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Abstract—When a new metaheuristic is proposed, its results
are compared with the results of the state-of-the-art methods.
The results of that comparison are the outcome of algorithms’
implementations, but the origin, names, and versions of the im-
plementations are usually not revealed. Instead, only papers that
introduced state-of-the-art are cited. That approach is generally
wrong because algorithms are usually described in articles in a
way that explains the idea that is hidden behind them but omits
the technical details. Therefore, developers have to fill in these
details, and they might do so in different ways. The paper shows
that even implementations made by one author who is the creator
of an algorithm give results which differ considerably from one
another. Therefore, for the comparison purpose, the best possible
implementation should be identified and used. To illustrate how
details that are hidden in the code of implementations influence
the quality of the results, sources of quality differences are
tracked down for selected implementations. It was found that
sources of the differences are hidden in auxiliary code and also
stem from implementing a different version of the algorithm
which undergoes development. These findings imply best practice
recommendations for researchers, implementation developers,
and authors of the algorithms.

Index  Terms—experiments replication,
algorithm-implementation gap, CMA-ES

benchmarking,

I. INTRODUCTION

“If T have seen further it is by standing on the shoulders
of Giants” — this famous quotation from Sir Isaac Newton
implies how important is the validity of previous findings. All
of science is based on past theories and experiments. If the past
experiments are defective the future findings can be wrong.

In the case of heuristic search, it was noticed [1] that not all
contributions are evaluated in a scientifically correct way and
reported objectively. The authors proposed a set of guidelines
that can help to carry out reproducible experiments and
write good reports. They also stress that specifying parameter
settings and explaining how they were chosen is essential. The
stopping rule must also be documented and justified. One of
the pieces of advice is that authors of new algorithms should
also describe their implementations (the code).

The current experimental research methodology was also
criticized in [2]. The paper pointed out that many authors
do not specify the scope of claims regarding their algorithm
superiority. It was also stressed that authors of a new algorithm
should use performance measures that are fitted to the task
being solved, i.e. for some real-world problems the success
ratio is a better measure than average quality. The authors
also noticed that the level of details specified in a typical

paper does not allow to reimplement the same algorithm. To
solve this problem it was advocated to create a standardized
evolutionary algorithm library that will be freely available
for experimenters and will be extended by proposing new
operators or algorithms.

In [3] common pitfalls in replication and comparison of
computational experiments are discussed. The paper provides
guidelines and a checklist that should be filled in whenever
algorithms are experimentally compared. The guidelines stress
the need for experiments reproducibility. One of the guide-
lines states that inventors of new algorithms should make
their source code publicly available because often algorithm
description is too abstract and details have been omitted.
Therefore, the experiments cannot be replicated.

All aforementioned guidelines postulate the availability of
the implementations but they say nothing about what to do
when several implementations are available. Usually, in pop-
ular languages, there are many implementations of important
or popular methods, e.g., in case of R language [4] there are
5 working implementations of Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [5] and two implementations of
Classical Differential Evolution (CDE) [6], [7]. Those imple-
mentations were examined in [8]. It was observed that, under
the same experimental conditions, there are differences in the
results of different implementations of the same algorithm. In
case of CMA-ES implementations the difference in success
rate measured on functions from globalOptTest package [9]
is up to 12%. It was also observed that there is no pair
of implementations that give similar results. The sources of
differences were attributed to the usage of different auxiliary
functions, e.g. a method of bound constraints handling, and
implementing different versions of the algorithm that is un-
der development. The differences were also observed in the
outcome of implementations of CDE, which is an extremely
simple algorithm to implement. The source of that differences
cannot be tracked in packages’ documentation. The analysis
of the source code revealed that one implementation of CDE
used exponential instead of a binomial crossover. The second
difference had its origin in a different approach to handling
bound constraints.

In [10] the result of five implementations of CMA-ES were
compared on 24 noiseless functions [11], formerly used in
2009 in GECCO Workshop on Real-Parameter Black-Box
Optimization Benchmarking (BBOB). The implementations
were taken from a trusted source, i.e., from one of its authors’



homepage [12]. The implementations cover languages that
are popular in the evolutionary optimization community, like
Matlab and Python, and other popular languages, i.e., Java
and C. The version in C language is important because it is
used as an engine in many ports of CMA-ES to other pro-
gramming languages, e.g. R. The simplified implementation in
Python, which was created to facilitate reading the code and
understanding it, was also used in the experiments because it
is frequently directly translated into other languages, e.g. R
[13], and used in practice. The results show that the outcome
of examined implementations of CMA-ES differs considerably
from one another. The best is Python implementation config-
ured to use quadratic penalty for bound constraint handling
instead of default method. The worst is C implementation
followed by the Matlab version. Therefore, it is important
which implementation is used in the experiments.

The technical report [14] contains a compilation of ideas and
recommendations related to benchmarking in optimization.
As benchmarking is an evolving field of research the report
undergoes periodic updates. The paper raises many important
issues, but only those related to this work will be referenced
here. The report notices the need to make a distinction between
algorithm (like CMA-ES) and algorithm instance (like pycma-
es with population size ;4 = 8). The paper also noticed that
researchers should compare their work to the best algorithms,
i.e. most current versions and implementations. However, in
practice, the selection of the algorithms to be included in
a benchmarking depends on the availability of off-the-shelf
or easy-to-adjust implementations. Among other problems,
two major issues in the current benchmarking landscape have
been pointed out: a lack of detail in the description of the
algorithms and lack of availability of the implementations of
the algorithms.

This paper aims to show that guidelines defined in [1]—[3]
have to be extended. The CMA-ES serves here as a model of
important optimization method that fulfills the aforementioned
guidelines, i.e., it was implemented by the author and made
publicly available. When considering evolutionary algorithms,
the CMA-ES is in an exceptionally good situation — one of its
authors, Hansen, provided [12] high-quality implementations,
covering four programming languages.

To illustrate better that performance differences are not
negligible and that they do not stem from bugs in source
code this paper extends the poster paper [10] by showing
the empirical distribution function of runtimes (ECDF) for
selected BBOB functions and by tracking down the source
of performance differences in the code of implementations.

The paper is composed as follows. In section II the CMA-
ES algorithm is briefly described. Section III describes the
setup of experiments. In section IV the experimental results
are presented and discussed. In section V best practice recom-
mendations are formulated. Section VI concludes the paper.

II. THE CMA-ES AT A GLANCE

The CMA-ES algorithm is a powerful and popular evolu-
tion strategy. It starts work from a given point m. At each

iteration, A points are generated according to the formula:
xi = N;(m,0?C), where i € {1,...,A}, 0 € Ry is
called step-size, and C € R™*™ is the covariance matrix that
determines the shape of the distribution ellipsoid. The newly
generated points are evaluated by the objective function, and
then the values of m, o, and C are updated to maximize the
chance of future successful steps.

In the CMA-ES, unlike in classical evolutionary algorithms,
setting up algorithm parameters is considered as a part of
algorithm operation. The algorithm uses heuristics to set up
its parameters, e.g., A, or provides reasonable default values
and adaptation mechanism, e.g., o.

Interested readers are referred to [5], [15] or excellent
tutorial [16].

III. EXPERIMENTAL SETUP

The experimental setup is identical to that used in [10].
The experiments were performed using version 2.2.1.10 of
the COCO framework [11], using 24 noiseless functions for-
merly used in 2009 in GECCO Workshop on Real-Parameter
Black-Box Optimization Benchmarking (BBOB). Apart from
defining objective functions, COCO performs the experiments
and creates plots and tables. In the experiments COCO takes a
fixed target perspective, i.e. it analyses when the set of target
objective function values is achieved. It uses a concept of
average runtime (aRT), which is computed over all indepen-
dent runs as the average number of target function evaluations
used to approach global optimum with a given error margin.
The statistical significance of results is tested by COCO with
the Wilcoxon rank-sum test with Bonferroni correction by the
number of functions (24). More details about the assessment
procedure in COCO are available in [17].

The CMA-ES implementations were downloaded from
Hansen’s homepage [12]. The examined implementations
cover languages that are popular in the evolutionary optimiza-
tion community, like Matlab and Python, and other popular
languages, i.e. Java and C. The C implementation is used as
an engine in many ports of CMA-ES to other programming
languages, e.g. R.

Hansen also provides implementations of simplified ver-
sions of CMA-ES, which were created to facilitate reading
the code and understanding it. These versions are frequently
directly translated into other languages, e.g. [13], and used
in practice. Therefore, the simplified Python implementation
was also included in the experiments. The exact versions
of used packages, as were extracted from the source code,
are as follows: Java — “0.99.40”, C — “3.20.00.beta”, Python
purecma — “3.0.0”, Python — “2.6.0, revision 4423, Matlab —
“3.33.integer”.

The Python implementation includes two variants of bound
constraint handling: the coordinate transformation version [16]
and weighted quadratic penalty [18]. Both versions were
included in the experiments because C implementation of
CMA-ES uses the transformation and the Matlab version uses
the penalty approach. The Java version uses resampling [19]
and the simplified CMA-ES version comes without constraint



handling. To be able to use it the implementation was enriched
by a simple additive quadratic penalty [20]. That kind of
penalty is frequently used in other CMA-ES implementations,
e.g. [21].

COCO is typically used in unconstrained searches, however
it also defines functions that return the bounds of the area
of interest. These functions are used in order to generate
an initial solution and their contribution set bounds for con-
strained search, which better reflects a real-world application
of the optimization algorithm, where bounds usually stem from
physics.

For researchers from the benchmarking field, it is obvious
that employing different variants of bound constraint handling,
results in different instances of an algorithm. Therefore, differ-
ences in the results are expected if the search process hits the
bounds. For a typical researcher wishing to use the CMA-ES
for the comparison or the application, is usually not obvious.
Usually, researchers are satisfied when they download and run
the code. They feel no need to investigate or to reveal any
information about used implementation or bound constraint
handling method (BCHM), e.g. in CEC 2018 conference three
papers used the CMA-ES but none of them revealed which
implementation was used. Including implementations with dif-
ferent BCHMs in this study is in line with the typical approach
of most researchers for whom any official implementation is
equally satisfying. It also allows for additional verification
if BCHMs are important, even in conditions that are not so
demanding — i.e., when the optimum is expected to be far from
the bounds. After initial comparison of all six versions of the
CMA-ES, versions with the same BCHMs will be compared
using the statistical test provided by COCO.

For all of the implementations under comparison, the initial
step size (o) was set to 0.3(u — [), where u was the upper
and [ was the lower bound of the parameters’ value. This is
a default setting in most of the official implementations. The
heuristic of setting population sizes x and A was identical in
all considered implementations so it was left untouched.

According to the recommendation of COCO, if an algo-
rithm stops before exploiting its given budget it is restarted.
The first starting point is defined by COCO, the starting
points for restarts are generated by COCO’s function: ini-
tial_solution_proposal.

The budget was set to 5107 objective function evaluations.
All methods are stopped when the budget is exhausted. Most
implementations directly support stopping criteria based on
the budget. The only exception is the C version, for which
the maximal number of iterations was set accordingly. All
the other methods except simplified Python also implement
iterations-based stopping criteria. In Java it is set by default to
a large integer, so the stopping criterion based on it is disabled,
but in the regular Python implementation, it is set by default to
1004-150- (N +3)? /popSize®-5 and in Matlab other heuristic is
used. Therefore, to perform reliable experiments the maximal
number of iterations in Matlab and Python versions was set
to a very large integer so it will not interrupt optimization too
early.

IV. RESULTS AND DISCUSSION

Since the aim of this study is not to analyze the behavior of a
new method but to show that there are differences between the
outcome of different implementations of CMA-ES, only the
results of experiments for selected functions for 5 dimensions
are reported. The table with the results for all functions and
the results of statistical tests are provided in [10].

The plots of the empirical distribution function of runtimes
(ECDF) for selected functions are presented in Figure 1. That
form of presentation of the results allows for visual assessment
of the performance of the implementations as a function of the
spent budget.

It can be observed, that there are differences between the
outcome of all official implementations. For function 5 the
differences are clearly visible when algorithms used about 500
evaluations of the objective function. The best is Python with
the weighted quadratic penalty, the worst is Java. For function
16 differences are most clearly visible when algorithms used
about 50000 evaluations. Surprisingly, the best was the sim-
plest implementation (Python simple), it even beat the best
virtual method from BBOB-2009 when the budget reached
about 5000 evaluations. The worst was C, it was also the worst
for functions 18 and 23. Even though Java was the worst for 5
and 19 it is the best for 23, it event bet the best virtual method
when the budget reached about 40000.

The average runtime (aRT) together with the results of
statistical tests for all functions in 5-D at target error level
10~° are shown in Table 1. The error level was not set to the
smallest value available in COCO to mitigate the influence of
floating-point errors, which are different in different languages.
Implementations with the same bound constraint handling
mechanism were compared in pairs using the statistical test
provided by COCO. The star means that differences in the
results of algorithms listed in the title of the column are
statistically significant, with p = 0.05 or p = 10~*, when
k follows the star.

The results from Table I confirm the observation from Fig. 1
that there are differences between the outcome of all official
implementations. Differences between the best and the worst
methods usually are large, e.g. for function 5: 33 (Py. sq.
pen.) vs 351 (Java); for function 16: 2.5 (Py. sim.) vs 24
(C). Comparison of Python and Python configured to used
quadratic penalty (Py. sq. pen) shows that the bound constraint
handling method (BCHM) had a noticeable influence on the
results. To exclude this factor, implementations with the same
BCHMs were compared in pairs using COCO’s statistical
test. For methods with BCHMs based on penalty (Matlab
and appropriately configured Python), statistically significant
differences were detected for 7 functions, for 4 of them, the p-
value was at the level 10~*. When comparing methods based
on transformations of the parameters (Python and C) statisti-
cally significant differences were also found for 7 functions.

Observed differences put into question the validity of these
published works which used poor implementations. These
works are hard to find because nowadays nearly nobody
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Fig. 1. The empirical distribution function of runtimes (ECDF) of CMA-ES implementations under comparison measured on selected noiseless functions
from BBOB 2009, where Py is CMA-ES Python implementation, PySgPen is the same implementation, but with weighted quadratic penalty used as bound
constraint handling, Mat stands for Matlab implementation, PySimple is the simplified CMA-ES implementation in Python, and best 2009 is the best virtual
optimization method from BBOB 2009.



TABLE I
THE AVERAGE RUNTIME (ART) DIVIDED BY THE BEST ART MEASURED DURING BBOB-2009 AT THE TARGET ERROR LEVEL 10~° IN 5-D AS
RETURNED BY COCO. THE BEST RESULTS FOR EACH FUNCTION WERE TYPESET IN BOLD. AS IN COCO, THE HALF DIFFERENCE BETWEEN 10 AND
90%-TILE OF BOOTSTRAPPED RUN LENGTHS WAS PUT IN BRACES, AS DISPERSION MEASURE. THE LAST ROW SHOWS FOR HOW MANY FUNCTIONS THE
RESULTS OF EACH IMPLEMENTATION WERE THE BEST. THE STAR MEANS THAT DIFFERENCES IN THE RESULTS OF ALGORITHMS LISTED IN THE TITLE OF
THE COLUMN ARE STATISTICALLY SIGNIFICANT, WITH p = 0.05 OR p = 10~%, WHEN k FOLLOWS THE STAR.

Fun. C Java Matlab Python Py. sim. Py. sq. pen.  Py. sq. pen. vs Matlab  Python vs C
f1 88 (8) 78 (13) 84 (6) 86 (10) 89 (7) 81 (8)
2 46 (5) 44 (3) 41 (2) 27 (3) 43 (6) 28 (4) *4 *4
3 379 (249) 283 (246) 341 (395) 601 (254) 472 (702) 328 (315)
f4 7045 (led) 6783 (7417) 9937 (2e4) 6026 (6540) 5732 (2212) 3908 (2539)
f5 140 (24) 351 (42) 47 (15) 115 (13) 97 (73) 33 (9) *
o 2.6 (0.3) 2.4 (0.5) 2.4 (0.2) 2.5(0.2) 2.3 (0.3) 2.4 (0.1)
7 13 (12) 7.2 (10) 9.4 (13) 2.8 (2) 8.1 (4) 2.9 (5)
8 12 (5) 10 (2) 12 (4) 12 (15) 10 (2) 9.1 (1) *
9 12 (2) 12 (4) 12 (6) 14 (9) 13 (4) 11 4)
f10 8.4 (4) 5.2 (0.4) 4.8 (0.7) 43 (2) 4.7 (0.3) 3.1 (0.2) *4 *
fl1 3.2(1) 2.9 (0.2) 2.7 (0.2) 22(1) 2.8 (0.3) 1.5 (0.2) *4 *
f12 6.8 (5) 5.7 (4) 4.2 (3) 6.4 (5) 6.2 (2) 34 (2)
f13 3.4 (0.8) 3.6 (0.9) 3.3 (0.6) 2.1 (0.7) 3.1 (0.4) 2.3 (1) *2 *3
f14 11 (0.8) 12 (2) 11 (2) 7 (0.8) 11 (1) 6.4 (0.8) *4 *3
f15 20 (29) 20 (22) 44 (24) 23 (36) 25 (26) 35 (48)
f16 24 (31) 5.7 (8) 11 (11) 12 (20) 2.5(3) 8.2 (7)
f17 20 (13) 7.2 (5) 13 (6) 12 (12) 16 (11) 12 (13)
f18 140 (104) 133 (313) 245 (325) 53 (43) 109 (108) 40 (66) *
f19 358 (448) 389 (306) 290 (144) 117 (34) 382 (272) 86 (67)
20 106 (252) 61 (59) 102 (120) 49 (31) 49 (60) 35 (13)
21 15 (20) 7.1 (5) 12 (12) 14 (4) 13 (15) 18 (18)
22 39 (31) 47 (78) 56 (47) 59 (33) 35 (28) 43 (136)
23 50 (91) 503) 17 (36) 6.6 (8) 6 4) 7.7 (12) *
24 o) 00 60 (60) 62 (44) o) 00
3 best 1 6 1 3 3 11

reports the name and the version of the used implementation,
e.g. in CEC 2018 conference three papers used the CMA-ES
but none of them revealed which implementation was used.

A. Tracing the differences

In the previous section, it was demonstrated that the results
of different CMA-ES implementations may substantially dif-
fer. To investigate the root cause of those differences the code
of two implementations of CMA-ES that use the same bound
constraint handling method, i.e. Matlab and Python with the
weighted penalty, were carefully compared.

The first observed difference is hidden in CMA-ES stopping
criteria, which is especially important for experiments with
large budgets and restarts like in COCO. The C implemen-
tation checks 8 stopping conditions, but the Python extends
this set by additional 3 conditions. Besides that, the default
parameters of the conditions are different, e.g. stopTolFun and
stopTolFunHist are 10 times smaller in C; stopTolX is 0 in C
but 10~ in Python. To verify how important are those differ-
ences, the set of stopping conditions in Python implementation
was reduced to those available in C. The parameters of the
stopping conditions were also taken from C implementation.
In this setup, Python implementation calculated results only

for functions from 1 to 18, then the program was interrupted
due to numerical instabilities. The available results show no
statistically significant differences between the default and
modified Python setup. Therefore, there are some other, more
important differences between C and Python implementations.

After examination of CMA-ES internal parameters, it was
noticed that CMAActive flag is switched on in Python imple-
mentation but it is not available in other implementations. This
flag enables concept of ActiveCMA [22]. After switching it off
and repeating the experiments, the results were compared with
the results of C implementation. This time, the statistically
significant differences were still detected for functions 2 and
14. Therefore, the concept of ActiveCMA improves CMA-
ES and is the strong source of differences in performance,
but even after switching it off differences exist. We have
to bear in mind that optimization algorithms are used by
practitioners from other fields and by authors of new methods
as a reference. They know that CMA-ES exists but they are
not aware of all aspects of its development or implementation.
To use the implementation in Python they have to create class
CMAEvolutionStrategy which requires only two parameters:
staring point and initial step size.

Yet another difference is hidden in the heuristics used



to detect and escape from flat areas of the fitness function
landscape. In C implementation when the objective function
value of the best solution is equal to the median of objective
function values the step size o is increased. There is no such
simple rule in Python.

When comparing C and Matlab versions it can be noticed
that there is a difference in the process of initialization of
internal recombination weights. The weights are used to set up
muef f parameter, which in turn is used to set up cs, mucov,
damps, etc. The weights are also used in the computation
of a new value of the distribution mean and covariance
matrix adaptation. In the C version, a vector of weights is
initialized with a formula with the log(x + 1) term, but in
Matlab version the log(max(u, A/2) + 0.5) term is used.
There are also differences in the initialization of learning rates
(ccovl, ccovmu).

Many of the aforementioned differences are not in the
CMA-ES core algorithm, i.e., usually, when pseudocode is
published, the authors do not describe all sanity checks on
algorithm parameters that should be implemented in practice.
Internal parameter initialization is often unspecified as not
being “scientific”’ enough to publish.

Concerning revealing technical details, the situation of
the CMA-ES algorithm is above-standard, because at least
two published papers included Matlab implementation of the
method. Most other methods do not come with implementa-
tions. For them, the situation is much worse because articles
describe only the main ideas of the algorithm, and based on
that other researchers create implementations and use them for
comparison.

B. Article-implementation relation

In the light of the differences that were found in the source
code a question arises — which implementation is closer
to the “true” CMA-ES algorithm, i.e., which most closely
matches the canonical CMA-ES algorithm as known from the
literature? To answer that, yet another question should be first
answered: which article describes CMA-ES?

In most cases, articles that mention CMA-ES cite [5]. It
appears to be correct because in the introduction section of that
article the authors wrote “In Section 5, we formulate the CMA-
ES algorithm”. The paper also contains CMA-ES Matlab code.

The other article that is often cited when referring to CMA-
ES is 5 years older [23]. In Hansen’s commented bibliography
[12] we read about the article: “The first CMA paper, where
the covariance matrix adaptation is introduced into the (1, A)-
ES (x = 1), so CMA was used in ES — but does that
necessarily mean CMA-ES?

There are many more articles on CMA-ES, so it is not clear
which article should be cited as a reference for CMA-ES. To
solve this problem it was analyzed how one of the authors of
CMA-ES refers to it. It was found that several articles are cited
as CMA-ES, e.g., in an application paper [18] a sequence of
four articles is cited [5], [23]-[25] when referring to CMA-
ES. Therefore, still it is not clear which article describes the

canonical CMA-ES version. It seems that nowadays the name
“CMA-ES” really means “the family of algorithms”.

The article-implementation relationship should be explained
in the documentation of the implementations. Unfortunately,
there are no references in the C code. In Python, there are
two references connected with additional improvements of the
method, but there is no reference to the article with a core of
the algorithm. In Matlab and Java, there are five references,
four of them are common for both implementations, i.e. [5],
[24]-[26], and additionally Matlab version refers to [18] and
Java refers to [27].

V. BEST PRACTICE RECOMMENDATIONS

Based on the aforementioned findings and the author’s
experience as a reviewer, author, and reader, this section
further extends the guidelines from [1]-[3]:

1) Publishers should require the availability of the source

code for all new optimization methods.

2) The code used for running experiments should be avail-
able, at least for the reviewers.

3) Authors should use the most canonical implementation
of the state-of-the-art and reveal its origin, name, and
version.

4) Authors should reveal how all parameters were set up,
not only in the proposed method but also in methods
used for comparison.

5) Authors of implementations should define article-
implementation relation.

6) Authors of articles and authors of implementations
should identify the method used for constraint handling.

Availability of the source code for all new methods is
required for the reproducibility of the experiments. Without
that neither reviewers nor peers can verify the results of the
experiments and confirm or reject claims formulated in the
article. Availability of the code will also have a positive
influence on the number of citations of the article, which
is important for both, the author and the publisher. It is
more probable for the method to be used in a comparison
or an application when the code is easily available. The
requirement of the code availability was postulated by previous
research [1]-[3] but it is still not implemented. Nowadays the
metaheuristics community is flooded by propositions of new
algorithms or improvements of the components of existing
algorithms. At the time of that abundance, publishers should
not be afraid that will be no authors willing to publish because
of the requirement of source code publication. It is also no
problem from a technical point of view, some optimization
competitions, e.g. CEC’2017, have already a place for the
codes [28]. Many journals, e.g. Swarm and Evolutionary
Computation, provide a place for supplementary materials and
research data which can include the code. In the worst case,
small conferences without proper infrastructure can use or
ask authors to use one of the existing code repositories, e.g.
GitHub.

The code used for running experiments should be available,
at least for the reviewers. This will allow for verification of



the experimental setup. When most scientists are forced by
their employers to publish it is easy to imagine that few of
them will pick up runs with carefully chosen seeds or will
narrow range of parameters during population initialization.
Peer review cannot be done honestly without access to the
implementation and the code used to run experiments.

The authors should use the most canonical implementation
of the state-of-the-art and reveal its origin, name, and version.
Proving advantage of a new method over a week implemen-
tation of state-of-the-art means nothing. For the verification
during the review and for the reproducibility, the origin of the
implementation, its name, and version should be provided.
If the implementation does not support version numbering
the date of the download should be used instead. If the
implementation of state-of-the-art was made by the author
of a new method its code should also be published. What is
more, such self-made implementations should be verified by
comparing their results to the results published by an author
of the original algorithm.

The authors should reveal how all parameters were set up.
Some internal parameters which are auxiliary, e.g. thresholds
connected with parameter sanity check and stagnation detec-
tion are not published because of the assumption that they
are not interesting to the readers, they are not “scientific”
enough. Sometimes such parameters are not revealed because
it is hard to justify their adopted values. That is not acceptable
because these “not interesting” parameters are very important.
A modified IPOP-CMA-ES [29] may serve as an example
here. The modified code gave a much better result than the
original one. These improvements may be equally attributed
to two changes. One of them consisted of setting up auxiliary
parameters, like thresholds used for stagnation detection and
sanity checks.

The next frequently occurring problem with parameters is
related to their tuning only for the proposed method but not
for the state-of-the-art. This is not fair if the implementation
under comparison were set up for another benchmark by its
authors.

Authors of implementations should define article-
implementation relation. Each implementation should
refer to the article which described implemented method.
If implementation was based on other implementation it
should also be revealed. All differences from the published
description should be pointed out. If implementation required
something not specified in the article it should be documented
as well.

Authors of articles and authors of implementations should
identify the method used for constraint handling. It was shown
in this study and in previous research [8], [10], [19], [30], that
methods used for handling box constraints are the source of
significant differences in the performance of the algorithms.
Usually, methods used for box constraint handling are not
identified because most authors focus only on the description
of the main ideas of a new optimization method.

Even though a flood of new metaheuristics that claim to
be the best is observed nowadays, the set of algorithms that

are perceived by the community as state-of-the-art is nearly
constant. How so many “the best” methods may be forgotten
or ignored? Even if only some of these methods were really
the best we should observe high variability in the state-of-the-
art and fast, real progress in the field of metaheuristics. Strict
adherence to the guidelines defined here and in previous works
should help to further improve the quality of publications and
to reduce the number of articles erroneously claiming that their
algorithms are the best. These articles act like a noise that
hinders readers to find truly valuable ideas.

VI. CONCLUSIONS

The choice of a particular implementation of even a popular
and standard algorithm may have a substantial impact on the
results obtained in research studies or applications. The com-
putational performance and, more importantly, the outcome
quality differs substantially across different implementations,
even those made by the authors of the algorithm. These dif-
ferences were demonstrated using the CMA-ES optimization
algorithm and its five official implementations. The sources
of discrepancies are frequently hidden in the auxiliary code,
e.g., in constraints handling code or in stop conditions, es-
pecially those designed for detecting numerical instabilities.
The difference in the outcome of implementations also stems
from implementing different versions of the algorithm that
undergoes development.

The existence of the differences has important conse-
quences. Many articles do not provide details about imple-
mentations used in experiments (source and version), which
puts in question the utility of their findings.

The findings of this contribution imply best practice rec-
ommendations for researches — to select the most canonical
implementation and reveal its name and version when pub-
lishing results, for implementation developers — to make a
clear connection between their code and the original article
describing the algorithm, and for algorithm’s authors — to
introduce proper naming conventions for their methods.

REFERENCES

[1] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R.
Stewart, “Designing and reporting on computational experiments with
heuristic methods,” Journal of Heuristics, vol. 1, no. 1, pp. 9-32, Sep
1995.

[2] A. E. Eiben and M. Jelasity, “A critical note on experimental research
methodology in EC,” in 2002 IEEE Congress on Evolutionary Compu-
tation. 1EEE, 2002, pp. 582-587.

[3] M. Crepiniek, S.-H. Liu, and M. Mernik, “Replication and comparison
of computational experiments in applied evolutionary computing: Com-
mon pitfalls and guidelines to avoid them,” Applied Soft Computing,
vol. 19, pp. 161 — 170, 2014.

[4] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
Feb. 2021. [Online]. Available: https://www.R-project.org/

[5] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159-195, 2001.

[6] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” TR-
95-012, ICSI, Tech. Rep., 1995.

, “Differential evolution — a simple and efficient heuristic for global

optimization over continuous spaces,” Journal of Global Optimization,

vol. 11, no. 4, pp. 341-359, Dec 1997.

[7]


https://www.R-project.org/

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Biedrzycki, “Differences that make a difference: comparing im-
plementations of selected optimization algorithms in R language,” in
Proc.SPIE, vol. 10808, 2018, pp. 10808 — 10808 — 12.

K. Mullen, globalOptTests: Objective functions for benchmarking the
performance of global optimization algorithms, 2014, R package version
1.1.

R. Biedrzycki, “On equivalence of algorithm’s implementations: The
CMA-ES algorithm and its five implementations,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, ser.
GECCO ’19. New York, NY, USA: ACM, 2019, pp. 247-248.
COCO (COmparing Continuous Optimisers), Feb. 2018. [Online].
Available: http://coco.gforge.inria.fr/

N. Hansen. (2018, Oct.) The CMA evolution strategy. [Online].
Available: http://cma.gforge.inria.fr/cmaesintro.html

H. W. Borchers, adagio: Discrete and Global Optimization Routines,
2016, r package version 0.6.5.

T. Bartz-Beielstein, C. Doerr, D. van den Berg, J. Bossek, S. Chan-
drasekaran, T. Eftimov, A. Fischbach, P. Kerschke, W. L. Cava,
M. Lopez-Ibanez, K. M. Malan, J. H. Moore, B. Naujoks, P. Orze-
chowski, V. Volz, M. Wagner, and T. Weise, “Benchmarking in op-
timization: Best practice and open issues,” arXiv:2007.03488[cs.NE],
Tech. Rep., 2020.

N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, 1. Inza, and E. Ben-
goetxea, Eds.  Springer, 2006, pp. 75-102.

——, “The CMA evolution strategy: A tutorial,” CoRR, vol.
abs/1604.00772, 2016.

N. Hansen, A. Auger, D. Brockhoff, D. Tusar, and T. Tusar, “COCO:
performance assessment,” CoRR, vol. abs/1605.03560, pp. 1-16, 2016.
N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos,
“A method for handling uncertainty in evolutionary optimization with
an application to feedback control of combustion,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 1, pp. 180-197, Feb 2009.
R. Biedrzycki, “Handling bound constraints in CMA-ES: An experimen-
tal study,” Swarm and Evolutionary Computation, vol. 52, no. 100627,
2020.

Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for con-
strained parameter optimization problems,” Evol. Comput., vol. 4, no. 1,
pp. 1-32, Mar. 1996.

J. Bossek, cmaesr: Covariance Matrix Adaptation Evolution Strategy,
2016, R package version 1.0.3.

G. A. Jastrebski and D. V. Arnold, “Improving evolution strategies
through active covariance matrix adaptation,” in 2006 IEEE Interna-
tional Conference on Evolutionary Computation, July 2006, pp. 2814—
2821.

N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation,”
in Proceedings of IEEE International Conference on Evolutionary
Computation. 1EEE, May 1996, pp. 312-317.

N. Hansen, S. D. Miiller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary Computation, vol. 11, no. 1,
pp. 1-18, March 2003.

N. Hansen and S. Kern, Evaluating the CMA Evolution Strategy on Mul-
timodal Test Functions. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 282-291.

R. Ros and N. Hansen, “A simple modification in CMA-ES achieving
linear time and space complexity,” in Parallel Problem Solving from
Nature — PPSN X, G. Rudolph, T. Jansen, N. Beume, S. Lucas, and
C. Poloni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp- 296-305.

A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in 2005 IEEE Congress on Evolutionary
Computation, vol. 2. 1EEE, Sept 2005, pp. 1769-1776.

PN. Suganthan CEC2017 repository, Feb. 2021. [Online]. Available:
https://github.com/P-N-Suganthan/CEC2017-BoundContrained

R. Biedrzycki, “A version of IPOP-CMA-ES algorithm with midpoint
for CEC 2017 single objective bound constrained problems,” in 2017
IEEE Congress on Evolutionary Computation (CEC), June 2017, pp.
1489-1494.

R. Biedrzycki, J. Arabas, and D. Jagodziniski, “Bound constraints
handling in differential evolution: An experimental study,” Swarm and
Evolutionary Computation, vol. 50, no. 100453, 2019.


http://coco.gforge.inria.fr/
http://cma.gforge.inria.fr/cmaesintro.html
https://github.com/P-N-Suganthan/CEC2017-BoundContrained

