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Abstract
Extending state-of-the-art evolutionary algorithms is a widespread research direction.
This trend has resulted in algorithms that give good results but are complex and chal-
lenging to analyze. One of these algorithms is EA4Eig — the winner of the CEC 2022
competition on single objective bound constrained search. The algorithm internally
uses four optimization algorithms with modified components. This paper presents
an analysis of EA4Eig and proposes a simplified version thereof exhibiting better opti-
mization performance. The analysis found that the original source code contains errors
that impact the algorithm’s rank. The code was corrected, and the CEC 2022 compe-
tition ranking was recalculated. The impact of individual EA4Eig components on its
performance was empirically analyzed. As a result, the algorithm was simplified by
removing two of them. The best remaining component was analyzed further, which
made it possible to remove some unnecessary and harmful code. Several versions of
the algorithm were created and tested, varying in the degree of simplification. The
simplest of them is implemented in 244 lines of C++ code, whereas the original imple-
mentation used 716 lines of Matlab code. Further analyses focused on the parameters
of the algorithm. The constants hidden in the source code were named and treated
as additional configurable parameters that underwent tuning. The ablation analyses
showed that two of these hidden parameters had the most significant impact on the
improvement achieved by the tuned version. The results of the original and simplified
versions were compared on CEC 2022 and BBOB benchmarks. The results confirm that
the simplified version is better than the original one on both these benchmarks.
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1 Introduction

Optimization competitions give an impulse for the development of optimization al-
gorithms. Competition results also facilitate identifying current state-of-the-art algo-
rithms and future research directions. Usually, competitions are connected with con-
ferences that strongly restrict the length of submitted papers. There is no place for
a detailed algorithm analysis after discussing related work and presenting and dis-
cussing results. Frequently, implementation details are also omitted (Biedrzycki, 2021).
At the time of this writing, the most recent resolved competition is the CEC 2022 com-
petition on single objective bound constrained numerical optimization (SOBC) (Kumar
et al., 2022). The winner of the competition is named EA4Eig (Bujok and Kolenovsky,
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2022). It is a highly complex algorithm as it internally uses four optimization algo-
rithms, namely: CoBiDE (Wang et al., 2014), IDEbd (Bujok and Tvrdı́k, 2017), CMA-ES
(Hansen and Ostermeier, 2001), and jSO (Brest et al., 2017). The high complexity is also
visible when looking at the source code. There are 716 nontrivial lines of code in Matlab
(as reported by ”cloc” tool, without a helper file that iterates over dimensions). From
a scientific point of view, it is interesting to see which components and concepts were
the most important to its success. This question is still not answered.

It is generally known that some modern algorithms are overcomplicated and can
be simplified, e.g., Piotrowski and Napiorkowski (2018) showed that L-SHADE-EPSin
could be simplified without performance loss. It might also be the case for EA4Eig.
Having a simpler algorithm makes it run faster, but also, more importantly, it facilitates
understanding its behavior and identifying successful concepts that should be further
developed.

The main contributions of this paper are:

• The examination of the impact of EA4Eig components and parameters on its re-
sults. Thanks to this, its code was significantly simplified without quality loss on
the CEC 2022 benchmark. The code size was reduced from 716 nontrivial lines
of code in Matlab to 244 lines in C++. The code that remains is much easier to
understand.

• The examination of the original and simplified versions of the algorithm on 24
functions from the BBOB benchmark in 10 and 40 dimensions. It was found that
the simplified versions are better than the original ones when considering both
dimensionalities together, but in 40 dimensions alone more gentle simplification is
superior.

• Identification and correction of errors in the EA4Eig source code. Some problems
that were found just slowed down the computations without disturbing the re-
sults, but others affected the rank achieved by the algorithm. The corrected CEC
2022 ranking is provided.

• Parametrization of the algorithm and parameter tuning. Constants that were hid-
den in the source code were named and treated as additional configurable pa-
rameters for tuning. The automatic parameter tuning was performed. The tuned
parameter values improved the algorithm’s performance.

• Analysis of the impact of the tuned parameters. The two most important parame-
ters were previously hidden in the source code.

• A C++ implementation of EA4Eig with two components (jSO, IDEbd) and the final,
simplified implementation provided in the supplementary materials. This faster
implementation makes it possible to performing more experiments in a given time.
The code could be used for additional analyses or as a base for further develop-
ment.

• Providing a detailed description of DE, IDEbd, and EA4Eig in one place. This
makes it easier to see similarities and differences between these algorithms.

The article is composed in the following way. Section 2 provides a literature survey
that focuses on the description of EA4Eig, which is needed to understand the role of
its parameters and errors found. Section 3 describes errors found in the EA4Eig source
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code and examines the impact of its main components. Section 4 discusses parame-
ter tuning and ablation analyses of the simplified algorithm. Section 5 compares the
results of the simplified algorithm versions to the result of its base version on BBOB
benchmark. Section 6 summarizes the observations and concludes the paper.

2 Related work

The analyses of EA4Eig will be performed using the CEC 2022 benchmark, including
its ranking scheme (Kumar et al., 2022). The algorithm and its important components
will be described here to help understand the meaning of its parameters and the errors
found. As descriptions are based on the analysis of the official implementations, they
will be more detailed in some places than in the original papers.

2.1 CEC 2022 benchmark

The CEC 2022 (Kumar et al., 2022) defined 12 functions that should be optimized in 10
and 20 dimensions. For each function and dimensionality, n = 30 independent runs
(trials) are performed. For each run, the error level achieved by the best solution is
recorded. Values lower than 10−8 are treated as 10−8. Achieving them means that the
global optimum has been found. For each function-dimensionality pair, all indepen-
dent runs of all competitors are ordered by the achieved error level or by used function
evaluations when optimum has been found.

The CEC 2022 ranking method is based on the Wilcoxon rank-sum test (Wilcoxon,
1945). The worst run achieves a rank of 1. The rank of the best run depends on the
number of competitors and independent runs. The score of the algorithm is a sum of
the ranks of its trials minus the correction term n(n+1)/2. An elaborate explanation of
this ranking method is available in (Price et al., 2023).

2.2 Classical DE algorithm

Three of the algorithms used in EA4Eig are based on differential evolution (DE). There-
fore, classical DE will be described before going into the details of EA4Eig. The pseu-
docode of DE is presented in Figure 1. DE maintains a population of µ individuals. The
individuals are randomly initialized in the feasible region of the search space. The main
loop runs until the objective function evaluation budget (fesmax) is exhausted or the
optimum is found. In the simplest versions of DE, three individuals are used to create
a mutant. First, the individual xb, called the base individual, is mutated using the dif-
ference between two random individuals (xr2 − xr3), which is multiplied by the scale
factor F . The version that uses a random individual as a base is called DE/rand/1,
and the version that uses the best individual as a base is called DE/best/1. After muta-
tion, a trial vector is generated by the binomial crossover: for each dimension, a value
is copied from the mutant if a random number sampled from the standard uniform
distribution is less than the crossover ratio (CR) value. Otherwise, it is copied from
the i-th individual, also called the target individual. During the selection, the objective
function value of the target and trial individual is compared, and better enters the next
generation.

2.3 EA4Eig algorithm

EA4Eig is the winner of the CEC 2022 competition. It internally uses four optimiza-
tion algorithms, namely: CoBiDE (Wang et al., 2014), IDEbd (Bujok and Tvrdı́k, 2017),
CMA-ES (Hansen and Ostermeier, 2001), and jSO (Brest et al., 2017). Additionally, all
DE-based algorithms use the concept of crossover borrowed from CoBiDE, i.e., with a
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1: t = 0
2: P0 = {x1, x2, . . . , xµ} {initial population of µ random individuals}
3: while fes < fesmax and optimum not found do
4: for all i ∈ {1, 2, ..., µ} do
5: b = selectBaseIndividualIndex{select index of base individual}
6: r2, r3 = selectRandomIndexes{b ̸= r2 ̸= r3}
7: vi = xb + F · (xr2 − xr3){F is a scale factor}
8: ui = binomialCrossover(vi, xi)
9: if q(ui)≤q(xi) then {q is the objective function}

10: Pt+1,i = ui

11: else
12: Pt+1,i = xi

13: end if
14: end for
15: t = t+ 1
16: end while

Figure 1: The pseudocode of DE.

probability of 0.4 Eigen crossover (Guo and Yang, 2015) is used; otherwise, binomial
crossover is employed. The pseudocode of EA4Eig is presented in Figure 2. The al-
gorithm starts from the random initialization of population P0 in a feasible region of
the search space. The population size µ is initially set to 100. It is reduced linearly
during search like in L-SHADE (Tanabe and Fukunaga, 2014). The success history sh
counts the successes of each component algorithm. The initial success counts are set to
2. The success counter for DE-based algorithms increases when the algorithm finds a
solution that passes the selection operator. In the case of CMA-ES, a success counter is
increased when the algorithm finds a solution that is better than the worst in the cur-
rent population. The success counters are the input for the roulette wheel selection of
the component algorithm to be used in the current iteration. When the probability of
selection of any component algorithm drops below pmin, all success counters are reset
to the default value. For each place in the population, a mutant is generated using the
selected algorithm. In the case of CMA-ES, the mutant is compared with currently the
worst individual in the population; when it is better, it replaces it. In the case of DE-
based algorithms, Eigen crossover is used with probability peig . Otherwise, binomial
crossover is used. After the crossover, classical DE selection is executed. At the end of
the iteration, the population size is updated.

As CMA-ES does not store its knowledge in the population, its use in EA4Eig
requires further clarification. The CMA-ES iteration starts by determining the average
solution based on the better half of the current population. Then, it generates trials in its
typical way. The trails and previously calculated mean are used to update its internal
parameters. Such coupling of CMA-ES and DE-based algorithms can be problematic
as CMA-ES adapts to the current shape of the objective function. When it is not used,
other algorithms in the ensemble can move the population to a part of the search space
with different curvature.

When Eigen crossover is used, it utilizes CR values generated once at the begin-
ning of the search for each place in the population (µ values). For each index, CR is
drawn from the Cauchy distribution with scale parameter σC = 0.1 and location pa-
rameter set to 0.1 (with probability 0.5) or to 0.95 otherwise. The probability of using
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1: t = 0
2: P0 = {x1, x2, . . . , xµ}; {initial population of µ random individuals}
3: sh = {2, 2, 2, 2}; {success history of 4 component algorithms}
4: pmin = 1/20; {minimal probability of using component algorithm}
5: peig = 0.4; {Eigen crossover probability}
6: while fes < fesmax and optimum not found do
7: h = selectAlgorithmUsingRoulete(sh);
8: if any probability(sh) < pmin then
9: sh = {2, 2, 2, 2}

10: end if
11: for all i ∈ {1, 2, ..., µ} do
12: vi = generateMutantUsingAlg(h);
13: if h is CMA-ES then
14: if q(vi)<q(xworst) then {q is the objective function}
15: sh(h) = sh(h) + 1
16: Pt+1,worst = vi {replace the worst individual}
17: end if
18: else
19: if U(0, 1) < peig then
20: ui = eigenCrossover(vi, xi)
21: else
22: ui = binomialCrossover(vi, xi)
23: end if
24: if q(ui)<q(xi) then
25: sh(h) = sh(h) + 1
26: Pt+1,i = ui

27: end if
28: end if
29: end for
30: Update µ
31: t = t+ 1
32: end while

Figure 2: The pseudocode of EA4Eig.
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0.1 as the location will be named within the paper ”small Cauchy thres.”. In the algo-
rithm, only the best half of the population is used to calculate the Eigenvectors. The
number of used individuals is parametrized here for tuning purposes. It is the product
of ”µ ratio” and population size.

2.4 IDEbd algorithm

IDEbd is used by EA4Eig. It is based on the IDE (Individual-dependent DE) (Tang
et al., 2015) algorithm. The IDE search process is divided into two stages: more explo-
rative and more exploitative. The base vector index depends on the current stage of
the algorithm. The IDEbd pseudocode as it is implemented in EA4Eig is provided in
Figure 3. The algorithm starts from the initialization of many constants. Most of them
were not named nor discussed in (Bujok and Kolenovsky, 2022). Naming parameters
and program parametrization (the ability to change parameter values without recom-
pilation) are required for parameter tuning, which will be performed in this paper. It is
important to notice that the algorithm uses iteration counter t, and maximal iteration
number tmax is computed using the initial population size µ. The algorithm switches
from stage one to stage two when the number of iterations achieves tth (half of the it-
erations by default). The main loop runs until the objective function evaluation budget
(fesmax) is exhausted or the optimum is found. At the beginning, the population is
sorted in ascending order according to objective function q. Then, the future popula-
tion is initialized by the current population. The result of the crossover will later replace
some individuals. The individuals in the population are divided into superior and in-
ferior according to objective function. The number of individuals considered superior
is regulated by ps, which depends on the ratio t/tmax. The ps is also used to calculate
perturbation probability pd, which decides how many features of xr3 will be replaced
by a random number taken from the feasible domain (lines 18 and 19 in Figure 3). The
success counter is initialized by 0. It is incremented in line 33 when the result of the
crossover is not worse than the i-th individual. The success rate threshold srt is set to
0 by default. It is set to 0.1 in the second stage of the search in the source code, but it
does not affect the logic of the program as it is used to decide when to switch to the sec-
ond stage. The inner ”for” loop iterates over all individuals. For each individual, four
random indexes from the population are selected. The first of them selects the base in-
dividual, and the rest select three random individuals. These individuals are required
for the mutation performed in lines 26 and 28. At the first stage of the search, the base
index is set to the current index. The scale factor F is generated around b/µ using a
normal distribution with σN set to 0.1 by default. Analogously, CR is generated, but
i is used instead of b. If b and r1 are taken from the inferior part of the population, r1
is randomly drawn from the superior part. Generally, mutants are created according
to the equation: vi = xb + F · (xr1 − xb) + F · (xr2 − xr3), but when the algorithm is
in the second stage of the search and randomly drawn number is less than 0.5 the xi

is used as a base individual. This behavior is visible in the source code, but the paper
(Bujok and Tvrdı́k, 2017) states that the best individual is used. As for the first stage
of the search b = i, both mutation schemes (lines 26 and 28) do the same work. IDEbd
normally uses binomial crossover, but when used as a component of EA4Eig, it uses
the method described in Section 2.3. When the result of the crossover is not worse than
the current individual, the success counter is increased, and the new individual takes
i-th place in the future population (Pt+1). After processing all individuals in the cur-
rent iteration, the failures counter is increased when there are too few successes and
the algorithm is in the first stage. When there are at least failsth iterations without
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1: t = 0; fails = 0; tmax = fesmax/µ; failsth = tmax/10
2: psshape = 5; psmin = 0.1; pdmult = 0.1; tth div = 2;σN = 0.1
3: tth = tmax/tth div{first stage of the search threshold}
4: while fes < fesmax and optimum not found do
5: Pt = sort(Pt, q){ascending according to objective fun. q}
6: Pt+1 = Pt {initialize future population}
7: ps = psmin + (1− psmin) · 10psshape·(t/tmax−1){prop. of the superior}
8: pd = pdmult · ps {xr3 perturbation prob.}
9: sc = 0; srt = 0 {success counter; success rate threshold}

10: for all i ∈ {1, 2, ..., µ} do
11: b, r1, r2, r3 = selectRandomIndexes(1, µ){b ̸= r1 ̸= r2 ̸= r3}
12: if t ≤ tth then
13: b = i {base is current at first stage}
14: end if
15: F = N(b/µ, σN ) {use normal distribution}
16: CR = N(i/µ, σN )
17: for all j ∈ {1, 2, ..., D} do {D is problem dimensionality}
18: if U(0, 1) < pd then {use uniform distribution}
19: xr3,j = lj +U(0, 1) · (uj − lj) {l, u are lower and upper bounds}
20: end if
21: end for
22: if b > ps · µ and r1 > ps · µ then
23: r1 = selectRandomIndexes(1, ps · µ){r1 from the superior}
24: end if
25: if t > tth and U(0, 1) < 0.5 then
26: vi = xi + F · (xr1 − xb) + F · (xr2 − xr3)
27: else
28: vi = xb + F · (xr1 − xb) + F · (xr2 − xr3)
29: end if
30: ui = crossover(xi, vi)
31: if q(ui)≤q(xi) then
32: Pt+1,i = ui

33: sc = sc+ 1
34: end if
35: end for
36: if t < tth then
37: if sc ≤ srt · µ then
38: fails = fails+ 1
39: else
40: fails = 0
41: end if
42: if fails ≥ failsth then
43: tth = t {switch to stage 2}
44: end if
45: end if
46: Update µ
47: t = t+ 1
48: end while

Figure 3: The pseudocode of IDEbd.
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Table 1: The CEC 2022 ranking after correction of EA4Eig bound constraint handling.
Rank Algorithm CEC points

1 NL-SHADE-LBC (Stanovov et al., 2022) 181311
2 EA4Eig (Bujok and Kolenovsky, 2022) 164370
3 NL-SHADE-RSP-MID (Biedrzycki et al., 2022) 157568
4 MTT-SHADE (Sun et al., 2022b) 148450
5 jSObinexpEig(Kolenovsky and Bujok, 2022) 146589
6 S-LSHADE-DP (Van Cuong et al., 2022) 143821
7 IUMOEAII (Sallam et al., 2022) 142385
8 IMPML-SHADE (Tseng, 2022) 127091
9 NLSOMACLP (Ding et al., 2022) 114572

10 ZOCMAES (Ning et al., 2022) 105830
11 OMCSOMA (Gu et al., 2022) 102039
12 Co-PPSO (Sun et al., 2022a) 95008
13 SPHH-Ensemble (Pillay and Gerber, 2022) 55769

success, the algorithm is switched to stage two of the search. It is worth noticing that
the original population size reduction mechanism of IDEbd (Bujok and Tvrdı́k, 2017) is
not used in the implementation of EA4Eig.

3 Analysis and simplification of EA4Eig

Within this section, EA4Eig will be analyzed, corrected, and simplified. The experimen-
tal procedure required for the CEC 2022 competition will be used here (Kumar et al.,
2022). All 12 CEC 2022 functions in 10 and 20 dimensions will be used. To find the
winning algorithm, the CEC 2022 ranking is calculated based on 30 independent runs.
To reduce the random influence on the results, each algorithm uses the same seed,
which results in an identical starting population for most considered variants of the al-
gorithms (the population starts to differ when some algorithm variant uses a changed
population size). The implementation of EA4Eig and raw results of the other competi-
tors are downloaded from the official competition repository (Suganthan, 2024). The
CEC ranking points are shown for each experiment to make it possible to discern small
and significant differences between algorithms. The score achieved by an algorithm can
be interpreted as the number of its wins when all of its trials are compared to all trials
from all other algorithms. The ranking points depend on the number of competitors,
so they cannot be compared between different tables.

3.1 Correcting EA4Eig bound constraint handling

During the analysis of the code of EA4Eig, it was found that the algorithm sometimes
asks for the value of the objective function outside the bounds of the search space.
The benchmark code does not notice that and answers. To be precise, the error was
in the decision path in which both jSO and Eigen crossover were used. EA4Eig was
corrected. Values after Eigen crossover are repaired in the same way as the ones after
binomial crossover. Its source code and codes of other versions considered further in
this paper are available on (Biedrzycki, 2024b). The CEC 2022 competition ranking was
recalculated using the corrected algorithm. The results are shown in Table 1. It can
be observed that after eliminating the error, EA4Eig moved to second place. Still, it is
good enough to deserve further analysis.
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Table 2: Analysis of the influence of EA4Eig components. The CEC points are shown
for a given combination of enabled components, where ”only Eig.” means that only
Eigen crossover is used, and ”no Eig.” means that it was disabled. When not specified,
the algorithm uses unmodified crossover. The default configuration is typeset in bold.

rank IDEbd jSO CMA-ES CoBiDE cross. CEC points
1 IDEbd jSO 221912
2 IDEbd jSO CMA-ES 213481
3 jSO CMA-ES 198029
4 IDEbd jSO CoBiDE 194288
5 IDEbd jSO CMA-ES CoBiDE only Eig. 177274
6 IDEbd CMA-ES 176901
7 IDEbd 176867
8 jSO CMA-ES CoBiDE 174197
9 IDEbd CoBiDE 172961

10 jSO 171041
11 CMA-ES CoBiDE 170337
12 CMA-ES 166675
13 IDEbd CMA-ES CoBiDE 165514
14 jSO CoBiDE 159748
15 IDEbd jSO CMA-ES CoBiDE 159090
16 IDEbd jSO CMA-ES CoBiDE no Eig. 142080
17 CoBiDE 97200

3.2 The influence of the components

As was discussed earlier, EA4Eig internally uses four optimization algorithms. The
influence of all these components and the influence of replacing the default crossover
by the binomial one and by Eigen crossover (peig = 1) are examined. The results are
collected in Table 2. Each row shows the rank and the number of CEC points collected
by a specified combination of enabled components. Where not specified, the default
crossover is used. The name typeset in bold is the default configuration. According
to the CEC ranking, the version that uses only IDEbd and jSO is the best. The IDEbd
alone is the seventh, and only jSO is the tenth. The default configuration took 15th
place. Changing it by turning off the Eigenvector type of crossover degrades perfor-
mance. Using only Eigenvector crossover improves the ranking. The worst component
is CoBiDE. It is the last in the ranking when used alone. Turning it off is enough to
advance to the second position in the table. The winner also does not use it. These
results show that EA4Eig could be simplified by turning off its weakest components,
and this even improves its performance. It is worth noting that each component algo-
rithm has been partially modified to fit into a common framework. Therefore, the weak
result of CoBiDE turned into a component does not mean that it is a weak optimization
algorithm when used standalone in a form as its authors intended.

Due to computing efficiency reasons, the code of EA4Eig with two components,
namely IDEbd and jSO, was rewritten from Matlab to C++. To avoid misinterpreta-
tions and the introduction of new errors, it was ensured that both versions produced
identical results. To make this possible, during validation, the default pseudorandom
number generators in both languages were replaced by custom ones that used the same
pseudorandom numbers previously stored in a file.
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3.3 Correcting and simplifying IDEbd

As IDEbd is used in the top configurations, it was analyzed further. It was noticed
that to adapt its behavior, the algorithm uses knowledge of how many generations
were left till the end of the budget. The maximal number of generations is calculated
at the initialization phase of the search using the initial population size. During the
search, the population size decreases, which results in observing a larger number of
generations than previously computed maximum. Therefore, the current number of
iterations t will achieve tmax before exploiting the budget expressed in available calls
to the objective function. What is more, t can exceed tmax. This problem influences
the algorithm’s behavior as t/tmax is used to calculate ps and pd. When IDEbd was
used with an ensemble of other algorithms, the problem was not noticeable, as other
algorithms used the budget of objective function evaluations but did not increase the
IDEbd iteration counter. The error is corrected in the following way. When the current
iteration number exceeds the maximum, the maximum is set to the current number.
This version will be called ”corr. tmax”.

In the version named ”corr. r1 selection”, two additional changes were made.
The most important change is the correction of an error. When r1 is randomly drawn
from the superior individuals, the code suggests the intention of its creators to exclude
indexes used before. However, r1 is drawn from 1 to the size of the set of allowable
indexes. In the corrected version, previously used indexes are excluded. The second
difference is the removal of population sorting at the end of the iteration and after
population size reduction. It logically does not change anything, but additional sorting
slows the computation.

The EA4Eig mutation is complicated as it uses two thresholds, a random number,
and two equations. Therefore, another proposed modification simplifies it. In the ver-
sion called ”simplified mut.”, lines 25, 26, 27, and 29 from Figure 3 were removed, and
only line 28 was used for the mutation.

Due to the aforementioned discrepancy between the description and the source
code (where xi is used instead of xbest in line 26 from Figure 3), the version that agrees
with the paper was also examined. This version is named ”best as base”.

In the version called ”without µ adapt.” the population size adaptation was dis-
abled, and the version ”IDEbd µ adapt.” uses the original IDEbd’s population size
adaptation instead of EA4Eig’s.

The results of the corrections and modifications of IDEbd, together with the re-
sults of IDE and the best configuration from Table 2 (typeset in bold), are presented in
Table 3. It can be observed that after correction of the number of iterations (”IDEbd,
corr. tmax”), IDEbd is better than the IDEbd and jSO pair. The correction of r1 selection
improved results further. Making the code closer to the intended version by correct-
ing errors helped the algorithm. Additional simplification of the mutation (”simplified
mut.”) gave the best result in the table. On the other hand, disabling population size
adaptation (”without µ adapt.”) or using the adaptation from IDEbd strongly dete-
riorated results. The population size reduction from L-SHADE positively affects the
performance of the algorithm. Using the best solution as a base in half of the search
deteriorates results. This might be the reason why xi was used in EA4Eig instead of
the best individual. Further simplification of IDEbd to pure IDE also deteriorated per-
formance.

The best version from Table 3 underwent several further simplifications. One of
them (named F = 0.8) used constant F = 0.8 instead of randomly drawn F . The
version ”without µ adapt.” turns off population size adaptation. The subsequent sim-
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Table 3: The influence of corrections and basic modifications of IDEbd. The name type-
set in bold is the best configuration from Table 2.

Algorithm CEC points
IDEbd, corr. tmax, corr. r1 selection, simplified mut. 91238
IDEbd, corr. tmax, corr. r1 selection 89040
IDEbd, corr. tmax 86930
IDEbd+jSO 73561
IDEbd, corr. tmax, corr. r1 selection, best as base 71229
IDEbd, corr. tmax, corr. r1 selection, without µ adapt. 66874
IDEbd, corr. tmax, corr. r1 selection, IDEbd µ adapt. 65355
IDE 60575

Table 4: The results of modified IDEbd. The name typeset in bold is the best configura-
tion from Table 3.

Algorithm CEC points
no rand. feat. in xr3 123553
simplified mut. 117326
r1 from superior 116255
only 1 stage mut. 105263
no Eig. cross. 99749
only 2 stage mut. 99336
without µ adapt. 99278
random r1 82800
F = 0.8 65394
only Eig. cross. 63047

plification (”no rand. feat. in xr3”) turns off additional perturbation of xr3 (line 19 from
Figure 3). The version ”r1 from superior” always draws r1 from the superior part of the
population. Yet another version (”only 1 stage mut.”) always assumes b = i, not only in
the first stage of the search. On the contrary, in ”only 2 stage mut.” b is always randomly
selected (like in the second stage of the algorithm). In the last examined modification,
r1 is always randomly drawn, as in DE/rand. This modification is called ”random r1”.
The results of the experiments are provided in Table 4. It can be observed that the best
is the version without randomization in xr3 (”no rand. feat. in xr3”). Not using Eigen
crossover deteriorated results, but using only this mechanism was the last in the table.
Therefore, the concept of random switching between binomial and Eigen crossover is
good. The random selection of the scale factor is also much better than the typical con-
stant value. The IDEbd idea of xr1 selection is better than selection from the superior
and much better than random selection. Analogously, the xb selection scheme is better
than using xi as xb and better than using a random individual like in DE/rand/1. All
other simplifications deteriorated results.

4 Parameter tuning

The source code of EA4Eig revealed that all parameters are set to ”nice” values like
100, 0.5, and 0.1. This suggests that the algorithm was not tuned. It is interesting
to examine whether parameters were set correctly for the CEC 2022 benchmark and
which parameters are the most important. The search for the optimal set of parameters
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Table 5: Parameter types, search ranges, default and tuned values.
Parameter type range default tuned
µ i 20 – 400 100 76
peig r 0 – 1 0.4 0.18
σN r 0.05 – 0.3 0.1 0.26
µ ratio for Eig. r 0 – 1 0.5 0.29
failsth div i 5 – 20 10 20
psshape r 1 – 6 5 4.14
µmin i 4 – 50 10 19
tth div r 1 – 4 2 2.31
psmin r 0.05 – 0.2 0.1 0.08
small Cauchy thres. r 0 – 1 0.5 0.49
σC r 0.05 – 0.3 0.1 0.19

Table 6: The influence of the tuning on the best algorithms. The name of best version
from Table 4 is typeset in bold.

Algorithm CEC points
simplified mut., no rand. feat. in xr3, tuned 67449
IDEbd, tuned 57403
simplified mut., no rand. feat. in xr3 56288
jSO, tuned 52283
IDEbd 49559
jSO 41020

was performed using the Irace (López-Ibáñez et al., 2016) package. Irace’s budget was
set to 5000 experiments. The whole benchmark (12 functions in 10 and 20 dimensions)
is treated as an instance of Irace. The result seen by Irace comes from 5 independent
runs of the algorithm under tuning. As competing algorithms are required to calculate
CEC scores, NL-SHADE-RSP (Stanovov et al., 2021), SADE (Qin et al., 2009), RB IPOP
(Biedrzycki, 2017), and EA4Eig with IDEbd and jSO were used.

The parameter names of the best algorithm from Table 4, search ranges, default,
and tuned parameter values are provided in Table 5. The tuned values in most cases
differ significantly from the default ones, e.g., σN is nearly three times larger, and peig
is more than two times smaller.

In addition to tuning the best configuration found so far, IDEbd and jSO were also
tuned. These algorithms have more parameters than the simplified one. Therefore,
they might be more susceptible to tuning. The results are provided in Table 6. It can be
observed that all tuned versions are better than their default configurations. The tuned
version of the simplified algorithm is the best in the table.

To find out which tuned parameter contributed the most to the superiority of the
tuned algorithm, an ablation analysis (Fawcett and Hoos, 2016) is performed. The in-
put for the ablation is two configurations: the default and tuned. The ablation starts
from the default configuration; then, it generates a sequence of configurations where
one parameter is taken from the target and the rest from the source. The best param-
eter is found and fixed, and the process repeats for the rest of the parameters. To find
the winning parameter, each configuration is run 30 times, and its CEC points are cal-
culated using NL-SHADE-RSP, SADE, RB IPOP, and EA4Eig with IDEbd and jSO as
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Table 7: The results of the ablation analysis of parameters of the best method.
parameter CEC points ∆ points
default 72842
σN 74377 1535
peig 74986 609
small Cauchy thres. 75163 177
tth div 75279 116
failsth div 75279 0
psshape 75279 0
psmin 74944 -335
σC 75072 128
µmin 74799 -273
µ ratio for Eig. 74440 -359
µ 73821 -619

competitors.
The results of ablation analysis for the simplified algorithm are provided in Table

7. It can be observed that the tuning of σN gave the largest improvement. It seems that
larger variability in random numbers generated for F and CR positively affects the
performance of the algorithm. The influence of the rest of the parameters is marginal.
Some tuned values (like µ) deteriorated results. This is possible because the tuning
budget is limited due to high computational demand. From the algorithm simplifi-
cation point of view, parameters failsth div and psshape are most interesting as they
do not influence the number of gained points. When we look closer, the shape of the
curves (line 7 in Figure 3) for both psshape values are identical for more than half of
the iterations. Therefore, the results obtained should not be surprising. Considering
failsth div , when it is set to 0.1, it will change the algorithm’s behavior when 10 per-
cent of the consecutive iterations will not be able to find at least as good trial as the
parent. It is implausible. Moreover, this mechanism is active only in the first half of the
iterations. Therefore, the related code can be superfluous. To verify this hypothesis,
the code responsible for detecting consecutive failures was removed (lines 9, 33, 36-45
in Figure 3), and the experiments were repeated. The results are identical to those with
this component enabled.

5 Testing the simplified version

The results presented above compared different algorithm versions using the CEC 2022
ranking. It is worth examining whether a simplified algorithm is better than its more
complicated versions according to other quality measures. Recently, Biedrzycki (2024a)
proposed to compare algorithms using the weighted combination of three numbers.
The first is the percentage of trials that found the global optimum (from 30 indepen-
dent runs on all 12 functions and two considered dimensionalities). The second is the
percentage of thresholds found. There are 51 thresholds spanned equidistant in a log-
arithmic scale between 103 and 10−8. The third is the percentage of objective function
evaluations that were not used, as the search is stopped when the global optimum is
found. The results of the experiments are provided in Table 8. It can be observed that
all results are similar. The tuned simplified method is the best in the table. Its untuned
version finds the global optimum slightly more frequently than EA4Eig. It is the best
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Table 8: The comparison of the original method and its two simplifications. The suffix
’tuned’ means that the parameters of the algorithm were tuned. The data contains
the percentage of trials that found the global optimum, the percentage of thresholds
achieved by all trials, and the percentage of budget left.

Algorithm % of
optimum
found

% of
achieved
thresholds

% of
budget
left

simplified mut., no rand. feat. in xr3, tuned 38 49 26
EA4EigIDEbd, tuned 38 49 25
simplified mut., no rand. feat. in xr3 37 48 27
EA4Eig 37 48 24

Table 9: CEC 2022 points obtained by EA4Eig and the simplified method for dimen-
sionality: 2, 3, 5, 10, 20 and 40.

Algorithm 2 D 3 D 5 D 10 D 20 D 40 D All
simp., no rand. feat. in xr3 16716 15859 17749 16568 12762 10159 89813
EA4Eig 4884 5741 3851 5032 8838 11441 39787

in the table regarding speed. The results in the table confirm that the simplified version
is not worse than the full version.

5.1 Testing on alternative benchmark

The CEC 2022 benchmark was used before because EA4Eig won the CEC 2022 com-
petition. This section verifies the performance of simplified versions of EA4Eig on a
different set of benchmark functions. As the EA4Eig is written in Matlab and the sim-
plifications are in C++, the benchmark should support both programming languages.
Such conditions are met by COCO (Hansen et al., 2021). The COCO includes a black-
box optimization benchmarking (BBOB) test suite with 24 noiseless, single-objective
functions. These functions are used here in 2, 3, 5, 10, 20, and 40 dimensions to exam-
ine how the performance of the considered algorithms scales with dimensionality. This
set of dimensionalities was used in BBOB. The experimental setup used here is similar
to the one used in Section 3. The search is bound by ⟨−5, 5⟩D. The budget is set to
10000 · D. For each function, 30 independent runs on its first instance are performed,
and the error level achieved by the best solution is recorded. Values below 10−8 are
treated as 10−8. All statistical tests and related rankings are calculated by the software
provided by Garcı́a et al. (2010).

The comparison of the simplified and original version using CEC 2022 points is
provided in Table 9, and the percentage measure is provided in Table 10. It can
be observed that the simplified method is the best when considering the combined
scores in all considered dimensionalities. Both the performance measures agree that
the simplified method is much better in dimensionalities 2, 3, 5, and 10, but degraded
performance is visible in 40 D, especially when considering the percentage measure.
Therefore, it is worth going back in the simplification chain to check at what point the
quality dropped for 40 D problems. Table 11 compares the original method and its four
simplifications discussed in Section 3.3. Besides the percentage measure, the table con-
tains the results of well-established ranking methods and statistical tests recommended
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Table 10: The comparison of the simplified method and EA4Eig using the percentage
measure where each triplet contains the percentage of trials that found the global opti-
mum, the percentage of thresholds achieved by all trials, and the percentage of budget
left. The name of the simplified method (simp., no rand. feat. in xr3) was abbreviated
to ”simp.”.

Alg. 2 D 3 D 5 D 10 D 20 D 40 D All
simp. 93 96 68 87 93 61 78 87 53 51 70 36 20 45 15 15 38 13 57 71 41
EA4Eig 48 70 34 43 61 31 41 58 27 37 53 23 37 54 22 25 44 12 38 57 25

Table 11: The comparison of EA4Eig and its four simplifications using percentage of
trials when the global optimum was found and rankings: Friedman, Aligned Friedman,
and Quade on BBOB functions in 40 dimensions.

Algorithm Friedman Aligned F. Quade % opt.
IDEbd+jSO 2.42 41.92 2.31 31
IDEbd, corr. tmax, corr. r1 selection 2.77 57.60 2.75 26
EA4Eig 2.81 59.52 2.82 25
IDEbd,. . ., corr. r1 selection, simp. m. 3.23 68.19 3.14 22
IDEbd,. . ., simp. m., no rand. feat. in xr3 3.77 75.27 3.98 15
p-value 3.5E-2 6.1E-4 1.9E-2 –

by Derrac et al. (2011) for comparing evolutionary algorithms, i.e., Friedman, Aligned
Friedman, and Quade. All ranking methods agreed that two simplified versions are
better than the original. The best in 40 D is the combination of IDEbd and jSO, which
used only half of the original components. Even IDEbd with corrections discussed in
Section 3 ranks better than the original. It follows that removing additional random-
ness introduced to xr3 and used in switching mutation operator helps in 2, 3, 5, and
10 D, but it degrades performance in 40 D. All statistical tests agreed that at least one
pair of algorithms has significantly different performance. For further analysis, tak-
ing IDEbd+jSO as a control method, Holm-corrected p-values were calculated. The
results are provided in Table 12. Assuming a level of significance α = 0.05, the Quade
test could not reject the null hypothesis. The corrected p-value from the Friedman test
identified the strongest simplification as inferior to IDEbd+jSO. The results of aligned
Friedman additionally identified the second most substantial simplification as a worse
method. The rest of the comparisons were far from rejecting the null hypothesis. There-
fore, the simplified version named IDEbd+jSO is not worse than the original. The first
step of IDEbd simplifications (IDEbd, corr. tmax, corr. r1 selection) gave results similar
to the best one.

Table 12: Adjusted p-values (Holm) taking IDEbd+jSO as a control method on BBOB
functions in 40 dimensions.

Algorithm Friedman Aligned F. Quade
IDEbd,. . ., simp. m., no rand. feat. in xr3 0.01 0.004 0.10
IDEbd,. . ., corr. r1 selection, simp. m. 0.23 0.027 0.78
EA4Eig 0.77 0.169 0.98
IDEbd, corr. tmax, corr. r1 selection 0.77 0.169 0.98
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The results on the BBOB benchmark (considering all dimensionalities together)
confirmed that the strongest simplification is the best. However, this method’s advan-
tage decreases with the increase in dimensionality. After focusing on 40 dimensions,
the results of the four ranking methods consistently showed a decrease in the quality
of the most simplified method. Still, two proposed simplifications gave better results
than the original. The most complicated of these two uses only about half of the original
set of internal components. The second one uses about one-quarter of the components.

6 Conclusions

This paper analyzed the EA4Eig algorithm which won the CEC 2022 SOBC competi-
tion. It was shown which of its four main components are the most important and
which only deteriorated results and can be disabled. During the analysis, some errors
in the source code were found. Some of them improved the results of the method, and
some deteriorated it. It was also found that the algorithm can be simplified without
quality loss. Several simplified versions of the algorithm were examined, varying in
the degree of simplification. It was shown that the version that is more complicated
than the IDE algorithm and simpler than IDEbd (with crossover from CoBiDE and
population size reduction from L-SHADE) is the best. Due to computational efficiency
reasons, the code of EA4Eig with two components, namely IDEbd and jSO, was rewrit-
ten from Matlab to C++. The simplification is visible in the number of nontrivial lines
of code. The original algorithm has 716 lines in Matlab, and the final simplified version
only has 244 lines in C++. The code is available online (Biedrzycki, 2024b). The param-
eters of the simplified method, jSO, and IDEbd, were tuned. All tuned versions were
better than their default counterparts. The tuned version of the simplified algorithm
was the best. The ablation analysis of the tuned parameters showed that σN and peig ,
whose values were hidden in the original code, contributed the most to the success of
the tuned version. The superiority of the simplified version on the CEC 2022 bench-
mark was confirmed using quality measures based on the percentage of the optimal
solutions found and by the CEC 2022 ranking. The simplified version is also better
than the original one on BBOB when considering all dimensionalities together, but in
40 dimensions alone a more gentle simplification is superior.

Programming is inextricably linked with making errors that stay hidden in the
source code. It is very hard to eliminate them just by code review when the code is
large and complicated, like in the case of EA4Eig. Finding these errors was possible by
rewriting the program into another language and trying to obtain precisely the same
results as the original. Even during the rewrite process, it was impossible to eliminate
all code that did not affect the results. The last fragments of unnecessary code were
found by a critical analysis of the parameters impact on the algorithm’s results.

The implementations of contemporary metaheuristics tend to be overcomplicated
and can frequently be simplified without quality loss, gaining readability and computa-
tional speed. As the community is overflood by numerous versions of algorithms, their
analysis, simplification, and bug removal are more important than the development of
yet another algorithm.

Future work will determine how the simplified versions performs on other bench-
marks and real-world applications.
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