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Abstract—This paper investigates the suitability of several
metaheuristic algorithms for the problem of compressor schedule
optimization for a refrigerated warehouse. A realistic simulator
of such a warehouse is used, based on domain knowledge and
tuned to match an actual experimental cooling appliance. The
problem consists in finding an on-off sequence for the adopted
optimization horizon and time step that minimizes the energy cost
while preserving cooling chamber temperature constraints. To
enable the application of metaheuristic optimization algorithms,
the problem has to be appropriately encoded. Three different
encoding schemes have been designed, suited to both binary
and continuous optimization methods. Several metaheuristic algo-
rithms known from the literature are used. Most of them deliver
solutions considerably better than a common-sense heuristic
compressor schedule. Interestingly, the classical genetic algorithm
setup, as well as a setup that was applied to a similar problem
in prior research, appear not to work well. The best results
are achieved for an alternative genetic algorithm configuration,
determined by a series of tuning experiments. Comparable results
can be also obtained by the IPOP-CMA-ES or PBIL algorithms,
which do not require such extensive tuning and may be preferred
by practitioners.

Index Terms—refrigerated warehouse, problem encoding, bi-
nary search space

I. INTRODUCTION

Large-scale refrigerated warehouses make it possible to
store food for a long time in a safe way. Such storage
facilities improve the efficiency, stability, and predictability of
production and distribution of various kinds of food. Usually,
both the production and consumption of food commodities
are seasonal and uneven. The warehouses allow matching the
capacity of food processing with the consumers’ demand.
Examples include production and cooling vegetables during
summer for consumption in wintertime or peak consumption
of meat during summer barbecues, clearly exceeding produc-
tion capabilities. Two major kinds of refrigerated warehouses
differ with storage temperature – diary or vegetables are
usually stored in a mild temperature regime between 1 and
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3◦C, while deep-frozen products, e.g., meat or ice-creams,
require temperatures strictly below −18◦C [1].

A significant drawback of such large-scale refrigerated
warehouses is their considerable electricity consumption. Elec-
tricity is necessary to drive cooling devices that compensate
for all heat losses. Counterbalancing heat fluxes is crucial to
control the temperature inside the facilities and keep it within
the strict regime regardless of outdoor conditions. Particularly,
in summer the differences between indoor and outdoor tem-
peratures might be high, not only in deep-frozen facilities but
also in a storage fridge. It causes substantial heat loses even in
modern, well-insulated facilities. Moreover, when the outdoor
temperature is high or when the outdoor air is moist, the
efficiency of standard cooling devices decreases. Consequently
the final electricity consumption may be skyrocketing.

Obvious possible solutions, such as installing photovoltaic
panels or other additional sources of electricity, are reasonable
yet costly. Another answer may be enhancing cooling capacity,
using, e.g., ice-bags, phase-change materials, or cryogenics
energy storage with liquefied cryogenic gas [2], [3].

In this paper, an alternative approach is adopted, based on
shaping the profile of electricity demand by means of short-
term storage of thermal energy within the existing infras-
tructure of the warehouses and within the very outer layer
of wrapping or package of deep-frozen products. Sufficient
thermal energy storage is provided due to the high value
of the available surface and heat capacities of the existing
plant’s infrastructure, e.g., freezers, cold stores, process water
resources, and other elements of the technical infrastructure,
through the modification of temperature in time in those
facilities. Such a low-cost solution may increase the potential
of thermal energy storage, and consequently may enhance
power grid sustainability and allow increased production of
electricity with renewable sources [2], [3].

The proposed approach requires no investment costs except
for the smart energy management system and enhanced mea-
suring equipment. The system optimizes the power demand
curve while being fully updated on the actual capability
of short-term energy storage in the available infrastructure



components, and forecasts the demand for usable energy
continuously. Based on such input, decisions can be made on
the optimum energy flow in the system for several hours in
advance. The system will keep operating at higher efficiency
and on a cheaper tariff while relieving the grid during daily
peaks. This means a measurable economic benefit for a
warehouse owner.

The article formulates the underlying compressor schedule
optimization problem and investigates the utility of several
metaheuristic algorithms known from the literature. A realis-
tic refrigerated warehouse simulator is used to evaluate the
objective functions and verify the constraints. Three different
problem formulations are considered: a natural discrete formu-
lation, a direct binarization-based continuous formulation, and
an indirect continuous formulation combining target tempera-
ture optimization with a rule-based compressor controller. This
makes it possible to apply both discrete and continuous meta-
heuristic search methods. For each configurable algorithm, the
best configuration is determined by limited parameter tuning
guided by expert knowledge.

A. Related Work

The problem considered in this paper belongs to a broad
group of problems related to power and energy systems.
According to the surveys [4], [5], the most frequently used
optimization methods in that domain are still genetic algo-
rithms. Even though many diverse problems are studied in this
application area, the compressor schedule optimization prob-
lem addressed by our work has not received much attention
in prior research.

In [6]–[8] the authors introduce a refrigerated warehouse
controller that is based on an evolutionary algorithm (EA).
To the best of our knowledge this is the most closely related
prior work to which our research can be naturally compared.
The detailed experimental setup is summarized below to make
such a comparison easier.

The optimization goal is to minimize the consumption of
electrical energy in the horizon of 36 hours. The algorithm
optimizes the target warehouse temperature (Ts) for each hour.
Therefore, the genotype consists of 36 floats. The implementa-
tion provided by the GAlib library [9] is used. The algorithm is
configured to use roulette wheel selection, two point crossover,
and elitism. The population size is set to 73, the crossover
probability is set to 0.6 and the mutation probability is set to
0.05. The algorithm stops after 100 iterations. The optimized
vector of target temperatures is converted to a binary sequence
of on and off signals for the compressor by a simple controller
with hysteresis, i.e., when the temperature in the warehouse
exceeds the target value by a specified margin (set to 0.1)
then the compressor is turned on. It is turned off when the
temperature drops below the target value by more than the
same margin.

B. Refrigerated Warehouse Model

A zero-dimensional approach to refrigerated warehouse
modeling is adopted. It is based on a straightforward energy

balance and heat transfer between the air flowing inside the
storage chamber with uniform temperature Ts and the outer
layers of store products with uniform temperature Tp.

A sketch of the model of a refrigerated warehouse is pre-
sented in Fig. 1 with the following key components: products
with cover, indoor air, outdoor air and cooler.
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Fig. 1. Sketch of refrigerated warehouse.

Generally all energy losses to the outdoor air with tem-
perature Ta have to be compensated by the internal cooler
with the cooling power of Qc(τ), usually changing in time
(designated by τ ) in a complex way. The main assumption is
that temperatures Ts and Tp are uniform and depend only on
time. This makes it possible to formulate simplified equations
of energy conservation in the outer layer of products and in
the air inside chamber, Tp and Ts:

dTp
dτ

=
kpAp

mpcp
[Ts(τ)− Tp(τ)] , (1)

dTs
dτ

=
kpAp

mscs
[Tp(τ)− Ts(τ)]

+
kaAa

mscs
[Ta(τ)− Ts(τ)] +

Qc(τ)

mscs
,

(2)

where mp, cp, kp and Ap denote the mass, heat capacity,
thermal conductivity, and surface area of the outer layer of
products available for heat exchange with the air, ms, cs are
the mass and heat capacity of the air inside the chamber, Ta
is outdoor temperature, and ka and Aa denote the thermal
conductivity and surface area of the wall for heat losses. The
fractions occurring in (1) and (2) describe how effectively heat
is transferred between the key components of the system.

In the real facilities, the exact values of the effective param-
eters has to be estimated based on the available historical data
or dedicated thermal response analysis. However, the critical
challenge is determining the adequate cooling power Qc(τ).
This quantity combines the effect of several factors, from the
power and schedule of compressors to inertia of heat transfer
fluid and the details of the coolers themselves. Usually, the first
guess of Qc(τ) bases on technical documentation. Later, the



initial value is adjusted to follow historical data, particularly
temperature measurements and compressor schedule.

In the current paper, we adopt an extended numerical model
based on [10]. It derives Qc(τ) from the given or optimized
compressor schedule. It takes into account the whole cooling
system: the power and the effectiveness of cold production
devices (compressors), the effect of auxiliary tanks filled with
phase-change material, and the power and effectiveness of
coolers installed in the storage chamber. The Python im-
plementation of the model and its detailed description are
available from [11]. The external temperature required by the
simulator is taken from the weather forecast.

II. PROBLEM FORMULATION

Compressor schedule optimization can be naturally viewed
as a discrete optimization problem, with each candidate so-
lution represented by a binary vector of compressor on or
off states. Discrete optimization problems are usually easy
to describe and understand but hard to solve. It is prac-
tically impossible to determine all possibilities to identify
the optimum. Therefore, metaheuristic algorithms that use
variants of trial and error methods are frequently used. On
the other hand, continuous optimization problems can be
easier to solve because some kind of gradient approximation
is usually available, which can help to direct the search.
Moreover, continuous metaheuristics are developing rapidly,
which resulted in several successful parameter-free methods.
This is why, besides the natural discrete problem formulation,
we also consider two alternative continuous formulations,
making it possible to apply continuous search methods with
a hope that a better solution can be found without extensive
tuning.

A. Discrete formulation

The problem consists in finding an on-off sequence for the
next 24 hours that minimizes the energy cost while preserving
cooling chamber temperature constraints. According to [8],
there is no possibility of continuous control for the compressor,
it can be either on or off. The refrigerated warehouse has
high inertia and the compressor state cannot be changed too
frequently so that discrete-time was assumed with a time step
of 15 minutes. Therefore, a cooling schedule can be naturally
expressed as a binary vector of length 96, so that discrete
optimization methods that operate on binary strings can be
used.

B. Direct continuous formulation

One way to present compressor schedule optimization as
a continuous problem is to directly transform the discrete
problem described above to a continuous representation. Ac-
cording to the survey paper [12], one of the most popular
techniques which enable using continuous metaheuristics for
binary search spaces is called two-step binarization. In that
approach at the first step, the range of continuous variable
is reduced to [0, 1] by an S-shaped or V-shaped function. The
second step transfers the continuous result of the first step into

a binary space, which is called binarization. In the standard
binarization approach, the outcome of the transfer function
is treated as the probability of the truth value. A binary
string is created by sampling from the {0, 1} set according to
such probabilities. In this paper we skip the transfer function
step, because the optimization algorithm will be working on
continuous variables limited to the [0, 1] range.

Modifying truth value probabilities and changing them to a
binary string by sampling is also the principle of the PBIL
algorithm [13]. PBIL uses simple heuristics to modify the
probabilities. From that point of view, the proposed approach
uses a continuous search method to replace PBIL’s heuristics.
PBIL will be described in more detail in Section III-A2.

C. Indirect continuous formulation

Another possibility to use continuous search methods for
compressor schedule optimization is to adopt an indirect ap-
proach in which a sequence of warehouse target temperatures
is optimized and then used to generate on and off signals for
the compressor. More specifically, each candidate solution is
represented by a sequence of target warehouse temperatures
(Ts) for each time interval of the 24-hour optimization horizon.
Decisions to turn the compressor on or off are made by a
simple deterministic controller based on these temperatures.
Two lengths of the interval will be considered: one hour and
fifteen minutes. One hour intervals match assumption of the
related work discussed in Section I-A. The interval of fifteen
minutes is used to match the previously presented discrete
formulation of the problem. Considering two time intervals
makes it also possible to examine how continuous methods
scale with the increase of the problem dimensionality.

In this study the controller operates in discrete time and can
change the state of the compressor once for a quarter. That be-
havior is physically justified and it does not require specifying
an additional temperature margin, which is usually required to
implement hysteresis. This is unlike in the related work [6]–
[8] with a deterministic controller working in continuous time
and therefore using hysteresis.

Our controller operates using simple decision rules at each
time step. The compressor is turned on when the tempera-
ture in the warehouse exceeds the target value or the upper
constraint and turned off when the temperature drops below
the target value or the lower constraint. Notice that, due to the
discretization of time and large inertia of the cooling hardware
and the warehouse, this does not guarantee the feasibility of
the solutions. Therefore, temperature constraints must be still
handled by the applied optimization methods, just like with
the other problem formulations.

III. METAHEURISTIC ALGORITHMS

This paper examines the suitability of several different meta-
heuristic optimization methods to the compressor schedule
optimization problem, assuming both binary and continuous
multidimensional search spaces. They are briefly reviewed



below to provide the necessary background information, liter-
ature references, and specify variants of particular algorithms
used for this work.

A. Metaheuristics for binary search spaces

In the discrete problem formulation the compressor schedule
is represented by a bit string. Therefore, metaheuristics that
operate on binary strings match the problem perfectly.

1) Genetic Algorithm: Genetic algorithms (GAs) are quite
old methods [14], [15] but they may be still useful for discrete
search spaces. In general, at each iteration of a GA, the
selection, mutation, crossover, and succession operations are
performed. There are many ideas in the literature about how
to implement each of those operations. In the classical GA a
roulette wheel selection, one-point crossover, and generative
succession are used. Apart from the specification of com-
ponents, the GA has several parameters to set up, i.e., the
population size, the probability of performing mutation, and
the probability of crossover. If the latter is 0 then only mutation
is used and if the latter is 1 then all candidate solutions are
the result of crossover.

Apart from the classic GA, configurations with different
components were experimentally verified. Because of the page
limit, only the results of the best configuration are presented
in the paper. The best result was yielded by a version with ex-
ponential rank selection (ERS), uniform crossover, and elitist
succession. In ERS [16] individuals are ranked according to
fitness and then the probability of selection of the individual
is decreased exponentially in the function of the rank. In
uniform crossover a donor of each bit of the child is randomly
selected from the parents. The elitist succession ensures the
survival of e best solutions from the sum of the current and
candidate population. For both the classic GA setup and the
alternative (ERS, uniform crossover, and elitist succession)
setup mutation is performed by bit negation.

2) PBIL: Probability-Based Incremental Learning (PBIL)
[13] maintains a real-valued vector that represents the proba-
bility of each bit being one. At each iteration, the algorithm
generates random solutions according to the current proba-
bility vector. In the classical PBIL version from the set of
generated solutions only the best one is used to update the
probability vector, so as to increase the chances of generating
that solution. The algorithm has two parameters: the sample
size, which determines how many samples are generated at
each iteration, and the learning rate, which determines the
weight of the current update of the probability vector.

There are variants of PBIL that can improve search effec-
tiveness. These variants introduce mutation of each component
of the probability vector (to inhibit premature convergence)
and learning from the worst solutions (update probabilities in
a way to avoid them).

B. Metaheuristics for continuous search spaces

Apart from methods specially designed to operate on bit-
strings, methods designed for continuous optimization will
be used here as well, with the previously presented direct

and indirect continuous problem formulations. The recent
development of continuous metaheuristics is directed towards
parameter-free methods with auto-adaptation. Therefore, their
application is straightforward, even for practitioners without
experience in the application of metaheuristics.

1) IPOP-CMA-ES: The Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [17] is an efficient derivative-
free optimization algorithm. At each iteration, the neigh-
borhood of the current working point is sampled using a
multivariate normal distribution specified by the covariance
matrix. The mutation strength is controlled by a parameter
called step size. At each iteration the current working point, the
covariance matrix, and the step size are updated to maximize
the probability of successful moves.

Since it is a very robust but still local optimizer, it could
be trapped in local optima. Therefore, to increase the chance
of finding a global optimum, a restart is performed whenever
stagnation is detected. In the IPOP-CMA-ES [18] variant at
each restart the population size is automatically increased. In
the remainder of the paper the name of this method will be
shortened to IPOP. The implementation of IPOP is available
in the cma Python package.

2) Differential evolution: Since the first publications [19],
[20] presenting the algorithm, differential evolution (DE) has
received increasing attention, which can be attributed to its
simplicity and efficiency. In this paper its version named
DE/local-to-best/1/bin is used. In that version the i-th mutant
is a result of the sum of i-th solution, the difference between
two randomly selected solutions, and the difference of the best
solution in the current population and the i-th solution, i.e.:
vi = xi + F · (xbest − xi) + F · (xr1 − xr2), where the scale
factor F (usually F ∈ (0, 1]) is a parameter of the algorithm.
The candidate solution is the result of crossover if a random
number sampled from the standard uniform distribution is less
than CR and it is equal to the mutant otherwise. The CR is a
parameter of the algorithm. In this paper, a binomial crossover
is used (bin). It creates an offspring by discrete recombination
of the mutant vector vi and the parent vector xi.

3) jSO: The jSO algorithm [21] is a version of DE which
does not require parameter tuning and component selection.
It uses the DE/current-to-pBest-w/1 mutation strategy vi =
xi+Fw · (xpbest−xi)+F · (xr1−xr2), where Fw is 0.7F for
the first 20% of fitness evaluations budget, then it is 0.8F until
40% of the budget, and then it becomes 1.2F . The xpbest is
randomly selected from the set of the A best solutions in the
population, where A is a parameter that is also adapted during
evolution. The F value is randomly drawn from the standard
Cauchy distribution and CR is drawn from the standard normal
distribution. The location parameters of both distributions are
also adapted during the search.

IV. EXPERIMENTAL STUDY

The experimental study is composed of three parts. The
first part compares results of two binary optimization methods
with a result of a common-sense solution. In the second part
two modern continuous optimization metaheuristics are used



with the direct continuous problem formulation, based on
the standard binarization method. The results are compared
with the results of PBIL. In the third part several continuous
optimization methods are applied to the indirect continuous
problem formulation, i.e., to optimize the target temperature
inside the warehouse (Ts) rather than the on-off schedule.
The optimized target temperature sequence is converted to a
bit string representing a compressor schedule by the simple
deterministic controller described in Section II-B. The results
are compared with the results of the best method optimizing
the compressor schedule directly.

The fitness function to be minimized is the weighted sum
of energy cost c of the compressor schedule and quadratic
penalty p for temperature constraints violation:

q(x) = c(x) + αp(x), (3)

p(x) =
∑

j:u<tj

(tj − u)2 +
∑

j:l>tj

(l − tj)2, (4)

where α = 109, j is a time step index, t is the temperature
inside the warehouse, l is the lower temperature bound equal to
1◦C and u is the upper temperature bound equal to 3◦C. In this
study, a two-state energy tariff is adopted because it is used in
reality and a common-sense heuristics can be proposed for it.
Fig. 3 a) presents the energy tariff and the external temperature
used for the experiments. A Python implementation of the
fitness function and refrigerated warehouse model is available
at [11].

The experimental methodology used in the paper was in-
spired by the rules of the CEC benchmark for single objective
bound constrained problems [22]. All methods were working
on the same fixed budget which was set to 10000 objective
function evaluations. The budget cannot be easily increased
because of the expensive objective function calculation.

All methods start their operation from a randomly initialized
starting point (IPOP) or population (EA, GA, DE, jSO). The
results of 25 independent runs of each optimization method
were collected and presented in the form of boxplots.

A. Common-sense schedule

Having a common-sense schedule provides a valuable refer-
ence baseline for the results of the optimization. According to
common sense and some expert knowledge about refrigerator
systems, the inside temperature should be generally held near
the upper limit to minimize energy loss through the walls
and doors and to achieve better cooling effectiveness. On
the other hand, using energy during the high price period
should be strongly avoided as the high price is greater than
the low price by a factor of more than two. Therefore, some
time before the high price period the compressor should be
turned on to cool the air to the lower bound. As a result,
the compressor could be turned off during the high price
period until the temperature approaches the upper bound.
The compressor schedule that arises from the aforementioned
schema is presented in Fig. 3 b), along with the resulting
temperature inside the warehouse.

B. Binary search space methods
Besides the classic GA, several GA configurations with

different components were experimentally verified. The exper-
iments included examining selection methods: roulette wheel,
tournament of size 2, rank selection, exponential rank se-
lection; succession methods: generative, elite, adopted from
Differential Evolution; crossover methods: one point, two
points, uniform; expected number of mutated bits: 1, 2, 3,
4; crossover probability: 0, 0.5, 0,8, 0.95, 1; population size:
10, 20, 40, 80, 160, 200, 320, 640, 1280. Because of the page
limit, only the results of classical GA and the best alternative
configuration, using exponential rank selection with a base of
the exponent equal to 0.75 (ERS), uniform crossover (UNI),
and elitist succession of size 1 (ELI), are presented. For both
versions, the population size was set to 200, the probability of
mutation to 0.01, and the probability of crossover to 0.95.

Apart from the classical PBIL, results of several alternative
versions were also examined, which included the following
settings: the number of the best solutions used: 0, 1, 2; number
of the worst solutions: 0, 1, 2, 3; sample size: 5, 10, 20,
50, 100; learning rate: 0.05, 0.1, 0.2; mutation probability:
0, 0.05, 0.1, 0.15, mutation range: ±0.01, ±0.02, ±0.03. The
best identified configuration uses the two best and the two
worst solutions, sample size 20, learning rate 0.05, mutation
probability 0.1, and mutation range ±0.02.

The results of the aforementioned algorithms along with the
results of the common-sense solution (marked by dotted line)
are shown in Fig 2.
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Fig. 2. Comparison of methods that operate on a bit-string. The result of the
common-sense solution is marked by a dotted line.

It can be seen that the classical GA gives worse results than
the common-sense solution. On the other hand, the GA version
with uniform crossover, exponential rank selection and elitist
succession (GA-UNI-ERS-ELI) gives the best result, which
is substantially better than the common-sense solution. The
results of PBIL are comparable to the results of GA-UNI-
ERS-ELI.

The best solution optimized by GA-UNI-ERS-ELI, along
with the inside warehouse temperature that stems from its



application, is shown in Fig. 3 c). To facilitate the comparison,
the commons-sense solution and the result of its application is
presented in Fig. 3 b). The energy price and the temperature
outside the warehouse are shown in Fig. 3 a). As it can be
observed, using expensive energy should not be avoided so
strongly as the common-sense schedule assumes. It is more
efficient to cool down when the difference between the inside
and outside temperatures is small. It is also more efficient to
turn on the compressor periodically than to turn it on for a long
period of time, which results in the air temperature reaching
the lower bound.

C. Continuous methods with standard binarization

This section presents the results of two modern continuous
optimization metaheuristics (IPOP and jSO) coupled with
standard binarization method. These metaheuristics usually do
not require tuning because they adapt most of their parameters
and provide reasonable values for the rest of the parameters.
The results are compared with the results of PBIL, because it
uses the same binarization method.

The results PBIL and IPOP are presented in Fig 4.
It can be seen that the results of IPOP are much worse

than those of PBIL. The results of jSO were not shown on
the plot because the algorithm was not able to find a feasible
solution what is the cause of achieving a poor average fitness
value 3.29E+08, which is however still better than 1E+09 –
the average result of Monte Carlo search.

The reason for the poor performance of IPOP and failure of
jSO is that stochastic conversion of a probability vector into
a bit string makes the objective function very noisy, i.e., the
same continuous solution results in very different bit strings on
subsequent evaluations, often leading to substantially different
fitness values.

D. Continuous methods optimizing the target temperature

This section presents the results of the optimization of target
warehouse temperatures (Ts) for each time interval by the
following continuous metaheuristics: IPOP, DE, jSO.

1) One hour intervals: As mentioned in Section I-A a
similar problem was solved in the Night Wind (NW) project
[6]–[8] using a standard evolutionary algorithm to optimize
Ts for each hour. For the comparison purpose in this exper-
iment we will also use one hour intervals. This gives a 24-
dimensional continuous search space as we are interested in
optimization for a day ahead. The results of IPOP, DE and
jSO were compared to the results of the evolutionary algorithm
configured as in the NW project (EA-NW) and to the result of
the best discrete method. In EA-NW the population size was
set to 2n + 1, where n = 24 is the problem dimensionality.
The crossover probability was set to 0.6 and the mutation
probability was set to 0.05. Besides that, the version with
population size µ = 20 was also examined (EA-NW-20)
as that population size yields the best results for the DE
algorithm.

For this problem, several combinations of DE parameters
were experimentally verified, including CR: 0.1, 0.5, 0.9; F:

0.8, 0.9; µ: 10, 20, 40. As for GA, only the results of the best
configuration, which is F=0.9, CR=0.5, µ=20, is shown here.
The parameters of IPOP and jSO were left default. The results
of the experiments are shown in Fig 5.

As it turns out, none of the continuous methods is better
than the best method that operates on bits (GA-UNI-ERS-
ELI). Rather surprisingly, from the set of evaluated continuous
methods, EA-NW is the worst. It gave much better results after
reducing the number of individuals to 20 (EA-NW-20), but it
still remains the worst among considered methods.

Both the modern continuous methods, i.e., jSO and IPOP,
gave similar results, with a slight advantage of IPOP. What
is interesting here, the simple and much older DE is the best
continuous method in the experiment. The comparison of the
results of DE and jSO leads to the conclusion that sometimes it
may be better to configure the DE based on human experience
and limited tuning experiments rather than leave configuration
to an automatic process like in the case of jSO.

2) Fifteen minutes intervals: The comparison in which the
GA operates in a 15 minute time resolution but continuous
methods operate in an hour resolution can be considered
unfair, because continuous methods have 4 times fewer param-
eters to optimize. On the other hand, the controller used for
continuous methods to convert optimized target temperature
sequences to on-off signals could introduce some non-optimal
behavior. To dispel these concerns, the modern continuous
methods were run again with a 4 times longer genome, i.e.,
they optimized Ts for every 15 minutes. The results of this
experiment are presented in Fig. 6.

It turns out that jSO scaled poorly but IPOP gave even
slightly better results than previously for the shorter genome.
Presumably, the 15 minute time resolution permitted it to find
a better control strategy than that obtained by conversion from
hourly target temperature values by the simple deterministic
controller.

V. CONCLUSIONS

In this paper, the problem of cooling schedule optimization
was considered. The problem was solved using both binary and
continuous metaheuristic optimization algorithms. The former
directly optimized the compressor on-off schedule using a
natural discrete problem formulation, whereas the latter were
used with continuous problem formulations in 3 scenarios: 1)
to optimize probabilities of turning the compressor on; 2) to
optimize Ts for each hour; 3) to optimize Ts for each quarter.

The results of the experiments make it possible to draw
several interesting and useful conclusions. The most important
is that the optimization result is much better than the common-
sense solution even for a simple two-state electricity price
tariff. Even greater advantage of the optimized solutions can be
expected with more complex tariffs or dynamic market prices.
This confirms the high practical utility of compressor sched-
ule optimization for refrigerated warehouses and encourages
further work in that direction.

The best results are achieved by a genetic algorithm with
components and configuration selected using human expe-
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Fig. 3. The air temperature outside the warehouse and the energy price (a); the common-sense compressor control schedule and temperature inside the
warehouse (b); the GA-UNI-ERS-ELI optimized compressor control schedule and the temperature inside the warehouse (c).
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rience and confirmed by limited experiments. The obtained
results are much better than those of the classical GA. Even
though the GA is a very old concept, it is interesting to see
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Fig. 6. Comparison of selected metaheuristics optimizing the target temper-
ature with a 15-minute resolution. The result of the common-sense solution
is marked by a dotted line.

that some of its variants can still be successfully applied to
challenging real-world problems.

The other algorithm that deserves special interest and
appreciation is PBIL. Even though its implementation and
application are much simpler than those of GA, it reached
a similar level of solution quality.

Using the standard binarization method with modern meta-
heuristics turns out a wrong idea because it makes the objective
function very noisy and, consequently, the problem hard to
solve.

Using off-the-shelf contemporary continuous optimization
methods to optimize Ts gave slightly worse results than the
GA. It is worthwhile to notice, though, that IPOP required
no configuration and its implementation is easily available.
Therefore, it may be still a good choice for practitioners that
do not want to experiment with different GA setups.
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