
A search based view of decision trees induction

 
Rafał Biedrzycki1, Jarosław Arabas1

1 Institute of Electronic Systems, Warsaw University of Technology,
  ul. Nowowiejska 15/19, 00-665 Warszawa  

Abstract. This paper addresses the issue of the decision tree induction. We treat  
this task as a search problem in the space of decision trees. We show that the  
search space definition allows for easy application of general search methods to 
solve this task. On the other hand it is possible to interpret  standard problem-
specific algorithms (e.g. ID3 and C4.5) as instances of specific search methods. 
We  assume  a  certain  metric  in  the  space  of  decision  trees,  and  define  an 
evolutionary  algorithm and  a  Monte  Carlo  method  to  search  that  space.  We 
provide the experimental comparison of the aforementioned algorithms with ID3 
and C4.5. 

Keywords. Decision tree, search space, ID3, evolutionary algorithm

1 Introduction

Decision trees are considered to be one of the most popular approaches [6, 9] for 
representing  classifiers.  Researches  from various  disciplines  such  as  statistics, 
machine  learning,  pattern  recognition,  and  data  mining  are  trying  to  grow 
decision trees from data. Unfortunately it has been proven that even for simple 
concepts  construction of an optimal decision tree is  an NP-complete problem. 
This leads to the development of several heuristic algorithms.

One  of  the  most  popular  approach  to  decision  tree  induction  is  to  use 
algorithms  based  of  one  of  the  impurity  functions,  like  ID3  [14]  that  uses 
information gain as splitting criteria. These algorithms are greedy by nature and 
construct  the decision tree in a top-down recursive manner.  Unfortunately the 
quality of generated solutions is very sensitive to the training set. The impurity-
based algorithms perform well if a few highly relevant attributes exist, but less so 
if  very  complex  interactions,  noise  and  irrelevant  attributes  exist.  Another 
problem is diversified class probability distribution. More about advantages and 
disadvantages of greedy algorithms we can find in [15].

Impurity  based  algorithms  not  guarantee  yielding  optimal  decision  trees, 
which encourages the search for other approaches. One of the possibilities is to 
use genetic programming (GP) to directly evolve classifier.  These approach is 



presented in [3, 4, 5, 7, 10, 13] and many others. In most of these approaches  
each  individual  is  directly  represented  by  the  binary  tree,  mutation  may add, 
remove or change test or class in a node. Crossover operator chooses two random 
nodes and swaps sub-trees rooted in those nodes. The fitness function is based on 
the number of correctly classified instances and size of the tree. Unfortunately 
such GP based approach suffers from explosion of search space size so additional 
limits to the number of leaves are assumed. 

With this paper we try to define the structure of the search space for decision 
trees design. We show that when the space is defined, it is possible to interpret  
existing  algorithms of  tree  induction  and  pruning  (e.g.  ID3  and C4.5)  as  the 
specific search tasks. We are convinced that the presented view can inspire to 
apply standard search techniques to grow decision trees. We show how to use 
general search methods (evolutionary algorithm, Monte Carlo search), to generate 
the  decision  trees.  We  provide  numerical  examples  for  several  well  known 
datasets to prove that it is possible to get the decision trees of comparable quality 
when applying evolutionary algorithm (EA), or Monte Carlo search (MC) instead 
of C4.5, latest member of the ID3 family. 

It  was observed that AI problems could be successfully defined as search 
tasks [e.g. 3, 8, 11], but according to our best knowledge, this was not directly 
applied to the decision tree induction. 

2 Decision tree

Consider  a  Cartesian  product  of  a  certain  number  of  sets 
D=D1×D2××Dn  and a function c : DC , where C is a finite set of 

elements. Each point from D is a tuple of n values, and each position of the tuple 
is called a decision attribute. The function c is called classification function, and 
C is the set of  classes,  i.e. classification function values. In the paper we will 
focus on decision problems where sets Di  are finite and ordered.

A  decision  tree  is  a  tree  representation  of  a  classification  function 
t : DC . The decision tree consists of nodes and directed edges. Each node 

can have at most one edge going towards it from some other node which is called 
a parent node. There exists a unique node with no parent and the node is called 
the root of the tree. If a node p is parent to the node q then q is called a child of 
the node p. Nodes with at least one child are called nonterminal or intermediate, 
and nodes with no children are terminal and are usually called leaves of the tree.  
Each terminal node  p is assigned a certain value of the decision attribute  v(p). 
Each intermediate node p has an attribute a(p) assigned to it. Each edge leading 
from the nonterminal node with the attribute a(p) is assigned a test based on the 
value of a(p). In this paper we consider tests of the form a(p)=vi where v i∈Di , 
so the number of children of each nonterminal node equals to the number of the 
node attribute values.



3 Space of decision trees

Consider the set of all decision trees and a metric space  T over this set. As a 
metric choose a function that equals a minimum number of elementary changes 
that  have  to  be  performed to get  one  tree  from another  one.  Assume that  an  
elementary  change  consists  in  either  deleting  a  test  node  whose  children  are 
category nodes, or in replacing a category node with a test node. Sketch of the 
fragment of the search space for three binary attributes is depicted in Figure 3.1. 

Figure 3.1. Part of space for three attributes. Leaves are marked by bullets

Note that it is possible to get any tree from any other one with the finite set of 
elementary changes, so the search space is consistent and the metric values have a 
finite upper bound. Moreover, for a pair of trees it may be possible to find two 
distinct paths between them. The proportion of the number of edges leading to 
smaller or larger trees is dependent on the number of nodes in the tree. Small  
trees have larger number of larger trees in their neighborhood, whereas large trees 
are surrounded by larger number of smaller trees.

The presented space definition has an important asset — it is easy to define 
popular  tree  induction  algorithms  as  search  task  in  that  space.  We  could 



implement ID3 and the first step of C4.5 algorithm as a search process which 
starts from an empty tree and goes downwards selecting edges with the use of an  
impurity function. We could define pruning (the second step of C4.5) as a search 
process which starts from a certain point of our space (i.e. the result of C4.5 step  
one) and going towards an empty tree,  selecting edges using pessimistic error 
estimates.

4 Quality function of trees

Each  decision  tree  is  a  mapping  .  If  a  goal  is  to  approximate  an  unknown 
mapping  then each tree in the search space can be assigned a quality function 
being  the  accuracy  measure  of  that  approximation.  There  are  many  different 
functions to measure quality of the tree, but the most popular is the classification 
error  and  the  entropy. A  quality  function  is  the  objective  function  to  be 
minimized by a search algorithm.

4.1 Quality function based on error

The classification error is defined as the fraction of misclassified elements from 
D

e(t)=m({x∈D,t(x)≠c(x)})/m(D) (4.1)

where  m(D)  is  the number  of  elements  in  the  set  D.  The  error  value  can  be 
estimated using a set A⊆D and the estimate is 

eA(t)=m({x∈A,t(x)≠c(x)})/m(A) (4.2)

4.2 Quality function based on entropy

It is possible to define the quality function based on entropy when the whole tree 
is treated as an attribute that splits test examples. If so, then we can use equations  
like those used by the ID3 algorithm

E  t  x =∑
d

P  t  x =d E d  t  x  (4.3)

E
d
t  x =−∑

c
P c  x =c∣t  x=d log P  c x =c∣t  x =d 

(4.4)
where d,c∈C  are the decision attribute values, E(t) is the entropy of the tree t 
and Ed  t   is the entropy of the tree t for category d. 

5 Search algorithms

The search algorithms can be divided into three main groups. The first  group 
contains  hill  climbing  methods  that  choose  next  point  with  locally  optimal 
objective function. The second group is random methods where point is randomly 
chosen. The third group of methods is located between the two first. That group 



contains  algorithms that  choose  locally  best  neighboring  point  with  a  certain 
probability. 

We  implement  ID3  as  representative  of  greedy  algorithms,  Random  as 
Monte-Carlo-like method and evolutionary algorithm as representative of third 
group.

5.1 ID3 algorithm

The well known ID3 [14] algorithm was implemented as a search method. The 
algorithm maintains a single working point from the space of decision trees. The 
initial working point is an empty tree. In each iteration, a new working point is  
selected which minimizes the entropy in the neighborhood of the current working 
point. The algorithm is stopped if in the neighborhood of the current  working 
point there is no other point with smaller entropy.

5.2 Evolutionary algorithm

Evolutionary algorithms (EA) are general search methods inspired by the natural 
evolution principle. EA maintains a population of points from the search space. In 
each iteration, the population is processed by the selection and genetic operators 
(see [2] for detailed description). 

In our approach, the population is initialized with empty trees. The nonelitist, 
tournament  selection  of  size  two  was  used.  The  mutation  is  defined  as  the 
transition to random neighboring node of tree space. We use very simple function 
to be minimized, defined as 

f  t =eT t +αn t  (5.1)
where  eT t   is the error estimate for a training set  T,  n(t) is the number of 
nodes of the tree t, and α is a user defined parameter. 

5.3 Random algorithm

The Random method is our implementation of the Monte Carlo method. We start 
from an empty tree and repeat the process of randomly choosing a neighboring 
tree. Assuming that  s is the working tree, we select a new working tree  t from 
those neighbors of  s which represent a larger tree and such that each terminal 
node of  t is  entered  by  at  least  one  of  the  training  examples.  The choice  is  
random, and the selection probability equals

P  t∣s =a  s  [1− h t 1  / n+ 1  ] (5.2)

where h(t) is the tree height, n is the number of attributes, and a(s) is a parameter 
which  guarantees  that  (5.2)  defines  the  probabilities  in  a  proper  way.  The 
Random algorithm is  used  to  generate  N trees,  where  N is  the  user  defined 
parameter, and the best of these is returned as the result. 



6 Experiments and results

The algorithms were tested using several  datasets from UCI machine learning 
dataset repository [12] and Orange homepage [1]. A brief characteristic of used 
datasets is provided in Table 6.1.

Table  6.1. Brief characteristics of datasets used for experiments.  In subsequent 
columns  we  give  the  number  of  records  (#  rec.),  the  number  of  conditional 
attributes (# attr.), the average number of conditional attribute values (#val.), the  
number of classes (#cl.), the percentage of records with equal class (dist.) and the  
information whether the dataset provides a distinction between the train and the 
test sets

Dataset #rec. #attr. #val. #cl. distr. of classes test set

Balance scale 625 4 5.0 3 8:46:46 N

Breast cancer 286 9 4.8 2 30:70 N

Coil2000 9 822 84 7.6 2 6:94 Y

Marketing 8 993 13 6.5 9 7:8:9:9:10:11:12:15:19 N

Monks-1 556 6 2.8 2 50:50 Y

Mushrooms 8 124 22 5.3 2 48:52 N

As we can see in Table  6.1 in datasets like “balance scale”, “coil2000” the 
number  of  examples  belonging to  each  class  is  unevenly  distributed  so  these 
datasets could be hard task for ID3 family. Datasets like “monks-1” and “breast-
cancer” are reported to be highly linearly inseparable thus they are also difficult  
for ID3.  The “mushrooms” dataset  is  known to be easy for ID3 so we could 
observe how EA and Random manage with it.

In our experiments we assumed that the EA population size equals 20 and the 
search is terminated after 200 generations (so 4000 trees are examined in total). 
We  assumed  α=0.01  in  the  fitness  function  formula  (4.1).  For  the  Random 
algorithm we set N = 4000.

We treated a well known C4.5 classifier [15] as a reference method. We used 
the implementation of the C4.5 algorithm provided in WEKA [16] as J48, and 
EA, ID3 and Random were implemented by ourselves.

Performance of the compared algorithms was analyzed experimentally. Two 
different methodologies were applied depending on existence of separate test set. 
When a dataset provided separate test set, we build a tree using the training set 
and use the test set to verify the tree performance. When there was no separate 
test  set  then 10-fold crossvalidation was performed for  all  algorithms and the 
average error on the validation set is the performance indicator. ID3 and J48 were 
run only once, since they are deterministic methods. For EA and Random, 10 
independent runs were performed and we report average and standard deviation 
of their results. The resulting error and tree size values are provided in Table 6.2 
and  6.3.  In  Table  6.4 we provide results  when the entropy was assumed as a 
quality function. Those results were multiplied by 1000 for better readability.



According to Table  6.2 EA in presented version performed generally better 
than Random and ID3. To our surprise, Random performed comparable or better 
than  ID3.  The  EA  results  were  comparable  to  those  by  J48  except  for  the 
“balance scale” and “monks-1” datasets where EA was a winner and moreover, 

Table  6.2. Results of the compared algorithms — the percentage of incorrectly 
classified examples for the test set or the validation set

Error J48 ID3
EA Random
mean std. dev. mean std. dev.

Balance scale 34.7 29.5 29.2 1.20 30.4 1.07

Breast cancer 28.0 33.2 29.7 1.48 31.2 2.61

Coil 2000 6.0 10.1 6.0 0.07 7.4 0.31

Marketing 67.6 70.9 68.7 0.46 69.7 0.48

Monks1 24.3 17.4 9.5 4.16 14.9 3.98

Mushrooms 0.0 0.0 0.3 0.22 0.1 0.02

Table 6.3. Results of the compared algorithms — the number of nodes

Size J48 ID3
EA Random
mean std. dev. mean std. dev.

Balance scale 41 485 547 10 162 4

Breast cancer 7 381 441 12 223 7

Coil 2000 1 31 013 618 127 9 058 980

Marketing 3 582 29 306 1 181 22 4 676 82

Monks1 18 94 94 17 46 9

Mushrooms 29 38 325 26 82 11

Table 6.4. Results of the compared algorithms — entropy of the tree (multiplied 
by 1000)

Entropy ID3
EA Random
mea

n
std. dev. mean std. dev.

Balance scale 226 233 9 241 7

Breast cancer 225 200 9 193 12

Coil 2000 98 4 2 42 6

Marketing 815 700 8 738 4

Monks1 199 124 43 172 32

Mushrooms 0 6 4 1 1

even Random performed better  than J48. We believe that  this is  the result  of 
strong functional dependences in these datasets. 



As we consider  size of  trees  (Table  6.3),  J48 is the winner thanks to the 
application of pruning. We believe that using pruning for trees generated by EA 
would let to similar results. We also believe that setting  α in equation  5.1 to a 
larger  number  would  do  as  well.  Even  now,  there  exists  datasets,  e.g. 
“marketing”, where EA generates trees with similar accuracy but more than 3 
times smaller than J48. Random trees are larger than EA trees for large datasets 
and smaller for small datasets. When we analyze Random algorithm we can see 
that it stops expanding a node when there are no training example to be used for 
the split, so for small datasets trees had to be small.

All considered algorithms failed for the “Coil 2000” dataset. J48 achieved 
minimal error and minimal tree (one leaf). The EA was located on the second 
place with small trees (~600) when compared to more than 31 thousand of nodes 
generated by the ID3.

When using entropy as a measure of tree quality (Table 6.4) the superiority 
of EA over ID3 became even better visible. We could not provide results for C4.5 
since it was implemented in Weka.

We  also  tried  to  compare  our  results  to  the  results  achieved  by  the 
aforementioned  GA  based  approach.  Unfortunately,  the  authors  concentrate 
mainly on datasets with real valued attributes [4, 5, 7, 13], and we were only able  
to  find  result  of  GATree  algorithm [13]  for  the  “balance-scale”  dataset.  The 
authors report the error value of 28.9%, which is comparable to our results. The 
resulting  tree  size  of  GATree  was  only  9  nonterminal  nodes,  but  this  was 
achieved by a very strong penalization of the number of nodes.

7 Conclusions

We presented a view of the tree generation as an optimization task in the space of 
trees.  We showed that using general  search methods could lead us to produce 
trees better than ID3 and comparable to J48. We were also able to achieve some 
unification by defining the standard ID3 algorithm as a search method operating 
in the same space as EA and Random do. 

There are many possible definitions of the space metric and of the quality 
function which in turn makes the search algorithms work in different ways and 
yield different results. In this preliminary study we used a simple, poorly tuned 
EA, a simple space definition and a simple quality function, and even though, the 
results outperformed those yielded by ID3 and C4.5 in some specific cases. We 
find this observation very encouraging to lead deeper study in this direction.
 
References
1. Orange homepage, http://www.ailab.si/orange/datasets/
2. Arabas J., (2001).  Lecture Notes on Evolutionary Computation  (in Polish), 

WNT, Warszawa
3. Bonet B., Geffner H., (1999). Planning as heuristic search: New results. In 

ECP, pages 360–372



4. Bot M., (1999). Application of genetic programming to induction of linear 
classification  trees.  Technical  report,  Vrije  Universiteit,  Faculteit  der 
Wiskunde en Informatica

5. Cantú-Paz  E.,  Kamath  C.,  (2003).  Inducing  oblique  decision  trees  with 
evolutionary algorithms.  IEEE Transactions on Evolutionary Computation, 
7(1)

6. Cichosz P., (2000). Learning Systems (in Polish), WNT, Warszawa
7. Eggermont J.,  Kok J.N.,  Kosters  W.A.,  (2004).  Genetic  Programming for  

Data Classification: Partitioning the Search Space", Nicosia, Cyprus, 14-17 
March

8. Korf R. E., (1999). Artificial intelligence search algorithms. In  Algorithms 
and Theory of Computation Handbook. CRC Press

9. Koronacki J., Ćwik J., (2005). Statistical Learning Systems (in Polish), WNT, 
Warszawa

10. Koza J. R., (1991). Concept formation and decision tree induction using the 
genetic programming paradigm. In Parallel Problem Solving from Nature -  
Proceedings of the 1st Workshop. Springer

11. Mitchell  T. M.,  (1982).  Generalization  as  search.  Artificial  Intelligence, 
18:203–226

12. Newman D.J., Hettich S., Blake C.L., Merz C.J., (1998). UCI Repository of  
machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

13. Papagelis  A.,  Kalles  D.,  (2000).  GATree:  Genetically  Evolved  Decision  
Trees", November

14. Quinlan J. R., (1986). Induction of decision trees.  Machine Learning, 1:81–
106

15. Rokach  L.,  Maimon  O.,  (2005).  Top-Down  Induction  of  Decision  Trees 
Classifiers - A Survey, IEEE Transactions on systems, man and cybernetics -  
part C: applications and reviews, November

16. Witten I. H., Frank E., (2000). Data mining: practical machine learning tools  
and techniques with Java implementations. Morgan Kaufmann


	1 Introduction
	2 Decision tree
	3 Space of decision trees
	

	4 Quality function of trees
	4.1 Quality function based on error
	4.2 Quality function based on entropy

	5 Search algorithms
	5.1 ID3 algorithm
	5.2 Evolutionary algorithm
	5.3 Random algorithm

	6 Experiments and results
	7 Conclusions

