smaller than the ones of the other optimal portfolios. Conversely, the portfolio selected
by the ECVaR(.50) model is the one that performs worst in instance ORL-IT4 (compare the
values of the Sortino index). For this instance, the only portfolios that achieved a positive excess
return are the ones determined by solving the EOR and, in particular, the EWCVaR(.05, .25, .50)
models. Regarding instance ORL-IT5, the ex-post cumulative returns yielded by the benchmark
are always better than the ones achieved by the optimized portfolios, although the differences
are not very large (the average excess return of the portfolios ranges from -2.74% to -4.04%). In
this instance, the portfolio selected using the EWCVaR(.05, .25) and the ECVaR(.05) models is
the one that looses less compared to the benchmark. In the three largest-scale instances of the
ORL data set, all the optimized portfolios outperform considerably the benchmark (see Figures
4(b)-4(d)). Regarding instance ORL-IT6, the portfolio selected by model EOR provides the best
out-of-sample results, achieving an average excess return equal to 5.44%, beating the 57.69% of
times (out of the 52 ex-post observations) the return yielded by the benchmark, and with the
smallest downside risk (statistic s-std takes a value approximately equal to 0.0044). Nevertheless,
the performance of the portfolio obtained by the ECVaR(.05) and the EWCVaR(.05,.25) models
is only slightly worse, achieving an average excess return roughly equal to 4.65%, beating the
benchmark return 55.77% of the times, and with a downside risk around 0.0049. As far as
instance ORL-IT7 is considered, the portfolio constructed by solving the EOR model achieves
the best ex-post performance: it yields an average excess return of approximately 16.41% and
a value of the Sortino index equal to 0.3993. It is worth noting that, with the exception of
the ECVaR(.50) model, all the CVaR-based models select the same optimal portfolio. Finally,
regarding instance ORL-IT8, both the ECVaR(.05) and the EWCVaR(.05, .25) models find the
same optimal portfolio. More importantly, the latter portfolio is the one performing best ex-post,
yielding an average excess return roughly equal to 28.98% (which is considerably larger than that
achieved by the other portfolios), and being only slightly riskier (compare the figures reported
in column s-std). Note that the portfolio with the worst value of the Sortino index for instance
ORL-IT8 is the one selected by the EOR model. It is worth highlighting that in both the ORL-
IT7 and ORL-IT8 instances, all the optimal portfolios largely outperform the benchmark over
the entire out-of-sample period, yielding much larger cumulative returns than the ones achieved
by the market index. A similar finding also occurs in instance ORL-IT6 for most of the optimal
portfolios, with the exception of the portfolio obtained solving model ECVaR(.50). Actually, the
latter clearly outperforms the benchmark over most of the out-of-sample period, but achieving
similar cumulative returns towards the end of the period. Interesting enough, although we
treat differently some more or less extreme events, for several instances the ECVaR(.05) and
ECVaR(.05, 0.25) models find the same optimal portfolios, perhaps indicating that in these cases
a larger number of in-sample observations, or further levels of diversification and weight setting
might help.

Summarizing the previous discussion, the experimental results that we conducted indicate
that no optimization model shows a clear dominance over the others. Indeed, considering all the
instances we tested, it is not possible to determine a “winning model”, nor a “losing model”. It
is, however, possible to determine the following general guidelines. Firstly, optimization models
can be a valuable tool to support investment decisions. Indeed, it is worth noting that in 10 out
of the 12 instances, at least one optimal portfolio outperforms ex-post the respective benchmark
in terms of average return yielded. More interestingly, in 8 out of the 12 instances all the optimal
portfolios outperform their benchmark. Secondly, analyzing in more details the results reported
in Table 2, one can notice that the instances where most of (or even all) the optimal portfolios
yielded a negative excess return are those when the market trend is increasing out-of-sample
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(i.e., instances GMS-UU and GMS-DU). Considering that in these two instances the optimal
portfolios yielded an average return at least equal to 42.84% and 31.55%, respectively, we believe
that these are situations where for an investor it is, from a practical perspective, less relevant
to outperform a benchmark. On the other side, this becomes crucial when the market trend is
decreasing ex-post, as for instances GMS-UD and GMS-DD. Note that, in these two cases, all
the optimal portfolios yielded a positive excess return, at least equal to 6.15% and to 1.90%,
respectively. To provide some further insights into the performance of the optimal portfolios,
Table 4 summarizes the ranking of the five models according to the Sortino index values. More
precisely, this table reports the number of times (out of the 12 instances) that the portfolio
selected by each optimization model was ranked from the first to the fifth position, based on
the Sortino index. Although, the ECVaR(.50) model, with a value of 4, achieved the highest
number of times the first position, it slips back to the worst performance when one considers
the cumulative sum of the first two positions (the total number remains equal to 4, which is the
same result attained by model EWCVaR(.05, .25, .50)). It is worth noting that the ECVaR(.50)
model is also the one with the highest number of times in the last position. If one considers
the sum of first and second positions, models EOR and EWCVaR(.05, .25) are the best ones
with a cumulative sum equal to 7. Analyzing the figures in more details, one can notice that
the EWCVaR(.05, .25) model has never been in the last position, whereas the EOR model
attained twice the last position, hence making the former preferable to the latter. Although the
EWCVaR(.05, .25) and the ECVaR(.05) models often select the same optimal portfolios, the
rankings indicate that in the remaining instances model EWCVaR(.05, .25) performs better than
model ECVaR(.05). Finally, model EWCVaR(.05, .25, .50) is the more conservative, awarding
the first position and the last one only once each, hence ranking in the middle positions for most
of the instances.

5 Conclusions

In recent years, shortfall or quantile risk measures have been playing a central role in financial
applications. The Conditional Value-at-Risk (CVaR) is one of such measures. In this paper, we
formulated the Enhanced Index Tracking Problem based on using Weighted CVaR (WCVaR)
measures, which are defined as combinations of a few CVaR measures thus allowing a more
detailed risk aversion modeling while preserving the simplicity of the CVaR. More precisely, we
used the weighted conditional drawdown measure, corresponding to the WCVaR, to formulate
the problem as a class of risk-reward ratio optimization models which, using standard lineariza-
tion techniques, can be reformulated in terms of LP solvable models. The performance of the
portfolios optimized by means of these models has been compared to the one of the portfolios
constructed using the Extended Omega Ratio (EOR) model presented in Guastaroba et al. [10]
and here reformulated as a risk-reward model. All optimization models were solved by using
CPLEX.

We conducted extensive computational experiments on two different sets of benchmark in-
stances, exploring different market trends both in-sample and out-of-sample. The results indicate
that no optimization model clearly dominates all the others in terms of out-of-sample perfor-
mance. On the other side, the results suggest that optimization models can represent, to an
investor, a valuable quantitative tool to support investment decisions. All the optimal port-
folios tracked very closely the behavior of the benchmark over the out-of-sample period, often
achieving better average and cumulative returns.
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Appendix A: Other CVaR-related ratio measures

In this section, we discuss some well-known ratio performance measures that are related to the
CVaR, and therefore relevant to our research. In particular, we highlight in the following the
similarities among these ratio measures and the ones used in the current paper. Consider the
following risk-return ratio that uses a single CVaR measure:

DDRβ(τ,Rx) =
∆β(Rx)

µ(Rx)− τ
→ min .

Following Theorem 1 and Corollary 1, one gets a well-defined model for µ(Rx)− τ > 0 and SSD
consistent for Mβ(Rx) = µ(Rx) −∆β(Rx) ≤ τ . Rachev et al. [29] introduced a CVaR-related
ratio measure called the Stable-Tail Adjusted Return Ratio (in short, STARR) defined as:

STARRβ(τ,Rx) =
E{Rx − τ}
τ −Mβ(Rx)

=
µ(Rx)− τ
τ −Mβ(Rx)

→ max .

Note that the additional restriction τ−Mβ(Rx) > 0 must be imposed, in addition to µ(Rx)−τ >
0, to guarantee the positivity of the above ratio. Obviously, this ratio can be reformulated in
terms of risk-reward ratio optimization as follows:

STARRβ(τ,Rx) =
τ −Mβ(Rx)

µ(Rx)− τ
→ min .

Actually, note that the following equalities hold:

STARRβ(τ,Rx) =
τ −Mβ(Rx)

µ(Rx)− τ
=
τ − µ(Rx) + ∆β(Rx)

µ(Rx)− τ
= −1 +DDRβ(τ,Rx).

Hence, optimizing STARRβ(τ,Rx) is equivalent to optimizing DDRβ(τ,Rx), although the for-
mer requires the additional restriction τ −Mβ(Rx) > 0.

A more general CVaR-related ratio measure, called the Rachev ratio (R-ratio), was intro-
duced in [29]. It is defined as the ratio of the expected excess tail return above a certain threshold
level (percentile of the right tail distribution), divided by the expected excess tail loss beyond
another threshold level (percentile of the left tail distribution). In terms of the CVaR measure
Mβ(Rx), the R-ratio can be expressed as follows:

RR(β1,β2)(τ,Rx) =
−Mβ1(τ −Rx)

−Mβ2(Rx − τ)
→ max,

with parameters 0 < β1, β2 ≤ 1. Note that in the special case obtained by setting β1 = 1 and
β2 = β, the corresponding R-ratio reduces to the STARRβ(τ,Rx):

RR(1,β)(τ,Rx) =
−M1(τ −Rx)

−Mβ(Rx − τ)
=

E{Rx − τ}
τ −Mβ(Rx)

=
µ(Rx)− τ
τ −Mβ(Rx)

= STARRβ(τ,Rx).

Another interesting special case of the R-ratio is defined by setting β1 = 1−β and β2 = β. In
this case, the corresponding R-ratio is defined as the ratio of the expected excess tail return above
a certain threshold level, divided by the expected excess tail loss beyond the complementary
threshold level. Thus, it is a quantile form of the Omega ratio introduced in Keating and
Shadwick [13], and used in the current paper as a basis for the EOR model. We show below
that despite the RR(1−β,β)(τ,Rx) does not represent STARRβ(τ,Rx), their maximization is
equivalent.

25



Institute of Control & Computation Engineering Report 2016–14

In order to analyze the general R-ratio, let us recall the relations between upper (right)
tail mean and the lower (left) tail mean of a distribution. Recall that FRx(η) = P{Rx ≤
η} denotes the right-continuous cumulative distribution function of Rx, whereas F

(−1)
Rx

(ξ) is
the corresponding quantile function defined as the left-continuous inverse of the cumulative
distribution function FRx . Similarly, let FRx(η) = P{Rx ≥ η}, be the left-continuous right
tail cumulative distribution function which, for any real value η, provides the probability of

having returns larger than or equal to η. Then, let F
(−1)
Rx

denote the right tail quantile function
defined as the left-continuous inverse of the right tail cumulative distribution function FRx , i.e.,

F
(−1)
Rx

(ξ) = sup{η : FRx(η) ≥ ξ}, for 0 < ξ ≤ 1. Note that F
(−1)
Rx

(ξ) = F
(−1)
Rx

(1−ξ). Furthermore,
the (convex) absolute Lorenz curve for any distribution may be viewed as an integrated quantile
function:

F
(−2)
Rx

(ξ) =

∫ ξ

0
F

(−1)
Rx

(α)dα.

Alternatively, the upper (concave) absolute Lorenz curve may be used which integrates the right
tail quantile function:

F
(−2)
Rx

(ξ) =

∫ ξ

0
F

(−1)
Rx

(α)dα.

Actually, both the classical (lower) and the upper absolute Lorenz curves are symmetric with

respect to the diagonal line µ(Rx)ξ, in the sense that the differences F
(−2)
Rx

(ξ) − µ(Rx)ξ and

µ(Rx)ξ − F (−2)
Rx

(ξ) are equal for symmetric arguments ξ and (1− ξ), i.e.:

F
(−2)
Rx

(ξ) + F
(−2)
Rx

(1− ξ) = µ(Rx), for any 0 ≤ ξ ≤ 1.

Therefore, one can write:

−Mβ1(τ −Rx) =
1

β1
F

(−2)
Rx−τ (β1) =

1

β1
(µ(Rx − τ)− F (−2)

Rx−τ (1− β1))

=
1

β1
(µ(Rx)− τ)− 1− β1

β1
M(1−β1)(Rx − τ).

Consequently, the following equalities hold:

RR(β1,β2)(τ,Rx) =
−Mβ1(τ −Rx)

−Mβ2(Rx − τ)
=

1

β1

µ(Rx)− τ
τ −Mβ2(Rx)

+
1− β1
β1

M(1−β1)(Rx − τ)

Mβ2(Rx − τ)

=
1

β1
STARRβ2(τ,Rx) +

1− β1
β1

M(1−β1)(Rx − τ)

Mβ2(Rx − τ)
.

In particular, in the special case of β1 = 1− β and β2 = β, one can write:

RR(1−β,β)(τ,Rx) =
1

1− β
STARRβ(τ,Rx) +

β

1− β
,

which confirms that the maximization of RR(1−β,β)(τ,Rx) is equivalent to the maximization of
STARRβ(τ,Rx), and thereby to the minimization of DDRβ(τ,Rx). On the other hand, for the
general case of β1 6= 1 − β2 the optimization of RR(β1,β2)(τ,Rx) cannot be linearized and it is
rather difficult to implement and solve.

Since in the literature both ratios STARRβ(τ,Rx) and RR(1−β,β)(τ,Rx) are usually formu-
lated with respect to a predetermined target τ , we preferred to provide the analysis above in
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these terms. However, the analysis can be easily extended to a random target Rα, leading to
the following ratios:

DDRβ(0, Rx −Rα) =
∆β(Rx −Rα)

µ(Rx −Rα)
→ min,

STARRβ(0, Rx −Rα) =
−Mβ(Rx −Rα)

µ(Rx −Rα)
→ min,

and,

RR(β1,β2)(0, Rx −Rα) =
−Mβ1(Rα −Rx)

−Mβ2(Rx −Rα)
→ max .

Appendix B: Dealing with a large number of scenarios

Note that the EOR model (22) has n+T decision variables, and T+2 constraints. Our computing
experiments indicate that state-of-the-art solvers can find an optimal solution to such a model in
a short computing time when the number of scenarios is relatively small. Nevertheless, finding
an optimal solution can become computationally challenging when the number of scenarios
considered becomes (very) large. In these cases, one can take advantage of LP duality, and
reformulate the LP model (22) in the following terms:

max q − h

s.t.
T∑
t=1

(rαt − rjt)ut + (µj − µα)q − εh ≤ ε j = 1, . . . , n

h ≥ 0, 0 ≤ ut ≤ pt t = 1, . . . , T.

This model contains 2 + T variables, i.e., variables q, h, and ut, respectively. Note that the T
constraints corresponding to variables d̃t from model (22) take the form of simple upper bounds
on variables ut, thus not affecting the problem complexity. Hence, the number of constraints
in the above model is proportional to the number n of securities available for the investment.
This guarantees a remarkable computational efficiency of the dual model even for a very large
number of scenarios, i.e., T >> n.

In a similar way, the LP dual to the EWCVaR model (27) is the following:

max q − h

s.t.
T∑
t=1

utk = wk k = 1, . . . ,m

T∑
t=1

m∑
k=1

(rjt − rαt )utk + (µj − µα)q − εh ≤ (µj − µα + ε) j = 1, . . . , n

0 ≤ utk ≤
ptwk
βk

t = 1, . . . , T ; k = 1, . . . ,m

h ≥ 0.

The latter model contains 2 + mT variables, i.e., variables q, h, and utk, respectively, and the
mT constraints corresponding to variables d̃tk from model (27) are simple upper bounds on
utk. Thus, and similar to the dual above of the EOR model (22), the number of constraints
in this optimization model is only proportional to the number n of securities available for the
investment, and independent from the number of scenarios.
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