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Abstract—Availability of momentary velocity of a legged robot
is essential for its efficient control. However, estimation of the
velocity is difficult, because the robot does not need to touch
the ground all the time or its feet may twist. In this paper we
introduce a method for velocity estimation in a legged robot that
combines kinematic model of the supporting leg, readouts from
an inertial sensor, and Kalman filter. The method alleviates all
the above mentioned difficulties.

Index Terms—legged locomotion, velocity estimation, Kalman
filter.

I. INTRODUCTION

Knowledge of the robot state i.e., global position, velocity,
and acceleration, is crucial to acquire good performance for
most legged locomotion and posture controllers. While it is
possible to directly measure acceleration and position, precise
velocity estimation is usually a difficult task [1] [2]. The
most popular sensors used for mobile robot position mea-
surement include digital encoders, cameras [3] [4], and GPS
navigation devices [5] [6]. However, GPS measurements have
low accuracy and can be used only outdoors, while vision
based methods require massive computations for large image
analysis.

Velocity estimation is possible with the use integration
of readouts from Inertial Measurement Units (IMUs). These
devices may be sufficiently accurate but then, they are large,
heavy, and expensive. On the other hand, small and inexpen-
sive IMUs lack sufficient accuracy [2].

Recent availability of low-cost IMUs made it possible to
use them in popular legged robots. Many researchers show
that joints position, feet contact, robot kinematic model, and
IMU measurements data can be successfully used for legged
robot pose estimation. Lin et al. [7] introduced full body pose
estimation system for hexapod robot. The authors show that
traditional leg kinematics model, joint position, and feet con-
tact sensors can be replaced by strain gauge based empirical
leg configuration model. In [2] that method was broadened by
adding IMU measurements, and extended Kalman filter (EKF).
Chilian et al. [4] show that it is possible to estimate legged
robots state combining drift-affected IMU measurements with
additional drift-free sensors. This includes measurements of

joints positions and torques aided with a system based on stere-
ovision. Reinstein et al. [8] proposed an alternative method
to reduce IMU bias and, moreover, addressed foot slippage
problem by using period-based measurement data indicators
analysis. Finally, Bloesh et al. [9] presented framework for full
body pose estimation, that can be viewed as a simultaneous
localization and mapping (SLAM) algorithm.

In this paper we propose a method for legged robot velocity
estimation based on robot kinematics model, measurement
data from IMU, digital encoders in servomotors, feet con-
tact sensors, and EKF. In contrary to other approaches, the
proposed method can be used in any terrain, it is robust
to foot twist, and it allows for limited foot slippage. In
the experimental study, this method is applied to customized
Bioloid biped robot.

The structure of this paper is as follows: Section II in-
troduces an overview of the sensory suite, the experimental
setup, and presents the formal problem description. Section III
describes the notation used. The proposed solution is presented
in Section IV, where basic tools are discussed, and Section V,
where EKF is used for the sensor fusion. Section VI presents
an experiments with the proposed approach. Finally in section
VII brief discussion of the obtained results is given.

II. PROBLEM FORMULATION

At first the experimental framework is presented to make
the general problem formulation and the proposed method
description more intuitive.

A. Experimental framework

Fig. 1 presents the customized Bioloid robot. A body of
Bioloid1 is composed of identical 18 servomotors: 6 in each
leg and 3 in each arm. The robot is 35 cm tall and weighs
about 2 kg. An additional box attached to the robot back2

contains a small PC with Linux on board as well as IMU3.

1Bioloids are serially manufactured by Robotis: www.robotis.com.
2BioloBrainS1. It is serially manufactured by Altronit:

www.altronit.com.
3ADIS 16365. It is an accelerometer and gyroscope in a single chip

manufactured by Analog Devices: www.analog.com.
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18 13,14 - RIGHT ELBOW
15 - RIGHT SHOULDER
16, 17 - LEFT ELBOW
18 - LEFT SHOULDER
4,5,6 - RIGHT HIP
3 - RIGHT KNEE
2,1 - RIGHT ANKLE
10,11,12 - LEFT HIP
9 - LEFT KNEE
7,8 - LEFT ANKLE

Fig. 1. Customized Bioloid used in the experiments.

Each foot is equipped with 4 touch sensors each.4

The problem is to estimate robot momentary velocity and
tilt, while it is walking.

B. Generic problem formulation

The general problem is formulated as follows: There is
given a legged robot with IMU attached to it. Joints of the
robot are equipped with position encoders, and its feet are
equipped with contact sensors. The problem is to estimate mo-
mentary velocity of the robot and acceleration due to gravity in
the coordinate system that is immobile in relation to the ground
and its orientation is parallel to the momentary orientation
of IMU. It is understood that having these information, it is
possible to express robot velocity in any coordinate system of
interest.

III. NOTATION

Different coordinate systems (i.e., frames) will be distin-
guished as follows:

• An immobile frame is understood as the coordinate frame
not moving in relation to the ground.

4BioloFeet. They are also manufactured by Altronit.

• A frame of the sensor/link is understood as the coordinate
frame attached to the sensor/link.

• An immobile frame of the sensor/link is understood as the
immobile frame that is at the moment parallel to frame
of the sensor/link.

For a description of robot kinematics, the coordinate frames
for each joint, were chosen according to methodology de-
scribed in [10]. We use Denavit-Hartenberg (DH) [11] conven-
tion and the ”right hand rule” for selecting coordinate frames.
Therefore, there are used four parameters associated with link
i and joint i.

• joint angle θi, is the angle from the xi−1 axis to the xi
axis about the zi−1 axis,

• link length ai, is the distance form the intersection of
the zi−1 axis with the xi axis to the origin of the i-th
frame along the xi axis (or the shortest distance between
the zi−1 and zi axes),

• link offset di, is the distance from the origin of the (i−1)
coordinate frame to the intersection of the zi−1 axis with
the xi axis along the zi−1 axis

• link twist αi, is the offset angle from the zi−1 axis to
the zi axis about xi axis.
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TABLE I
DH PARAMETERS OF THE RIGHT LEG OF BIOLOID ROBOT

joint αi−1 ai−1 di θi
1 −π

2
0 0 θ1

2 0 a1 0 θ2
3 0 a2 0 θ3
4 π

2
0 0 θ4

5 π
2

0 d5 θ5
6 0 0 0 θ6
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Fig. 2. Coordinate frames of the right leg of Bioloid robot

It is assumed that a leg of the robot is a kinematic chain
with rotational joints. The joints are indexed by i = 1, . . . , n,
where i-th joint is between links i-the and i+ 1-st. Link 1-st
is the foot, and link n + 1-st is between n-th joint and the
inertial sensor. The coordinate frames, associated with links
in the right Bioloid robot leg, are presented in Fig. 2, with
D-H parameters gathered in Table I.

Orientation of the inertial sensor is defined by the unit vec-
tors wx, wy, wz of its frame axes expressed in the coordinates
of the last link. The following notation will be applied below.

pi ∈ R3×1 is a position of IMU in the frame of i-th link,
q ∈ R3×1 is an acceleration vector measured by IMU, i.e.,

a sum of linear acceleration and acceleration due to
gravity,

ω ∈ R3×1 is angular velocity of IMU in its immobile
frame,

g ∈ R3×1 is the gravity vector in IMU frame,
v ∈ R3×1 is the velocity vector of IMU in its immobile

frame,
δ is constant time elapsing between consecutive IMU

measurements.
Ri(θi) ∈ R3×3 is a rotation matrix between i+1-st frame

and i-th frame; it is defined by D-H parameters [10],
f(β, x) ∈ R3×1 is a vector that is a result of simultaneous

rotations of vector x about each axis of the frame by
the angles contained in vector β ∈ R3×1. (Usually f
is denoted as a product of appropriate rotation matrix
and x, but here it would make the discussion more
complex.)

x̂ is an estimate (or measurement) of the true value
x, e.g., q̂ is the accelerometer readout, and ω̂ is the
gyroscope readout,

x̃ = x̂− x is an error of this estimate (or measurement),
xi vs. x vs. xn+1: if xi denotes a certain vector in the

frame of i-th joint, x denotes the same value in the
immobile frame of IMU, and xn+1 denotes the same
value in the frame of IMU that is moving with IMU.
(There are n joints, hence n+1-st frame is the frame
of IMU).

IV. BASIC TOOLS

A. Velocity estimation with inertial sensor only

Suppose that there is one initial moment when the robot is
immobile. Then, the accelerometer measures acceleration due
to gravity, and velocity is zero, i.e.,

ĝ = q̂, v̂ = 0. (1)

Afterwards, when the robot is moving, both the velocity
and gravity (in the immobile frame of IMU) rotates with
angular velocity opposite to one measured by the gyroscope,
and the velocity increments by acceleration measured by
the accelerometer. It is assumed for simplicity that in the
time interval of δ, both angular velocity and acceleration are
constant. Then, the gravity and velocity change in this interval
as

ĝ ← f(−ω̂δ/2, ĝ), (2)
v̂ ← f(−ω̂δ, v̂) + (q̂ − ĝ)δ, (3)
ĝ ← f(−ω̂δ/2, ĝ). (4)

In (2–4) the gravity is rotated twice to calculate its middle
value that is applied to eliminate gravity from acceleration
measurement.

B. Velocity estimation with kinematics only

In order to compute velocity of the inertial sensor in its
frame, we proceed as follows:

1) Velocity of the inertial sensor is computed in the frame
of each joint in the leg kinematic chain, from IMU to
the foot. In order to compute the velocity, location of
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IMU, described in each frame down the leg is computed
additionally. In the frame of n+1-st link to which IMU
is attached, the sensor is immobile, therefore

pn+1 = 0, (5)

v̂Kn+1 = 0. (6)

where v̂Ki is the velocity estimation from kinematics of
Bioloid in i-th coordinate frame. Then, for i = n, . . . , 1
(i.e. down the leg) IMU position is translated from one
frame to another. The sensor velocity is rotated from one
frame to another and incremented according to angular
velocity of i-th joint as follows

pi = Ri(θi)[li + pi+1], (7)

v̂Ki = Ri(θi)v̂
K
i+1 + pi × ziθ̇i. (8)

2) Unit vectors of IMU frame axes are expressed in the
frame of each joint in the leg kinematic chain, from the
sensor to the foot. In the frame of the last link, the unit
vectors of IMU frame axes are known:

wxn+1 = wx, wyn+1 = wy, wzn+1 = wz.

Then, down the leg, these vectors are rotated according
to the position of the consecutive servomotor, namely

w
x/y/z
i = Ri(θi)w

x/y/z
i+1 . (9)

3) Finally, the velocity of the inertial sensor, computed in
the foot frame, v̂K1 , is projected on unit vectors of IMU
frame. That is, the velocity estimate, v̂K , of IMU in its
own immobile frame, v̂K , is computed as

v̂K = [v̂K1 w
x
1 , v̂

K
1 w

y
1 , v̂

K
1 w

z
1 ]
T . (10)

C. Velocity estimation with kinematics and gyroscope

Velocity computation of the inertial sensor only by means
of the kinematic model of the leg, requires assumption that the
foot is immobile. However, this assumption is now withdrawn.
Namely, on the basis of the gyroscope readout, rotation of each
link, from the last one to the foot will be computed. Then,
having position of the inertial sensor in the foot frame and
angular velocities of the foot, velocity of the inertial sensor in
its immobile frame can be computed. The gyroscope measures
the angular velocity vector coefficients in its own immobile
frame. This vector has to be translated into angular velocities
in the immobile frame of the last link, that is

ω̂n+1 = wxω̂x + wyω̂y + wzω̂z. (11)

Then, for i = n, . . . , 1, angular velocity of i-th link is
computed as a transformed angular velocity of i + 1-st link
updated by the rotation of i-th joint:

ω̂i = Ri(θi)ω̂i+1 − wzi θ̇i. (12)

Having rotation of the foot in its own immobile frame, ω̂1,
position of IMU in the foot frame, p1, and velocity of the
sensor in the foot frame, v̂K1 , velocity of the sensor in the

immobile frame parallel at the moment to the foot frame can
be computed, namely

v̂KG1 = v̂K1 + ω̂1 × p1. (13)

where v̂KG1 is the velocity estimate based on the gyroscope
measurement and kinematics of the robot.

Then, velocity estimate of IMU in its own, immobile frame,
can be expressed as follows

v̂KG = [v̂KG1 wx1 , v̂
KG
1 wy1 , v̂

KG
1 wz1 ]

T . (14)

V. SOLUTION

In this section tools from the previous section, and Extended
Kalman Filter are combined to estimate the state of the robot
inertial sensor. In order to apply Extended Kalman Filter
we need to define three entities: (i) state, (ii) the model of
dynamics, (iii) the model of observation.

A. State of inertial sensor

State of the sensor encompass the vector of acceleration
due to gravity, expressed in the sensor immobile frame, g,
and linear velocity of the sensor in relation to the ground,
expressed in the same frame, v:

state =
[g
v

]
. (15)

B. Model of dynamics

Defining evolution of the state we consider ω̂ and q̂ as
inputs to the dynamical system. ω̂ is assumed to be the sum
of true angular velocity and zero-mean noise, ω̃. Similarly, q̂
is assumed to be the sum of true acceleration and zero-mean
noise, q̃. Then, for infinitesimal δ state of the sensor evolves
as

g ← f(−(ω̂ − ω̃)δ/2, g), (16)
v ← f(−(ω̂ − ω̃)δ, v) + (q̂ − q̃ − g)δ, (17)
g ← f(−(ω̂ − ω̃)δ/2, g). (18)

After linearisation around (ω̂−ω̃)δ = 0, the above assignments
have the following forms

g ← g − ∂f(β, g)

∂(β = 0)
ω̂δ +

∂f(β, g)

∂(β = 0)
ω̃δ (19)

v ← v − ∂f(β, v)

∂(β = 0)
ω̂δ +

∂f(β, v)

∂(β = 0)
ω̃δ + q̂δ − q̃δ − gδ (20)

+
∂f(β, g)

∂(β = 0)
ω̂δ2/2− ∂f(β, g)

∂(β = 0)
ω̃δ2/2. (21)

Let each component of ω̃ and q̃ are stochastically independent
and have standard deviations, respectively

σω > 0, σq > 0 (22)

Then, the above assignments may be written in the following
matrix form[

g
v

]
← F

[
g
v

]
− C

[
ω̂/σω
q̂/σq

]
+ C

[
ω̃/σω
q̃/σq

]
(23)
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where

F =

[
I 0
−Iδ I

]
(24)

C =

[
∂f(β,g)
∂(β=0) δσω 0

∂f(β,v)
∂(β=0) δσω −

∂f(β,g)
∂(β=0) δ

2σω/2 −Iδσq

]
(25)

and
∂f(0, x)

∂(β = 0)
=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (26)

C. Model of observation

The observation model is the simplest possible, namely,

v̂KG = v + ṽKG

where ṽKG is the error of velocity estimation with the use of
kinematics and gyroscope. Let

σv > 0 (27)

denote standard deviation of linear velocity estimation error.

D. Integration

Application of Extended Kalman Filter to estimation of the
state of the inertial sensor leads to the following equations:

Prediction:
State estimate update:

ĝ ← f(−ω̂δ/2, ĝ), (28)
v̂ ← f(−ω̂δ, v̂) + (q̂ − ĝ)δ, (29)
ĝ ← f(−ω̂δ/2, ĝ). (30)

State estimate covariance matrix update:

P ← FPF T + CCT . (31)

Correction:
Correction only takes place when it is possible to
estimate the velocity with the use of kinematics and
gyroscope.
Velocity error:

ṽ = v̂KG − v̂ (32)

Auxiliary matrices; 0 and I below are appropriate
3× 3 matrices:

H = [0 I] (33)

S = HPHT + Iσ2
v . (34)

Kalman gain:

K = PHTS−1. (35)

Correction: [
ĝ

v̂

]
←
[
ĝ

v̂

]
+Kṽ. (36)

State estimate covariance matrix update:

P ← (I −KH)P. (37)

VI. EXPERIMENTAL STUDY

To verify the methodology described in Chapter IV and
V, the experiment was carried using the customized Bioloid
robot, described in Chapter II. The robot was supposed to walk
along the straight line. Robot control system was based on
reinforcement learning framework developed in [12]. During
the experiment velocity vector in immobile IMU frame was
periodically estimated. IMU readouts are available every 10ms
which determines frequency of Kalman predictions. The kine-
matic model is applied to estimate velocity every 33ms which
determines frequency of Kalman corrections.

In Fig. 3 the time series of velocity estimates along x axis
are presented. Four estimates are computed simultaneously:
one based on IMU only (Sec. IV-A), one based on the
kinematic model (Sec. IV-B), one based on the kinematic
model and gyroscope readouts (Sec. IV-C), and one based on
Kalman filtering (Sec. V). The graphs lead to the following
conclusions:

• Readout errors accumulate in the estimate based on IMU
only. Therefore, this estimate becomes useless in several
seconds.

• Velocity estimate based on the kinematic model are very
noisy because of limited accuracy of servo encoders.

• Combining gyroscope readouts with the kinematic model
in order to eliminate foot twisting introduces significant
difference to velocity estimates.

• Noise in the estimate that results from filtering is signif-
icantly reduced.

The estimated average velocity along the immobile IMU x
axis was calculated as

v̂avx =

N∑
k=1

v̂x(k) (38)

Where k is the sample number, N is the number of samples.
The experiment lasted for about 28 seconds and estimated
average velocity was v̂avx = 3, 28 cm/s. During that time
the robot walked about one meter and real average velocity
was equal to vavx = 3.57 cm/s. Therefore there was about
8% of difference between estimated and real value of average
velocity along the immobile IMU x axis.

VII. CONCLUSIONS

In this paper a method was proposed for biped robot velocity
estimation based on leg kinematics model, and measurement
data from low-cost Inertial Measurement Unit (IMU). Ex-
tended Kalman Filter was used for the sensor data fusion. In
the experimental study, this method was applied to customized
Bioloid biped robot moving along the straight line.

The proposed method can be used in any terrain because
it does not make any assumptions regarding orientation of
the foot while it touches the ground. The measurements from
gyroscope are transformed to estimate foot twist and utilized
for more accurate velocity estimation, which is a significant
advantage of this approach. Moreover, the method is immune
to limited foot slippage, because the use of EKF makes the
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kinematic model of the leg only a low frequency attractor for
the velocity estimate.
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