Ćwiczenie 5

Realizacja na procesorze sygnałowym
adaptacyjnego usuwania echa w łączu telefonicznym

1. Cel ćwiczenia. Celem ćwiczenia jest ilustracja podstawowych pojęć i metod filtracji adaptacyjnej na przykładzie usuwania echa w łączu telefonicznym dalekiego zasięgu. Studenci zapoznają się z praktyczną realizacją algorytmu LMS z uwzględnieniem specyfiki jego implementacji na procesorze sygnałowym DSP56001.

2. Zakres badań. Badania obejmują: • samodzielną implementację algorytmu LMS na procesorze sygnałowym DSP56001; • ocenę dokładności i szybkości zbieżności algorytmu LMS; • analizę jego złożoności obliczeniowej z uwzględnieniem specyfiki arytmetyki procesorów sygnałowych; • ocenę efektów poprawy jakości sygnałów akustycznych po ich adaptacyjnej filtracji i optymalny dobór stałych algorytmu zapewniający najlepszą jakość.

3. Podstawy teoretyczne.

A. Charakterystyka zagadnienia

Zjawisko echa w łączu telefonicznym polega, najogólniej rzecz ujmując, na częściowym odbiciu sygnału transmitowanego od abonenta A do abonenta B i powrocie sygnału odbitego ponownie do abonenta A. Odbicie następuje w układzie odbiorczym abonenta B. W lokalnych sieciach telefonicznych krótkiego zasięgu czas opóźnienia sygnału na drodze $A-B$ i z powrotem jest niewielki i powracające echo nie zakończa abonentowi A własnego głosu. Dla opóźnień nie większych niż 50 ms echo jest w istocie rzeczy czynnikiem poprawiającym subiektywną ocenę jakości sygnału telefonicznego. Zupełnie inaczej sprawa przedstawia się w łączach dalekiego zasięgu, na przykład, gdy sygnał jest transmitowany przez satelitę telekomunikacyjnego. W transmisji transkontynentalnej opóźnienie sygnału na drodze od abonenta A do satelity i od satelity do abonenta B może sięgać 250 ms. Ponieważ zwrotna transmisja echa odbywa się z takim samym opóźnieniem, zatem powraca on do abonenta A po czasie rzędu 0,5 s. Tak znacznego czas opóźnienia powracającego do abonenta A echa jest przyczyną nieprzyjemnego efektu wywołanego nakładaniem się na sygnał mowy abonenta A przesuniętej kopii tego sygnału (tzw. echo mówcy). Co więcej, echo to odbite ponownie po stronie A wraca z tym samym opóźnieniem do abonenta B, zakłócając mu odbiór (tzw. echo słuchacza).

Aby wyjaśnić mechanizm powstawania echa rozpatrzmy schemat łączu telefonicznego dalekiego zasięgu przedstawiony na rys. 1. Dla uproszczenia pomijamy bloki funkcjonalne łącza wykonujące cały zespół operacji niezbędnych do realizacji rozmowy telefonicznej, takie jak modulatory, urządzenia komutacyjne itp., skupiając się jedynie na problemach związanych z przepływem sygnałów. Abonenci A i B są dołączeni do central lokalnych za
pomocą łączy dwuprzewodowych. Ze względu na konieczność stosowania wzmacniaczy w kolejnych stacjach przekaźnikowych (tzw. wzmacniakach) oraz odpowiednich komutacji sygnału, łączność między centralami abonencznymi jest realizowana za pomocą łącza czteroprzewodowego, przy czym po zestawieniu połączenia każdemu abonentowi jest przydzielony jeden z torów. Zatożymy, że sygnał od abonenta A do abonenta B jest transmitowany torem górnym, a od abonenta B do abonenta A torem dolnym. Oba tory mogą być przewodowe (kablowe) z kolejnymi stacjami przekaźnikowymi lub też ich częścią może być łącze radiokomunikacyjne (np. satelitarne).

Istotnym elementem występującym w obu centralach jest urządzenie hybrydowe, którego zadaniem jest skierowanie sygnału przychodzącego danym torem łącza czteroprzewodowego do lokalnego łącza dwuprzewodowego po stronie odbiorczej oraz skierowanie sygnału wychodzącego z łącza dwuprzewodowego do łącza czteroprzewodowego po stronie nadawczej. Idealne urządzenie hybrydowe przepuszcza sygnał odbierany przychodzący z łącza czteroprzewodowego do lokalnego łącza dwuprzewodowego o 3 dB i nie przepuszcza energii tego sygnału w kierunku zwrotnym poprzez drugi tor łącza czteroprzewodowego. Jednocześnie urządzenie to przepuszcza sygnał nadawany z łącza dwuprzewodowego do łącza czteroprzewodowego o 3 dB bez odbicia zwrotnego w kierunku łącza dwuprzewodowego. W przypadku idealnym nie występuje zatem szkodliwe zjawisko przekształcania zwrotnego sygnałów. W praktyce, z różnych względów, zachowanie rzeczywistych urządzeń hybrydowych odbiega od idealnego i część energii sygnałów przenika w kierunku zwrotnym w postaci szkodliwego echa.

Zasadniczą przyczyną powstawania echa zwrotnego jest niedopasowanie impedancyjne obu łączy. Dopasowanie impedancji łącza dwuprzewodowego do łącza czteroprzewodowego jest trudne do realizacji w całym paśmie transmisji, a ponadto impedancja ta jest z reguły różna dla różnych abonentów. Ze względu na niedopasowanie, część energii sygnału abonenta A dochodząca po torze górnym do układu hybrydowego w centrali abonenta B jest odbijana i zawracana w kierunku abonenta A po torze dolnym. Dla typowych układów hybrydowych sygnał echa zwrotnego jest słłumiony o około 15 dB w porównaniu z sygnałem przychodzącym. Tłumienie to jest niedostateczne, aby uniknąć zakłócenia rozmowy. Efekt zakłócający jest bowiem odczuwalny nawet przy echu słłumionym o 40 dB. Podobna sytuacja ma miejsce gdy rozmowę podejmuje abonent B.

Tradycyjne metody usuwania echa polegające na zastosowaniu specjalnych kluczy sterowanych sygnałem mowy otwierających drogę zwrotną tylko wówczas, gdy rozmowę podejmuje abonent B nie zdając przy tak dużych opóźnieniach egzaminu. Powszechnie stosowanym obecnie rozwiązaniem w nowoczesnych łączach telefonicznych dalekiego zasięgu jest usuwanie echa poprzez zastosowanie filtracji adaptacyjnej.

B. Zasada działania filtra adaptacyjnego

Schemat wyjaśniający sposób wykorzystania filtra adaptacyjnego do usuwania echa jest przedstawiony na rys. 2. (pełny uproszczony schemat blokowy łącza telefonicznego) i rys. 3 (dokładny schemat blokowy po stronie abonenta B). Na schematach tych poszczególne tory transmisji są przedstawione dla uproszczenia za pomocą pojedynczych linii. Sygnał $x(n)$ przychodzący od abonenta A (rys.3) jest podawany zarówno na układ
hybrydowy w centrali abonenta B jak i na wejściu filtra adaptacyjnego. Jako sygnał odniesienia jest przyjmowany sygnał \(d(n) \) z wyjścia układu hybrydowego. Możliwe są przy tym dwa przypadki. Jeżeli abonent B nie prowadzi jednocześnie rozmowy (tylko słucha głosu abonenta A) sygnał \(d(n) \) jest szkodliwym odbitym echem \(\bar{x}(n) \) sygnału \(x(n) \), tzn. \(d(n) = \bar{x}(n) \). Jeżeli natomiast abonent B jednocześnie mówi, przerywając abonentowi A rozmowę, sygnał \(d(n) \) jest superpozycja sygnału \(s(n) \) abonenta B i odbitego echa \(\bar{x}(n) \), tzn. \(d(n) = s(n) + \bar{x}(n) \). W obu przypadkach filtr adaptacyjny \(F_n(z) \) estymuje z próbek sygnału \(x(n) \) sygnał echa \(\bar{x}(n) \). Estymata \(\hat{x}_A(n) \) echa jest odejmowana od sygnału \(d(n) \) i w efekcie do abonenta A jest transmitowany sygnał błędu \(e(n) \). W pierwszym przypadku bledem jest różnica \(\bar{x}(n) - \hat{x}(n) \), w drugim zaś sygnał \(s(n) + (\bar{x}(n) - \hat{x}(n)) \). W efekcie w pierwszym przypadku do abonenta A jest transmitowane zwróconie zakłócające skompensowane słabe echo, w drugim zaś sygnał abonenta B z nałożonym niewielkim sygnałem własnego skompensowanego echa.

![Diagram hybrydowy](image)

Rys. 2. Schemat łącza telefonicznego z adaptacyjnym usuwaniem echa

![Diagram adaptacyjny](image)

Rys. 3. Dokładny schemat blokowy układu usuwania echa po stronie abonenta B

Można zatem powiedzieć, że przy założeniu, iż układ hybrydowy przetwarzający sygnał \(x(n) \) na sygnał \(\bar{x}(n) \) jest filtrem liniowym, zadaniem układu adaptacyjnego jest optymalna identyfikacja transmitancji \(H(z) \) tego filtra. Ponieważ transmitancja ta nie jest znana a priori, proces identyfikacji przebiegać musi adaptacyjnie. W procesie adaptacji jest
wykorzystywany fakt, że sygnał zwrotny echa $\bar{x}(n)$ na wyjściu układu hybrydowego jest skorelowany z sygnałem $x(n)$ przychodzącym na jego wejście. W efekcie sygnał błędu $e(n)$ może być wykorzystany do adaptacyjnego nastrojenia współczynników filtru. Podkreślmy, że w przypadku podjęcia jednoczesnej rozmowy przez abonenta B jego sygnał $s(n)$ nie narusza warunków adaptacji, nie jest bowiem skorelowany z sygnałem $x(n)$ abonenta A. Filtry adaptacyjne należy oczywiście umieścić po obu stronach łączu, przy czym w celu uniknięcia ewentualnych opóźnień sygnałów powinny być one zlokalizowane możliwie blisko układów hybrydowych.

C. Algorytm działania filtra adaptacyjnego

Filtr $F_n(z)$ jest realizowany jako filtr LMS działający według następującego algorytmu:

- powtarzaj następujące czynności:
 - pobierz próbkę $d(n)$;
 - pobierz próbkę $x(n)$ ($=\pm 1$) i zaktualizuj wektor x_n;
 - $\hat{x}(n) = f_n^T x_n$;
 - $e(n) = d(n) - \hat{x}(n)$;
 - wyslij próbkę $e(n)$;
 - $f_{n+1} = f_n + \alpha e(n)x_n$.

W algorytmie tym:

- $f_n = [f_n(0),\ldots,f_n(L-1)]^T$

jest wektorem współczynników filtra transwersalnego rzędu L, z zerowym warunkiem początkowym $f_0 = 0$, natomiast:

- $x_n = [x(n),\ldots,x(n-L+1)]^T$

jest wektorem L ostatnich próbek sygnału $x(n)$.

4. Realizacja algorytmu na procesorze sygnałowym

W ćwiczeniu laboratoryjnym modelowana jest jedynie część łącza telefonicznego po stronie abonenta B, związana z przesłuchem poprzez kanał $H(z)$ sygnału abonenta A i usuwaniem tego przesłuchu przez filtr adaptacyjny $F_n(z)$ (por. rys.4). Zarówno wytwarzanie sygnału kompensującego $\hat{x}(n)$, jak i jego odejmowanie od sygnału odniesienia $d(n)$, jest realizowane w czasie rzeczywistym na procesorze sygnałowym (DSP). Fragment układu realizujący te operacje zaznaczono na rys. 4 linią przerywaną.

![Diagram](image)

Rys. 4. Uproszczony model układu usuwania echa po stronie abonenta B
Można przyjąć różne warianty modelowania kanału przesłuchu występującego w układzie hybrydowym za pomocą transmitancji \(H(z) \):

1. \(H(z) = 0 \) (przerwa) - brak przesłuchu;
2. \(H(z) = 1 \) (zwarcie) - najprostszy model przesłuchu, bez zmiany kształtu sygnału \(x(n) \) i bez jego opóźnienia;
3. \(H(z) \) jest realizowana przez czwórnik RLC;
4. \(H(z) \) jest realizowana przez linię długą (40 km), opóźniającą i zniekształcającą sygnał \(x(n) \).

W każdym z tych przypadków algorytm adaptacyjny LMS powinien dopasować transmitancję \(F_n(z) \) filtru predykcyjnego do aktualnej transmitancji \(H(z) \) kanału przesłuchu.

Schemat ideowy układu usuwania echa z wykorzystaniem procesora sygnałowego pokazano na rys. 5. Układ ten składa się z filtru liniowego o transmitancji \(H(z) \), sumatora i procesora sygnałowego. Wejściami procesora sygnałowego są: sygnał \(x(n) \) abonent A oraz sygnał odniesienia \(d(n) = \overline{x}(n) \ast s(n) \), gdzie \(s(n) \) jest sygnałem abonenta B. Na wyjściu procesora sygnałowego wyprowadzony jest sygnał błędu predykcji \(e(n) = s(n) \). W systemie IPE56 procesor sygnałowy ma jednocześnie tylko jedno wejście analogowe z przetwornika A/C, które trzeba wykorzystać do odbierania sygnału odniesienia \(d(n) \).

\[x(n) \xrightarrow{\text{DIN}} H(z) \xrightarrow{\text{DSP}} \overline{x}(n) \xrightarrow{\text{WE1}} s(n) \]

DIN - wejście cyfrowe \(\Rightarrow x(n) \) musi być sygnałem prostokątnym

WE1 - wejście analogowe \(\Rightarrow s(n) \) może być sinusoidą lub sygnałem mowy

Rys. 5. Schemat ideowy realizacji układu usuwania echa na procesorze sygnałowym

W rezultacie drugi sygnał wejściowy \(x(n) \) procesora sygnałowego musi być podany na jego wejście cyfrowe (DIN - Digital INput). Oznacza to, że sygnał \(x(n) \) abonenta A musi być modelowany w ćwiczeniu sygnałem prostokątnym, co stanowi istotne ograniczenie. W szczególności narzucza to warunek na rząd \(L \) filtru adaptacyjnego, który musi być wyraźnie większy od liczby \(P \) próbek sygnału prostokątnego \(x(n) \) występujących kolejno na tym samym poziomie logicznym. Zakładając, że okres fali prostokątnej jest równy \(\frac{1}{2} \), a jej współczynnik wypełnienia wynosi \(T_x \), dostaniemy:

\[P = \frac{T_x}{2T}, \]

(4)

gdzie \(T = 1/(93.75 \text{ kHz}) \) jest okresem próbkowania. Należy zatem zapewnić spełnienie warunku:

\[L > 2P. \]

(5)
W przeciwnym przypadku filtr adaptacyjne będzie dopasowywać się do stałego sygnału $x(n)$ o zmiennym od czasu do czasu poziomie. Można to także interpretować w ten sposób, że filtr adaptacyjny pamięta L ostatnich próbek sygnału wejściowego i jeżeli wszystkie one będą jednakowe, zacznie dopasowywać się do sygnału stałego. W efekcie częstotliwość sygnału prostokątnego $x(n)$ powinna być nie mniejsza niż kilka KHz. Nie powinno się też wybierać $T_x < 0.1$ ms, $(f_x = 1/T_x > 10)$ kHz, aby sygnał był dobrze przenoszony przez laboratoryjne urządzenia akustyczne (wzmocniacz, słuchawki, itp.).

Jako sygnał $s(n)$ abonenta B można wybrać dowolny sygnał analogowy, np. sygnał sinusoidalny lub rzeczywisty sygnał mowy.

W systemie IPE56 odczytywanie wejścia cyfrowego DIN jest (podobnie jak obsługa pozostałych układów wejścia/wyjścia) ukryte przed użytkownikiem w makroinstrukcji:

\[
\text{din } d,
\]
która w chwili jej wykonywania odczytuje stan wejścia DIN i w przypadku stanu niskiego wpisuje do rejestru d wartość -1.0, zaś w przypadku stanu wysokiego wartość $+1.0$ (a dokładnie $1 - 10^{-23}$). Należy podkreślić, że w odróżnieniu od makrorozkazu in odczytującego stan wejścia analogowego WE1, argumentem d makrorozkazu din musi być rejestr arytmetyczny $(a, b, x0, x1, y0, y1)$, natomiast nie może nim być ani rejestr typu adresowego, ani komórka pamięci. Zakładana jest, że makrorozkaz din będzie wykonywany tyle samo razy (i w przybliżeniu w tych samych chwilach czasu) co makroinstrukcja in. Zaleca się zatem następującą sekwencję instrukcji przy przetwarzaniu sygnałów w czasie rzeczywistym:

\[
\begin{align*}
\text{.repeat} & \quad ; \text{pobranie próbkli analogowej z przedziału } \langle -1.0, +1.0 \rangle; \\
\text{in } & \quad ; \text{pobranie próbkli cyfrowej ze zbioru } \{-1.0, +1.0\}; \\
\text{din } & \quad ; \text{przetwarzanie sygnału}; \\
\text{out } & \quad ; \text{wysyłanie próbkli analogowej}; \\
\text{; przygotowanie się do przetworzenia kolejnej pary próbek;}
\end{align*}
\]

\[
\text{forever}
\]

Na wejściu DIN należy podawać sygnał prostokątny o poziomach logicznych TTL (0/5V) lub sygnał symetryczny -5V/+5V. Prostokąt o mniejszej amplitudzie nie wyseruje wejścia i będzie interpretowany jako sygnał $x(n) = -1$.

Zmienia się oczywiście także sposób symulowania procesora sygnałowego za pomocą programowego emulatora w MATLABie. Sygnał cyfrowy zadać się mianowicie jako część urojonego sygnału zespolonego. Na przykład, wygenerowanie pod MATLABem sygnałów: prostokątnego $x(n)$ częstotliwości powtarzania ok. 5 KHz i sinusoidalnego $s(n)$ o częstotliwości ok. 400 Hz wymaga wykonania następujących instrukcji:

\[
\begin{align*}
\text{x} &= \text{sign}((\sin(2 \pi \text{f} \cdot 0.05 \cdot (0:999)))); \\
\text{s} &= \text{sin}(2 \cdot \text{\pi} \cdot 0.004 \cdot (0:999));
\end{align*}
\]

Następnie należy utworzyć sygnał odniesienia $d(n)$, będący sumą obu tych sygnałów:

\[
\text{d} = (x + s)/2;
\]

znormalizowaną tak, aby nie przekroczyć zakresu stałoprzecinkowych ułamków. Na wejściu
analogowe procesora sygnałowego podawany jest sygnał odniesienia $d(n)$, a na wejściami
cyfrowe sygnał $x(n)$. Tworzymy w tym celu sygnał zespłony:

$$ x = d + j \cdot x; $$

który następnie zapamiętujemy na dysku instrukcji:

```plaintext
save x x;
```

w pliku o standardowej nazwie x.mat. Gdy emulator systemu IPE56 czyta plik wejściowy
zawierający wyłącznie dane rzeczywiste, wówczas interpretuje to tak, jakby na wejściu
cyfrowym występował sygnał tożsamościowo równy -1. Jeśli natomiast plik wejściowy ma
niezerową część urojoną, to próbki o części urojonej dodatniej są interpretowane jako wysoki
poziom logiczny (i odczytywane przez makrorozkaz din jako $+1.0$), a pozostałe próbki jako
niski poziom logiczny (i odczytywane przez makrorozkaz din jako -1.0).

5. Zadania do samodzielnego wykonania przed przystąpieniem do ćwiczenia

- Napisać w assemblerze procesora DSP56001 program realizujący
 algorytm adaptacyjny LMS (1). Oba wektory f_n i x_n należy zorganizować w postaci
 buforów cyklicznych modulo L o nazwach odpowiednio coef i data, w różnych
 przestrzeniach adresowych. Z każdym buforem należy związać jeden rejestr adresowy R
 i odpowiadający mu rejestr modułu M (ew. także rejestr przesunięcia N). Algorytm
 należy zapisać w kategoriach ogólnych, tzn. nie wykorzystując faktu, że $x(n) = \pm 1$.
 Należy uwzględnić, że wartość $x(n)$ nie jest nigdzie wyprowadzana na zewnątrz i
 może być przechowywana w akumulatorze, po czym odjęta od $d(n)$, a także, że
 współczynnik $ae(n)$ jest wspólny dla wszystkich elementów wektora f_{n+1} i może być
 obliczony jednokrotnie na zewnątrz pętli po elementach tego wektora, a następnie
 przechowywany w rejestrze wejściowym układu mnożącego.

- Na podstawie wydruku asemblera utworzonego przy włączonej opcji cc (Cycle Count)
 obliczyć czas wykonywania głównej pętli przetwarzania:

```plaintext
.repeat
;
forever
```

Przyjąć częstotliwość zegara procesora 20 MHz (czyli 1cc = 50 ns). Na tej podstawie
wyznaczyć maksymalny rząd L filtru adaptacyjnego, przy którym algorytm LMS
będzie w stanie pracować w czasie rzeczywistym. Ze wzorów (4)-(5) oszacować
minimalną sensowną częstotliwość f_X sygnału prostokątnego $x(n)$.

- Uruchomić napisany program pod emulatorem systemu IPE56, przyjmując niski rząd
 filtru (np. $L = 2-4$) i krótkie sygnały $x(n)$ i $s(n)$. Wyniki symulacji (błąd predykcji
 $e(n)$) porównywać z rezultatami otrzymanymi za pomocą MATLAB-owskiej wersji
 algorytmu LMS.

- Zweryfikować usuwanie echa akustycznego na przykładzie sygnałów wygenerowanych
 w sposób (6)-(9). Wymaga to zasymulowania około 200000 cykli zegara procesora,
 co może potrwać kilka minut nawet na bardzo szybkich komputerach. Przykładowe
 wyniki symulacji są pokazane na rys. 6.
Badania laboratoryjne

Połączyć układ laboratoryjny zgodnie z rys. 7. Linię długą zastąpić zwarcie \(H(z) = 1 \). Regulując amplitudę sygnału obu generatorów dobrać rozsądne proporcje pomiędzy zakłóceniem \(X(n) \) i sygnałem użytecznym \(s(n) \) (obraz na oscyloskopie powinien przypominać rys. 6a). Regulując wzmocnienie sumatora ustawić wartość międzysycznyową sygnału \(d(n) \) na ok. 2 V. Opisane regulacje powtarzać po każdorazowej zmianie rodzaju sygnału i/lub czwórnika \(H(z) \).

Rys. 6. Wyniki symulacji układu usuwania echa na emulatorze IPE56: a) sygnał zakłócony określony wzorem (7), b) sygnał skompensowany \(e(n) \)

Rys. 7. Schemat połączeń układu laboratoryjnego symulującego usuwanie echa
• Uruchomić na procesorze sygnałowym przygotowany w domu program realizujący filtr adaptacyjny LMS. Sprawdzić, że usuwa on echo z sygnału \(d(n) \) (\(H(z) = 1 \)) i jednocześnie nie zniekształca sygnału użytęcznego \(s(n) \) (\(H(z) = 0 \)).

• Zbadać zależność minimalnej częstotliwości \(f_{\text{zmc}} \) sygnału prostokątnego \(x(n) \), przy której usuwanie echa działa jeszcze prawidłowo, od rzędu \(L \) filtra adaptacyjnego. Zwrócić uwagę na to, aby nie została przekroczała wyznaczona w domu maksymalna wartość \(L \). Niektóre egzemplarze procesorów mają częstotliwość zegara 32 MHz (a nie 20 MHz), co jest zaznaczone z tyłu obudowy, i na nich można zastosować proporcjonalnie wyższy rząd filtra. Otrzymaną zależność przedstawić w postaci graficznej dla kilku różnych wartości stałej adaptacji filtra \(\alpha \) (\(10^{-1} \ldots 3 \)).

• Zbadać jakościowo, jak wpływa stała algorytmu \(\alpha \) na jakość usuwania echa oraz na czas dochodzenia algorytmu do stanu ustalonego po jego każdorazowym uruchomieniu na procesorze sygnałowym. Oszacować zakres wartości \(\alpha \), dla których algorytm zachowuje się stabilnie i zbadać jak zakres ten zależy od rzędu filtra. Skomentować otrzymane wyniki.

• Zamiast generatora sinusoidalnego podłączyć wyjście radiomagnetofoenu, a wejście wzmacniacza akustycznego podłączyć raz na wejście \(d(n) \), a raz na wyjście \(e(n) \) procesora sygnałowego. Wybrać możliwie najwyższy rząd \(L \) filtra i względnie małą częstotliwość \(f_{\text{zmc}} \) zakłócenia prostokątnego. Porównać "na ucho" za pomocą słuchawek i "na oko" za pomocą oscyloskopu jakość usuwania echa przez filtr adaptacyjny. Sprawdzić, że dla różnych transmitancji \(H(z) \) zakłócenie jest w znacznej mierze odfiltrowywane, a sygnał mowy przechodzi prawie bez zniekształceń.

• Zbadać zachowanie się filtra adaptacyjnego w sytuacji, gdy na wejście cyfrowe DIN procesora sygnałowego podajemy nadal sygnał prostokątny \(x(n) \), ale na czwórnik \(H(z) \) podajemy zamiast sygnału prostokątnego inny sygnał \(x'(n) \) z wyjścia tego samego generatora (a więc o tej samej częstotliwości), na przykład sygnał trójkątny lub sinusoidalny. Skomentować otrzymane wyniki. Wskazówka: Rozstrzygnąć, czy sygnał \(x'(n) \) można otrzymać z sygnału \(x(n) \) drogą liniowej filtracji filtrem o transmitancji \(H'(z) \), do której mógłby się dopasować filtr adaptacyjny?

Literatura