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Abstract

Bound constraints are the lower and upper limits defined for each coordinate
of the solution. There are many methods to deal with them, but there is no
clear guideline for which of them should be preferred. This paper is devoted
to handling bound constraints in the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) algorithm. It surveys 22 Bound Constraint Handling Meth-
ods (BCHMs). The experiments cover both unimodal and multimodal functions
taken from the CEC 2017 and the BBOB benchmarks. The performance of
CMA-ES was found to change when different BCHMs were used. The worst
and the best BCHMs were identified. The results of CMA-ES with the best
BCHM and restarts were compared on CEC 2017 with the results of recently
published derivatives of Differential Evolution (DE).
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1. Introduction

In the real vector space Rn, it often happens that the search space is con-
strained to a certain subset F ⊂ Rn. Each point from F will be called the
feasible point, and the set F — the feasible set. A convenient standardized
definition of set F is based on the set of constraint functions whose values are
expected either to be lower than zero or to be equal to zero for every feasible
point. Thus the constrained optimization problem is defined as

x = arg min
x∈F

q(x) (1)

gi(x) ≤ 0 for all i = 1, . . .m (2)

hj(x) = 0 for all j = 1, . . . k (3)
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where q : Rn → R is the objective function to be minimized, gi : Rn → R are
the inequality constraints and hj : Rn → R are the equality constraints.

Constraints are a mixed blessing for optimization methods. On the one
hand, constraints often limit the hypervolume of the feasible set so that op-
timization methods can better approximate the solution. On the other hand,
the introduction of constraints breaks the isotropy of the search space and thus
it may disturb the action of optimization methods that are based on iterative
transformations of solutions. In particular, evolutionary computation and other
metaheuristics which generate new solutions in the vicinity of old solutions may
suffer from anisotropy of neighborhood structures. Therefore, a number of con-
straint handling techniques that modify the action of the base algorithms have
been introduced by scholars. Comprehensive studies on that issue can be found,
e.g., in [1, 2, 3].

A special case of inequality constraints are bound constraints, where the
feasible set F = [l,u] is a hyperrectangle in Rn, where l defines the lower and
u defines the upper bounds of the search space. That type of constraint can
be found in many practical problems [4, 5, 6, 7], since in the physical world
there are usually upper and lower limitations of mass, energy, length, area, etc.
Bound constraints are also used in the majority of benchmark sets for global
optimization, like BBOB [8] or the CEC family [9].

There are two distinctive features of bound constraints that facilitate their
handling: the feasibility of a point can be checked after at most 2n comparisons
of real numbers, and it is relatively easy to transform an infeasible point into
a feasible one. Therefore, the strategies of bound constraint handling (bound
constraint handling methods, BCHMs) are computationally less demanding in
comparison to strategies handling the general form of constraints and, perhaps
for that reason, bound constraints have not gained much attention from re-
searchers. Nevertheless, there is a practical need to consider various BCHMs
since coupling a certain optimization with various BCHMs results in different
efficiency in performing optimization. This effect was illustrated in an empiri-
cal comparative study [10], where 17 types of BCHM were coupled with seven
versions of Differential Evolution (DE). According to the results obtained for
the CEC’2017 benchmark set [9], the choice of BCHM can influence both the
dynamics of the optimization progress and the quality of final solutions obtained
by DE. The study also revealed that the sensitivity to the choice of a BCHM
depends on the DE version being considered.

For Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [11], a
specialized BCHM based on additive quadratic penalty was defined [4]. In
the addendum [12] to the aforementioned article, Hansen proposed a modified
version of the original BCHM. Both methods were compared on an ellipsoid
function. The updated method was modified further by Sakamoto and Akimoto
[13], and examined on four objective functions.

Even though CMA-ES is an important method with hundreds of successful
applications [14] and is still being developed, used or extended (e.g. [15, 16, 17]),
there is no exhaustive comparative study of BCHMs coupled with it. This article
attempts to fill this gap. It surveys 22 BCHMs on two types of tests. The first

3



Initialize population mean o using an initial solution
while stop condition not met do

for all i ∈ {1, 2, ..., λ} do
mi = N(o, σ2C)
if apply penalty then
xi ←mi

qi ← fitness( mi )
else if Lamarckian repair then

xi ← repair( mi )
qi ← objective( xi )

else if Darwinian repair then
xi ←mi

qi ← objective( repair( mi ) )
else if state aware repair then
xi ← repair( o,mi )
qi ← objective( xi )

end if
end for
Pµ ← the best µ individuals from the set of xi
C← update C( C,Pµ ); σ ← update σ( σ,Pµ,o ); o← mean( Pµ )

end while

Figure 1: Coupling considered BCHMs with CMA-ES algorithm

one is devoted to examining the efficiency of local optimization. The second
one is aimed at characterizing global optimization efficiency and is based on the
CEC 2017 benchmark set [9].

The article is composed in the following way. Section 2 briefly describes the
CMA-ES algorithm with special emphasis on ways of coupling it with different
types of BCHM. In Section 3, a set of 22 BCHMs is defined. Section 4 examines
the influence of BCHMs on the efficiency of CMA-ES. Section 5 summarizes the
observations and concludes the paper.

2. Optimization with bound constraints in CMA-ES

The CMA-ES algorithm [11] is a variant of an evolution strategy that is
designed for solving difficult non-linear non-convex optimization problems in
continuous domains [18]. It performs optimization in an n-dimensional space
by iteratively sampling the search space. In CMA-ES, each i-th individual mi,
called a mutant, is sampled from a multivariate normal distribution, with the
shape defined by a covariance matrix C. The step size σ regulates mutation
strength. At the beginning of the operation, the mean vector o is set to an
initial solution, and this is updated at the end of each iteration. Each mutant
can be infeasible. If this happens, several scenarios are possible, which are
illustrated in Fig. 1.
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Usually, in CMA-ES variants, several types of penalty methods are utilized,
whereas in classical evolutionary algorithms and in the DE family, repair meth-
ods are more commonly used. Repair methods can be divided into two groups.
In the Lamarckian approach, the repaired individual replaces the infeasible mu-
tant, but in the Darwinian approach, the repaired individual is discarded after
objective calculation. The last considered group of methods, which is called here
state aware methods, also utilize information about the mean vector o. After
dealing with out-of-bounds mutants the objective function is calculated. Then,
in the selection process, the best µ individuals survive. The survivors are used
to update the covariance matrix C, step size σ and the mean vector o.

Within this paper, a widely approved naming convention is used. The func-
tion to optimize is called the objective function, but CMA-ES optimizes the
fitness function. In most cases, the fitness function is the same as the objective
function, but when penalties are applied, the fitness function uses the objective
function and other functions responsible for penalizing infeasible solutions.

3. Overview of bound constraint handling methods

All considered BCHMs can be assigned to four groups. Repair methods cre-
ate a feasible solution using only the infeasible one and constraints. Feasibility
preserving methods utilize knowledge of how mutation is performed, e.g., they
can repeat mutation or place corrected individuals somewhere between the par-
ent individual and the mutant. Specialized methods are applicable only for the
CMA-ES algorithm. They use CMA-ES internal parameters. Finally, penalty
functions do not replace infeasible individuals but add a penalty to their fitness
values. Both feasibility preserving and specialized methods fall into the state
aware repair group in Alg. 1.

3.1. Repair methods

A repair method is a mapping r : X→ F which assigns a feasible individual
to an infeasible one. The majority of repair methods work in a coordinate-wise
fashion. The symbol j = 1, . . . , n will be used in formulas for the coordinate
index.

The following list briefly summarizes definitions of repair methods reported
in the literature. The naming convention used in this paper was adopted from
[19] and expanded.
Reinitialization: the infeasible coordinate value is replaced by a random value
ξ:

r(mj) =

{
mj lj ≤ mj ≤ uj
ξ mj < lj or mj > uj

(4)

Usually a uniform distribution in the interval [lj , uj ] is used for ξ. In the case
of Differential Evolution (DE), Price observed [20] that this method is the most
unbiased one, yet it can disrupt progress towards solutions that lie near the
bounds.
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Projection: the infeasible coordinate value of the solution is projected onto the
violated bound.

r(mj) =


mj lj ≤ mj ≤ uj
lj mj < lj

uj mj > uj

(5)

This method is widely used in evolutionary algorithms, e.g. [21], because it is
fast and easy to implement.
Reflection: the infeasible coordinate value of the solution is reflected back from
the boundary by the amount of constraint violation. From the point of view of
optimization algorithms, a fitness landscape outside the bound is a reflection of
the original landscape.

r(mj) =


mj lj ≤ mj ≤ uj
2lj −mj mj < lj

2uj −mj mj > uj

(6)

This method was defined and used in DE, e.g. [22].
Wrapping : the infeasible coordinate value is shifted by the feasible interval
(uj − lj):

r(mj) =


mj lj ≤ mj ≤ uj
uj +mj − lj mj < lj

lj +mj − uj mj > uj

(7)

This approach may prove efficient when the optimization task is periodic in
nature, e.g. in the design of digital filters [23].
Transformation: the transformation of the coordinate value starts before hitting
the bound:

r(mj) =


mj lj + alj ≤ mj ≤ uj − auj
lj + (mj − (lj − alj))2/4alj lj − alj ≤ mj < lj + alj
uj − (mj − (uj + auj ))2/4auj uj − auj < mj ≤ uj + auj

(8)

where alj = min((uj − lj)/2, (1 + |lj |)/20), auj = min((uj − lj)/2, (1 + |uj |)/20).
The transformation is identity transform in about 90% of the feasible region.
From uj − auj to uj + auj it is quadratic. When mj > uj + auj , mj is reflected
(6) using uj + auj as a bound. The reflected value is transformed according to
(8), which results in periodic output of the transformation, with a period of
2(uj − lj + alj + auj ). Analogical computations are performed when considering
the lower bound. This is a default method used by the most sophisticated CMA-
ES implementation in Python [24], and in the CMA-ES implementation in C
[25].
Projection to midpoint : in contrast to a coordinate-wise repair, here the pro-
cedure consists of projecting the infeasible individual onto the boundary along
the direction going through the midpoint of the feasible area.

r(m) = (1− α) · (l + u)/2 + α ·m (9)
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where α is the largest value for which lj ≤ r(mj) ≤ uj for all j = 1, . . . , n. This
method was used in DE under the name “scaled mutant” [26].

3.2. Penalty functions

When using penalty functions, the infeasible individual is not changed, but
its objective function value is modified. Traditionally, a penalty is added to the
objective function value of the infeasible solution [27]. In practice, it may be
impossible to compute the objective function value of the infeasible individual.
Therefore, in engineering applications, e.g. [4], and some benchmarks, e.g. the
Black Box Optimization Competition (BBComp) [28], an objective function is
evaluated at the point that is repaired by the projection.

For the brevity of notation, let ψ denote the infeasible mutant.
Death penalty : the fitness of the infeasible individual is set to a large value Q
that exceeds the fitness of any feasible individual

qe(ψ) = Q s.t. ∀y ∈ F q(y) < Q (10)

This method was used, e.g., in Evolution Strategies [29]. According to [27], this
simple method provides good quality results for some problems, but for other
problems, it performs quite poorly. It was also observed that the standard
deviation of results achieved with the use of this method was larger than that
achieved for other methods. This method can be found in the literature [20]
under the name “Brick Wall Penalty”.
Additive quadratic penalty : the fitness of the infeasible individual is the sum of
the objective function value of a repaired solution (usually by projection) and
the squared values of constraint violations.

qe(ψ) = q(r(ψ)) +
∑

j:ψj<lj

(lj − ψj)2 +
∑

j:ψj>uj

(ψj − uj)2 (11)

The idea of a quadratic penalty is very old [27], but it is still used in practice.
Substitution quadratic penalty : the combination of the two aforementioned func-
tions. The fitness function of the infeasible individual is not computed, which
spares budget, but it is set to the sum of a large value Q that exceeds the
objective function value of any feasible individual and the squared values of
constraint violations.

qe(ψ) = Q+
∑

j:ψj<lj

(lj − ψj)2 +
∑

j:ψj>uj

(ψj − uj)2 (12)

where ∀y ∈ F q(y) < Q. This function realizes the idea of Deb [30] and
Mezura-Montes [31].
Multiplicative quadratic penalty : the penalty value is the product of the objective
function value of a repaired solution (usually by projection) and the sum of
squared values of constraint violations.

qe(ψ) = q(r(ψ)) ·

1 +
∑

j:ψj<lj

(lj − ψj)2 +
∑

j:ψj>uj

(ψj − uj)2

 (13)
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This penalty method is used in the implementation of CMA-ES in the R lan-
guage [32]. Note that the aforementioned penalty works reasonably well only
when q(x) > 0 for all x.

3.3. Feasibility preserving

Rand base: the infeasible coordinate is set to a random location between the
distribution mean and the active boundary.

r(mj) =


mj lj ≤ mj ≤ uj
U(lj , oj) mj < lj

U(oj , uj) mj > uj

(14)

where U(α, β) denotes the uniform random variate from the range [α, β]. An
analogical approach was applied with DE, but there it was named “Bounce-
Back” [20].
Midpoint base: the average of the violated constraint and the distribution mean
replaces the infeasible coordinate.

r(mj) =


mj lj ≤ mj ≤ uj
(lj + oj)/2 mj < lj

(oj + uj)/2 mj > uj

(15)

An analogical approach in DE was mentioned in the book [20] but it was not
given a name.
Resampling : the mutation operator is repeated until a feasible individual is
found. In some cases, this action can slow down the algorithm too much [19].
Therefore, after a predefined number of unsuccessful trials, a repair method is
used (usually projection).
Conservative: the infeasible solution is replaced by the distribution mean o
taken from CMA-ES:

r(m) =

{
m when m ∈ F
o when m /∈ F

(16)

This function was originally introduced for DE and was adopted for CMA-ES. In
the case of DE, it was reported [19] that this approach is good for the Weierstrass
function.
Projection to base: the infeasible individual is projected onto the boundary
along the direction towards the distribution mean.

r(m) = (1− α) · o + α ·m (17)

where α is the largest value for which it holds lj ≤ r(mj) ≤ uj for all j =
1, . . . , n. This method is similar to that used in GENOCOP III [33].
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3.4. Specialized methods

The group of specialized methods contains BCHMs that are applicable only
for the CMA-ES algorithm. These methods use the information extracted from
C and σ. For brevity, only their most distinguishing features are discussed here.
All the details can be found in the referenced papers.

The considered methods are as follows.
Weighted penalty – the idea was described in [4]. The fitness of the infeasible in-
dividual is the sum of the objective function value of a repaired solution (usually
by projection) and the weighted squared values of constraint violations:

qe(ψ) = q(r(ψ)) + 1/n

n∑
j=1

(
γj · (r(ψj)− ψj)2

/ξj

)
(18)

where ξj = exp (0.9 (log (Cjj)− (1/n)
∑n
k=1 log (Ckk))) scales the coordinate-

wise distance with respect to the covariance matrix. The weights are initialized
by

γj =
2δf

σ2/n
∑n
k=1 Ckk

(19)

when distribution mean o is out-of-bounds. The δf is the median from the last
20+3n/λ generations of the interquartile range of unpenalized objective function
values. The weights after initialization are increased when the distribution mean
oj is out-of-bounds according to

γj = γj1.1
min(1,µeff/(10n)) (20)

where µeff is a CMA-ES parameter which is calculated during CMA-ES initial-
ization.
Weighted penalty Matlab implementation – the official CMA-ES Matlab imple-
mentation [25] differs from the method described in [4]

qe(ψ) = q(r(ψ)) + 1/n

n∑
j=1

(
γj · (r(ψj)− ψj)2

)
(21)

There is no scaling by ξ and the weights are initialized by

γj =
2δf

σ2nCjj
(22)

when the distribution mean o is out-of-bounds.
The weights after initialization are increased according to:

γj = γj1.2
min(1,µeff/(10n)) (23)

when |oj − r(oj)| > 3 max(1,
√
n/µeff )σ

√
Cjj , provided that the current mean

is shifting deeper into infeasible space than the last mean.
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Weighted penalty with decreasing weights – this method was defined in [12],
which is an addendum to [4]. In comparison to weighted penalty, this method
introduces the possibility of decreasing weights according to:

γj = γj exp (−2/3)
dγ/2 (24)

where dγ = min (1, µeff/ (10n)). The γj value is decreased if γj > 5 median(δLσ),
where δLσ is δf divided by the denominator of (19). Additionally, (19) is re-
placed by γj = 2δLσ, ξj are set to 1, and the method of increasing γj is also
changed to:

γj = γj exp
(
tanh

(
max

(
0, δoσj − δth

)
/3
))dγ/2

(25)

where δoσj is the distance of the oj from the nearest boundary divided by σCjj
and δth = 3 max(1,

√
n/µeff ).

Weighted penalty with trimmed median – this method was defined in [13]. It
changes weighted penalty with decreasing weights by increasing the speed of the
reduction of the weights. In this method, (24) is replaced by:

γj = γj min(1, 3 · t/(1/n
n∑
k=1

γk)) (26)

where t is a trimmed median which is calculated from a short history of δLσ.

4. Experimental study

BCHMs may change positions of points after they have been generated by
CMA-ES or they may change the fitness function values of infeasible points. Any
change that has been introduced by a BCHM may, in turn, affect the positions
or weights of points which are used in the update formulas for the covariance
matrix and the step size multiplier. In this section, combinations of CMA-ES
with all BCHMs listed in Section 3 are characterized by analyzing the results
yielded by such combinations for various optimization tasks.

There are three series of analyses. The first series is aimed at characterizing
the influence of BCHMs on the exploitation efficiency by comparing the results
yielded by CMA-ES with and without constraints. The analysis was performed
for unimodal objective functions which have a unique optimum inside the fea-
sible area. Therefore, the bound constraints do not hide any other optimum
but they only influence the convergence rate. For a perfect BCHM, the con-
vergence rate should not be affected by a distance between the optimum and
the boundary of the admissible area. For a realistic BCHM, the percentage of
infeasible points would typically increase when the optimum gets closer to the
boundary. This, in turn, would slow down the convergence rate. Therefore,
in this analysis, each BCHM is characterized by the proportion of the number
of fitness evaluations which are needed to reach a certain fitness value, with
and without that BCHM. Such proportion is measured for different positions of
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the optimum, starting from the middle point of the admissible area up to the
boundary.

The second type of analysis deals with a more complicated case when the
fitness function may be multimodal. There may be many local optima, inside
and outside of the admissible area. The global optimum is located in the corner
of the admissible hyperrectangle. This is the most difficult scenario since, in the
vicinity of the global optimum, a vast majority of points generated by CMA-ES
would be infeasible and BCHMs would be most frequently used. For that sce-
nario, Empirical Cumulative Distribution Function (ECDF) curves were used
to characterize the convergence rate of CMA-ES coupled with various BCHMs.
The assumed visualization method was inspired by the methodology [34] used
in the GECCO Workshop on Real-Parameter Black-Box Optimization Bench-
marking (BBOB). In the presented approach, for each objective function and
each dimension, a set of 51 fitness levels is defined. These levels are evenly
distributed in the logarithmic scale and span the range from the median of the
fitness values achieved after the first generation up to the best solution that
was found at the end of the evolution. Each ECDF curve shows the portion of
fitness levels achieved by the best-so-far solution against the number of fitness
function evaluations normalized by the problem dimensionality. Each ECDF
curve allows one to aggregate performance over different problems, provided
that objective function values of the optimums are identical for those problems.

The third type of analysis illustrates the importance of BCHMs in assess-
ing the efficiency of CMA-ES in performing global optimization with bound
constraints. In the analysis, the ECDF curves obtained by running CMA-ES,
coupled with various BCHMs, are compared using functions from the CEC’2017
and the BBOB benchmarks. For all CEC’2017 functions and most BBOB func-
tions, it is known that the global optimum position is relatively distant from
the bounds of the admissible area. Despite that, there are differences in the
convergence speed between various BCHMs.

The results of the aforementioned analyses divide the BCHMs into 3 groups:
good, weak and bad. On that base, the most promising methods are selected
and compared for each CEC 2017 function using a statistical test.

In the experiments, the CMA-ES implementation from [32] was used, which
refers to [35] in its documentation. The implementation utilized multiplicative
penalty as the only BCHM. Other BCHMs were implemented by the author of
this study. All CMA-ES parameters were set typically by the implementation.
The budget was set following the CEC 2017 rules. For all functions, their results
were shifted to produce 0 in the global optimum. The reflection, projection and
wrapping methods were combined with CMA-ES according to the Darwinian
and Lamarckian approach. In the resampling method, after 100 consecutive
unsuccessful repair trials, the Lamarckian projection is used. The projection
method was used to calculate quadratic penalties. The optimization was stopped
when the fitness error level dropped below 10−8.
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4.1. Influence of bound constraint handling on convergence speed

This section presents the results of experiments which were performed on
three types of unimodal, 10-dimensional functions: Sphere (27), Ellipsoid (28)
and TwoAxes (29).

qsph(x) =

n∑
i=1

(xi − b)2 (27)

qell(x) =

n∑
i=1

106 i−1
n−i (xi − b)2 (28)

qtwoax(x) =

n∑
i=1

{
106(xi − b)2 when i is even

(xi − b)2 otherwise
(29)

These functions were previously used in [13] to examine Weighted penalty with
trimmed median.

The feasible area was defined as a box [−1, 1]10, and b was changed in the
range [0.2, 1]. For each b and each BCHM, 51 independent runs were performed.
The expected runtime (ERT) [36] was used as a performance measure. This is
a well-established measure as it is used in the COCO framework [37], which in
turn is used by the GECCO Workshop on Real-Parameter (BBOB). The ERT is
calculated as the sum of the used evaluations divided by the number of runs in
which the optimum was found with the aforementioned error level. ERTs were
also calculated for the unconstrained case and the resulting values are used as
a reference. For each BCHM, a plot of its ERT divided by the reference ERT
vs. the value of b is depicted in Fig. 2. The Y-axis was limited to 3 for better
readability of the interesting area. As a result, some weak methods are not
visible in the plot.

The results of the experiments from Fig. 2 indicate that most BCHMs fail
when the optimum approaches the boundary, i.e. their results quickly deterio-
rate with the increase of b. From the good methods, transformation achieved
the best speedup. It appears that the quadratic transformation introduced
around the boundary shortens steps made by the search-facilitating location of
the boundary. Second place goes to the group of methods based on penalties, re-
sampling and Darwinian reflection. Among them, the simple quadratic penalty
performs best for the quadratic function but it is about two times worse than
transformation for Ellipsoid and TwoAxes. The weighted penalty with trimmed
median is the best for TwoAxes. For other functions, this method performs
similarly to weighted penalty with decreasing weights and weighted penalty. For
the TwoAxes function, the Weigh. pen. Matlab impl. method which is used in
the Matlab implementation of CMA-ES is worse than weighted penalty. What is
surprising here is that one of the simplest approaches, i.e., Darwinian reflection,
is as good as more sophisticated methods that utilize knowledge gathered by
CMA-ES, i.e., C and σ. The group of good methods also includes substitution
penalty, death penalty and Darwinian wrapping, but their performance deterio-
rates for b very close to 1, i.e., when the optimum is located on the bounds.
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Figure 2: Ratio of ERT values vs. value of b for different BCHMs for quadratic (a), ellipsoid
(b) and TwoAxes function (c)
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The transformation method is the best in terms of speedup, which does not
necessarily means that it is the best BCHM. When the method is faster than
the unbounded search that means that it introduces a bias to the algorithm.
The bias is good for tasks considered in this section but it may be bad for other
tasks (cf. Tab. 4). Assuming that the convergence rate should not be affected
by BCHM, the best BCHMs are Darwinian reflection and resampling, as their
results were very close to unbounded search results for all examined functions.

It is worth noting that all Darwinian approaches beat their Lamarckian
counterparts. Also, both variants of the projection methods give good results
only in two cases: 1) when the optimum is exactly on the bound; 2) when the
optimum is near to the center of the feasible area.

4.2. Influence of bound constraint handling on global optimization performance

This part of the experiments was performed using the CEC 2017 benchmark
suite [9], which defines 30 functions for 10, 30, 50, and 100 dimensions. Selected
experiments were also repeated using real-parameter noise-less BBOB functions
to confirm that the results are not benchmark specific. To visualize the impact
of BCHMs on the performance of CMA-ES, Empirical Cumulative Distribution
Function (ECDF) curves are used.

4.2.1. Optimum on bounds

To force CMA-ES to extensively use BCHMs, the upper bounds were set
to the coordinates of the optimum. The lower bounds were set to −100, as
was originally specified by CEC 2017 rules [9]. The analyzed set of functions
included the first 20 CEC 2017 problems. From that set, only functions 1-4, 13,
and 19 were solved with CMA-ES. The problem is considered to be solved here
when the median of results is in the global optimum (with error margin 10−8)
for at least one BCHM.

The results of the experiments for solved functions are depicted in Fig. 3 in
the form of ECDF curves. To facilitate numerical comparison, the area under
ECDF curves (AUC) was calculated and reported in Table 1. The rows of
the table were sorted according to mean AUC values, so the best performing
method is at the top of the table. The results of the unsolved functions are not
presented because curves were near the x-axis and were nearly indistinguishable.

According to Fig. 3 and Tab. 1, BCHMs can be divided into 3 groups: the
leaders, good methods and weak methods. The best of the leaders is resam-
pling. Its superiority increases with the increase of the problem dimensionality.
The second is Darwinian reflection, whose performance seems to be dimension-
invariant. Then follows a group of methods based on the weighted penalty. The
Darwinian wrapping closes the group of leaders. The group of good methods
consists of substitution penalty, multiplicative penalty and Darwinian projection.
The weighted penalty with trimmed median is somewhere between good and weak
methods. Its performance strongly deteriorated with dimensionality. The group
of weak methods includes Lamarckian projection, which is frequently perceived
as a good BCHM for cases when the optimum is on the bounds. Transforma-
tion, which is the default method in some advanced CMA-ES implementations,
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Figure 3: ECDF curves for functions 1-4, 13, 19 from CEC 2017 when the optimum is on
bounds for 10 (a), 30 (b), 50 (c) and 100 (d) dimensions for different BCHMs
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Table 1: Area under ECDF curves for functions 1-4, 13, 19 from CEC 2017 when the optimum
is on bounds

method 10D 30D 50D 100D
Resampling 0.71 0.79 0.84 0.84
Darwinian reflection 0.77 0.77 0.79 0.77
Weighted penalty with decreasing weights 0.71 0.78 0.82 0.79
Weigh. pen. Matlab impl. 0.69 0.77 0.81 0.77
Weighted penalty 0.73 0.73 0.77 0.73
Darwinian wrapping 0.71 0.76 0.80 0.70
Substitution penalty 0.69 0.74 0.76 0.58
Multiplicative penalty 0.71 0.70 0.71 0.64
Darwinian projection 0.78 0.64 0.69 0.62
Weighted penalty with trimmed median 0.77 0.62 0.46 0.36
Death penalty 0.63 0.38 0.29 0.14
Transformation 0.64 0.30 0.27 0.20
Lamarckian projection 0.62 0.29 0.27 0.21
Additive penalty 0.53 0.27 0.24 0.21
Reinitialization 0.40 0.25 0.30 0.26
Lamarckian reflection 0.38 0.17 0.24 0.20
Lamarckian wrapping 0.32 0.20 0.23 0.22
Rand base 0.31 0.20 0.24 0.20
Midpoint base 0.28 0.20 0.24 0.20
Projection to base 0.25 0.14 0.21 0.18
Projection to midpoint 0.38 0.15 0.13 0.11
Conservative 0.15 0.06 0.09 0.06
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and additive penalty, which is used in some other CMA-ES implementations, are
also grouped as weak methods. This group also includes reinitialization, which
sometimes is considered as a good method because it does not bias the search.
Somewhat surprising here are the results of projection. It is easy to assume
that projection is the best when the optimum is on the bounds. In reality, it is
highly unlikely that all coordinates of the mutant will be out of bounds, so the
mutant will be shifted to the optimum. When only a few coordinates are out of
bounds, some of the others may still stick in a local optimum. Besides that, for
Lamarckian projection, setting the mutant’s coordinates to the bounds disrupts
the CMA-ES auto-adaptation mechanism, which is detected by the CMA-ES in-
ternal stopping criterion. As a result, the search is interrupted much too early,
e.g. in the case of function 4 in 30D, the local optimum was found at about 160
iterations, and at about 280 iterations the search was interrupted.

When analyzing results from this and the previous section together (Fig.
2, Fig. 3 and Tab. 1), it can be observed that when the optimum is on the
bounds, the best BCHM is resampling, closely followed by Darwinian reflection
and weighted penalty with decreasing weights.

4.2.2. Optimum far away from bounds

In many practical applications and in the CEC 2017 benchmark, the opti-
mum does not lie on the bounds. What is more, in the case of CEC 2017, it is
guaranteed that the optimum is inside the box [−80, 80]n, which is quite far from
the CEC 2017 bounds of [−100, 100]n. To investigate the influence of BCHMs on
the results of CMA-ES when the optimum is far from the bounds, all functions
from the CEC 2017 benchmark were examined. Even though experiments in this
section use the same CEC functions as in Section 4.2.1, resulting optimization
problems are different because of different bounds. Therefore, the set of solved
functions identified in this section differs from the set identified in Section 4.2.1.
Additionally, to check if the results are not specific for CEC 2017 benchmark, the
experiments were also performed on 24 real-parameter noise-less 10-dimensional
functions from BBOB (Black-Box Optimization Benchmarking) [8] with bounds
set to [−5, 5]n. The implementations of these functions were taken from COCO
2.3.1 [37]. The experiments on BBOB functions were performed in the same
setup as experiments on CEC functions, i.e. the experiments were performed
according to CEC 2017 rules, they were not performed by COCO platform.
COCO was only used to get the first instance of each function.

Aggregated results. The results are presented using ECDFs as in section 4.2.1.
Fig. 4 shows ECDF curves aggregated for solved functions (CEC functions 1-
4, BBOB functions 1, 2, 5, 6, 8-14) and Fig. 5 shows ECDFs aggregated for
unsolved functions (CEC functions 5-30, BBOB functions 3, 4, 7, 15-24). To
facilitate numerical comparison, the AUC was computed and reported in Tab.
2 and Tab. 3, respectively. The rows in each table were sorted according to
mean AUC values, so the best method is at the top of the table.

Figure 4 together with Tab. 2 reveal that with the increase of the problem
dimensionality, the differences between the performance of BCHMs also increase.
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Figure 4: ECDF curves for functions 1-4 from CEC 2017 for 10 (a), 30 (b), 50 (c), 100 (d)
dimensions and ECDF curves for functions 1, 2, 5, 6, 8-14 from BBOB for 10 dimensions (e)
for different BCHMs 18



Table 2: Area under ECDF curves for functions 1-4 from CEC 2017 and for functions 1, 2, 5,
6, 8-14 from BBOB

CEC 2017 BBOB

method 10D 30D 50D 100D 10D

Weigh. pen. with decreasing weights 0.97 0.84 0.86 0.84 0.94
Weigh. pen. Matlab impl. 0.97 0.85 0.85 0.85 0.95
Weighted penalty 0.97 0.84 0.85 0.86 0.95
Resampling 0.97 0.85 0.86 0.83 0.96
Substitution penalty 0.97 0.85 0.84 0.84 0.93
Darwinian wrapping 0.97 0.85 0.83 0.83 0.90
Weigh. pen. with trimmed median 0.97 0.83 0.83 0.82 0.94
Darwinian reflection 0.97 0.81 0.82 0.81 0.95
Multiplicative penalty 0.97 0.84 0.87 0.84 0.81
Transformation 0.97 0.81 0.84 0.78 0.94
Lamarckian reflection 0.96 0.80 0.82 0.78 0.85
Lamarckian projection 0.97 0.79 0.80 0.79 0.85
Rand base 0.95 0.78 0.80 0.79 0.77
Midpoint base 0.94 0.79 0.81 0.79 0.77
Reinitialization 0.91 0.70 0.71 0.69 0.85
Additive penalty 0.93 0.70 0.67 0.60 0.77
Death penalty 0.96 0.86 0.83 0.78 0.18
Lamarckian wrapping 0.89 0.67 0.65 0.64 0.80
Projection to midpoint 0.83 0.74 0.75 0.62 0.61
Darwinian projection 0.57 0.44 0.37 0.34 0.37
Conservative 0.76 0.40 0.25 0.20 0.03
Projection to base 0.40 0.27 0.24 0.25 0.31
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It can be also observed that most BCHMs perform equally well, but there are
some that perform poorly. Like in Section 4.2.1, conservative is in the group of
weak methods. Its application results in a population that contains many copies
of an individual. That situation is perceived by CMA-ES as a flat land in the
fitness landscape. The algorithm tries to escape from the flat land by increasing
σ, which raises the number of infeasible solutions. The rise of σ is also a cause
for the failure of projection to base. Other methods that should also be avoided
include Darwinian projection and Lamarckian wrapping.

The projection to midpoint and the additive penalty are also below the aver-
age. The simple additive penalty is worse than weighted penalties, and is even
much worse than multiplicative penalty.

The results of the experiments on 10-dimensional BBOB functions generally
confirm the results of the experiments on CEC 2017 problems. The same func-
tions belong to the group of good methods. For BBOB the best is resampling
followed by Darwinian reflection, weighted penalties and transformation. Some
differences in the performance of BCHMs for CEC and BBOB can be observed
in the set of medium and weak BCHMs, i.e. death penalty and conservative
gave worse results for BBOB than for CEC. This deterioration stems from the
fact that each of these BCHMs gives individuals of equal fitness. It is not the
problem only when BCHMs are called rarely, but in the case of BBOB BCHMs
are called more frequently than in the case of CEC.

In Fig. 5, the aggregated performance of BCHMs for unsolved problems is
depicted and the AUC is reported in Tab. 3. The set of weak BCHMs are
the same as for solved functions, but in this scenario, it is easier to notice that
Lamarckian wrapping and reinitialization improved performance on CEC 2017
problems at the beginning of the search. Presumably these BCHMs increase
diversity in the population. As it was for the solved problems, the results on
BBOB problems are in good agreement with the results on CEC 2017. Once
again the best is resampling.

It is worth noting that the conservative method, which is the worst in this
study, was better than reinitialization in the case of DE[19]. Here, Darwinian
reflection is one of the best, in DE it was one of the worst. Therefore, conclusions
drawn for one optimization method cannot be easily transferred to another. One
exception from this rule is resampling, which is good for both algorithms and
should be good for every reasonable method.

Selected detailed results. In the aggregated results, some BCHMs that are im-
portant for CMA-ES are hardly distinguishable. Therefore, this section exam-
ines methods that are used in the official, off-the-shelf CMA-ES implementations
as well as methods that achieve good results in experiments reported in tables
1-3. The results of these methods were compared using the paired Wilcoxon
test at a confidence level of 0.95 with Benjamini-Hochberg correction with ex-
pected proportion of false discoveries set to 5%. To save space, the results for all
functions from CEC 2017 for n = 50 are provided. The results for n = 30 and
n = 100 look similar, for n = 10 the differences between BCHMs are smaller.
The results are presented in Tab. 4. Since weighted penalty is an ancestor of
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Figure 5: ECDF curves for functions 5-30 from CEC 2017 for 10 (a), 30 (b), 50 (c), 100 (d)
dimensions and ECDF curves for functions 3, 4, 7, 15-24 from BBOB for 10 dimensions (e)
for different BCHMs 21



Table 3: Area under ECDF curves for functions 5-30 from CEC 2017 and for functions 3, 4,
7, 15-24 from BBOB

CEC 2017 BBOB

method 10D 30D 50D 100D 10D

Resampling 0.46 0.61 0.61 0.63 0.51
Darwinian reflection 0.46 0.61 0.62 0.64 0.48
Lamarckian projection 0.45 0.61 0.61 0.64 0.47
Weigh. pen. with trimmed median 0.45 0.60 0.61 0.63 0.48
Darwinian wrapping 0.46 0.61 0.61 0.63 0.47
Transformation 0.45 0.61 0.61 0.64 0.47
Weigh. pen. with decreasing weights 0.45 0.60 0.61 0.63 0.49
Substitution penalty 0.45 0.60 0.60 0.62 0.50
Weigh. pen. Matlab impl. 0.45 0.60 0.61 0.63 0.48
Weighted penalty 0.45 0.60 0.61 0.63 0.48
Lamarckian reflection 0.46 0.60 0.61 0.64 0.45
Rand base 0.46 0.60 0.61 0.64 0.44
Midpoint base 0.45 0.60 0.61 0.63 0.43
Reinitialization 0.46 0.59 0.58 0.62 0.48
Additive penalty 0.44 0.58 0.58 0.59 0.48
Multiplicative penalty 0.45 0.60 0.60 0.62 0.35
Projection to midpoint 0.46 0.56 0.57 0.59 0.36
Lamarckian wrapping 0.42 0.53 0.51 0.53 0.46
Death penalty 0.45 0.59 0.59 0.56 0.11
Darwinian projection 0.43 0.53 0.52 0.52 0.31
Projection to base 0.41 0.40 0.36 0.37 0.31
Conservative 0.40 0.35 0.27 0.22 0.03
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the group of methods, it was used as a reference method. In Tab. 4, a dot (.)
means that there was no significant difference, a plus (+) means that the listed
approach is better than the reference method, and a minus (−) means that it
is worse.

It can be observed that from the group of descendants of weighted penalty,
the best is weighted penalty with trimmed median. The second is weighted penalty
with decreasing weights. The last from the group, weighted penalty Matlab impl.,
is neither better nor worse than the parent. The most interesting observation is
that Darwinian reflection, which is never used in practical implementations of
CMA-ES, is the best method in the table. The second best is resampling, and
transformation is the third. The worst is additive penalty, which is a traditional
method and is still used in some implementations. Other simple methods based
on penalties, i.e. substitution penalty and multiplicative penalty, also cannot be
recommended as a replacement for the standard BCHM. For reinitialization,
there are 20 statistically important differences. In most cases, this BCHM
worsens the performance of CMA-ES, but for some functions, it helped the
algorithm to escape from local optima.

For some BCHMs, a more clear picture emerges when CEC 2017 functions
are analyzed in groups. For the simple multimodal group (functions 4-10), the
best is reinitialization, but it is the worst for unimodal (1-3) and hybrid functions
(11-20). Most BCHMs beat the reference method on composition functions (21-
30). For that group, the best is transformation, followed by Darwinian reflection
and resampling.

Dependence of the number of infeasible individuals on BCHMs. In the case of
CEC 2017, bounds are quite far from the optimum. Therefore, it is interesting
how frequently an infeasible individual is generated. The BCHMs that generate
fewer infeasible samples should be preferred, because every BCHM call takes
some time and it can change properties of the optimization algorithm, e.g. the
bias. The results of the experiments for n = 50 are depicted in Fig. 6. Each
infeasibility is counted only once, i.e., if a BCHM produces an infeasible solution
it is not counted.

It can be observed that even though bounds in the CEC 2017 benchmark
are quite far from the global optimum, the BCHMs are used frequently. For
the solved functions, the multiplicative penalty generated the fewest infeasible
individuals among successful BCHMs. About 10% more infeasible individuals
were generated with weighed penalty and another 6% more were generated by re-
sampling, weighted penalty with decreasing weights and weighted penalty Matlab
implementation.

For unsolved functions, rand base, midpoint base and Lamarckian projection
achieved large AUCs and at the same time, they are the best in terms of gen-
erating the fewest infeasible individuals. Among weighted penalties, the best is
the version with decreasing weights and the worst is the original proposition.
For unsolved problems, the multiplicative penalty generates even more infeasible
individuals than resampling.

Weak BCHMs, such as conservative and projection to base, seldom produce
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Table 4: Results of paired Wilcoxon test with a confidence level of 0.95 with Benjamini-
Hochberg correction, taking weighted penalty as a reference method, measured on 50-
dimensional functions from CEC 2017. A dot (.) means that there was no significant dif-
ference, a plus (+) means that listed approach is better than the reference method, and a
minus (−) means that it is worse
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Figure 7: Relative time of computation for selected BCHMs for functions from CEC 2017 in
30D.

infeasible solutions. The reason for that is a relatively quick interruption of the
search when CMA-ES approaches the boundary, which is caused by the stop
criterion that detects unreasonable values of CMA-ES parameters, e.g. σ.

Influence of BCHMs on computation time. Most BCHMs are similar in terms of
computational complexity and time of computation, but two interesting meth-
ods: resampling and weighted penalty with decreasing weights seem to be com-
plicated and time-consuming. To estimate the computational overhead of the
BCHM, the sum of times of all independent runs of the search with the examined
BCHM was divided by the number of utilized evaluations of the objective func-
tion. The normalized values were referred to the normalized result of the good
and fast method, i.e., Darwinian reflection. That proportion, aggregated sepa-
rately for solved and unsolved 30-dimensional functions, is depicted in Fig. 7.

It can be observed that using resampling for functions 1-4 makes optimiza-
tion about 5 times slower than with the use of the reference method. The
weighted penalty with decreasing weights makes optimization only 1.6 times
slower. Even though BCHMs are less used for functions 5-30, resampling makes
optimization about 3.7 times slower.

4.3. Relation to recently published results

From the practitioner’s point of view, it is interesting to check how results of
CMA-ES with the best BCHM relate to the recently published results on CEC
2017 benchmark for single objective real-parameter numerical optimization. To
investigate that, the newest version (2.7.1) of Hansen’s cma package was used
[24]. The package was configured to use the IPOP-CMA-ES [38] variant with
up to 9 restarts and σ = 0.3(u − l). It also allows one to use BIPOP-CMA-
ES [39] but the results of BIPOP were generally worse than those of IPOP
on the considered functions. The experiments were performed in 10, 30 and 50
dimensions, but only the results in 30 dimensions are shown in this section. The
complete results of IPOP-CMA-ES are available at [40] in raw tables. From the
set of the best BCHMs, Darwinian reflection was used because it is the fastest
method. The results of using it in IPOP-CMA-ES were compared to the results
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Table 5: The mean and standard deviation of IPOP-CMA-ES, IPOP-CMA-ES with Darwinian
reflection and recently published variants of L-SHADE on 30-dimensional functions from CEC
2017. The best values in each row are typeset in bold. Additionally, the influence of changing
default IPOP’s BCHM into Darwinian reflection was verified using the paired Wilcoxon test
with a confidence level of 0.95. A tilde (∼) means that there was no significant difference,
a plus (+) means that Darwinian reflection is better than default method, and a minus (−)
means that it is worse

F. IPOP-CMA-ES IPOP-CMA-ES D. refl. SALSHADE-cnEPSin SALSHADE
1 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0 (∼) 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0
3 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0 (∼) 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0
4 5.63e+1 ± 1e+1 5.29e+1 ± 1e+1 (∼) 4.90e+1 ± 3e+0 5.57e+1 ± 5e+0
5 4.92e+0 ± 2e+0 5.56e+0 ± 2e+0 (∼) 1.24e+1 ± 2e+0 1.93e+1 ± 4e+0
6 1.40e−7 ± 9e−7 0.00e+0 ± 0e+0 (∼) 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0
7 5.31e+0 ± 4e+0 7.29e+0 ± 8e+0 (∼) 4.32e+1 ± 2e+0 5.35e+1 ± 7e+0
8 5.07e+0 ± 2e+0 4.86e+0 ± 1e+0 (∼) 1.36e+1 ± 2e+0 1.74e+1 ± 4e+0
9 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0 (∼) 0.00e+0 ± 0e+0 0.00e+0 ± 0e+0

10 3.76e+2 ± 2e+2 2.05e+2 ± 2e+2 (+) 1.47e+3 ± 2e+2 3.15e+3 ± 4e+2
11 1.06e+1 ± 1e+1 8.58e+0 ± 1e+1 (∼) 3.93e+0 ± 2e+1 1.06e+1 ± 1e+1
12 8.60e+2 ± 3e+2 9.16e+2 ± 2e+2 (∼) 3.43e+2 ± 2e+2 2.17e+2 ± 1e+2
13 1.96e+1 ± 8e+0 1.72e+1 ± 4e+0 (∼) 1.70e+1 ± 5e+0 2.80e+1 ± 8e+0
14 4.04e+1 ± 3e+1 4.56e+1 ± 4e+1 (∼) 2.20e+1 ± 4e+0 2.60e+1 ± 1e+0
15 1.20e+2 ± 1e+2 2.66e+2 ± 1e+2 (−) 3.65e+0 ± 2e+0 8.97e+0 ± 1e+0
16 1.79e+2 ± 1e+2 2.01e+2 ± 1e+2 (∼) 1.38e+1 ± 4e+1 1.29e+2 ± 7e+1
17 6.07e+1 ± 3e+1 6.31e+1 ± 2e+1 (∼) 2.83e+1 ± 6e+0 6.22e+1 ± 9e+0
18 9.22e+1 ± 6e+1 1.49e+2 ± 8e+1 (−) 2.06e+1 ± 9e−1 2.39e+1 ± 1e+0
19 1.61e+1 ± 1e+1 9.17e+1 ± 5e+1 (−) 5.91e+0 ± 2e+0 1.38e+1 ± 1e+0
20 6.83e+1 ± 4e+1 5.95e+1 ± 4e+1 (+) 3.08e+1 ± 6e+0 8.28e+1 ± 1e+1
21 2.08e+2 ± 2e+0 2.07e+2 ± 2e+0 (∼) 2.13e+2 ± 2e+0 2.19e+2 ± 4e+0
22 1.94e+2 ± 2e+2 1.30e+2 ± 9e+1 (+) 1.00e+2 ± 0e+0 1.00e+2 ± 0e+0
23 3.62e+2 ± 4e+0 3.60e+2 ± 5e+0 (+) 3.54e+2 ± 4e+0 3.65e+2 ± 6e+0
24 4.32e+2 ± 3e+0 4.28e+2 ± 2e+0 (+) 4.29e+2 ± 3e+0 4.32e+2 ± 4e+0
25 3.87e+2 ± 6e−1 3.87e+2 ± 6e−3 (∼) 3.86e+2 ± 7e−3 3.86e+2 ± 1e−1
26 1.12e+3 ± 1e+2 9.35e+2 ± 1e+2 (+) 9.51e+2 ± 5e+1 1.00e+3 ± 7e+1
27 5.11e+2 ± 6e+0 4.87e+2 ± 1e+1 (+) 5.03e+2 ± 4e+0 5.01e+2 ± 5e+0
28 3.06e+2 ± 2e+1 3.09e+2 ± 2e+1 (∼) 3.00e+2 ± 4e+1 3.28e+2 ± 4e+1
29 5.81e+2 ± 7e+1 5.12e+2 ± 9e+1 (+) 4.38e+2 ± 1e+1 5.16e+2 ± 1e+1
30 2.22e+3 ± 1e+2 9.91e+2 ± 7e+2 (+) 1.97e+3 ± 4e+1 1.97e+3 ± 1e+1

of recently published variants of L-SHADE [41] because its derivatives are among
the winners of the CEC 2017 and CEC 2018 competitions on single objective
bound-constrained optimization. It seems that step-by-step improvements made
in this family of algorithms created a success story and further improvements
still constitute a good research direction [42]. The set of methods included in
the comparison include SALSHADE [43] and SALSHADE-cnEPSin [44]. The
results of these methods were taken from the corresponding referenced articles.
The experiments also investigate the influence of Darwinian reflection on IPOP-
CMA-ES performance. The results are provided in Table 5.

According to the results shown in Table 5, there are 12 statistically significant
differences between the results of IPOP with Darwinian reflection and IPOP’s
default configuration, which uses transformation. In 9 cases Darwinian reflection
improved the results. Therefore, BCHMs are also important in IPOP version of
CMA-ES and Darwinian reflection improves the average performance of IPOP
on CEC 2017.

Even though IPOP with Darwinian reflection was not tuned to solve CEC
2017 problems, it yielded averages that are better than L-SHADE derivatives
for 7 functions. It was the best algorithm on shifted and rotated versions of non-
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continuous Rastrigin’s and Schwefel’s functions (number 8 and 10). It was also
good at optimizing composition functions (21-30). When comparing modified
IPOP with SALSHADE it seems that IPOP is slightly better (15:8 wins in
the comparison of the means), but clearly SALSHADE-cnEPSin is the best
algorithm in the table, as it has the best mean in 16 cases and modified IPOP
has the best mean in 8 cases. SALSHADE-cnEPSin is especially good at hybrid
functions (11-20).

The results can be concluded as follows. The choice of BCHM is important
in the modern competition scenario. Having proper BCHM improves the results
of IPOP-CMA-ES on the average, which allows it to beat the results of one of
recently proposed algorithms, but does not allow it to win the competition with
the most recent variant of L-SHADE. It is highly probable that future modifica-
tions of IPOP-CMA-ES (with proper BCHM) can make it quite a competitive
method.

5. Conclusions

In this paper, the influence of 22 BCHMs on the performance of the CMA-
ES algorithm was investigated. The empirical tests included three scenarios: 1)
three unimodal objective functions with changing distances from the optimum
to the boundary; 2) functions from the CEC 2017 benchmark with upper bounds
set to the optimum; 3) functions from the CEC 2017 benchmark with bounds
set to [−100, 100]n and functions from the BBOB benchmark with bounds set
to [−5, 5]n.

The results of the experiments make it possible to draw several conclusions.
The most important of them is that the choice of BCHM does make a difference
to CMA-ES. Even though optima are quite far from the bounds in the regular
CEC 2017 benchmark, BCHMs are used frequently. For the benchmark, the
best results were achieved by BCHMs that are not used in off-the-shelf CMA-ES
implementations, i.e. by Darwinian reflection and resampling. Using Darwinian
reflection in IPOP version of CMA-ES gives also better average results than
IPOP’s default configuration, and makes it more competitive with the most
recent variants of L-SHADE.

From the group of BCHMs used in existing implementations, transforma-
tion is the best. In that group, the idea of decreasing weights improves weighted
penalty, which improves additive penalty. Therefore, experimenters should bear
in mind that even official CMA-ES implementations come with different BCHMs,
so attention should be paid to the choice of implementation.

Even though repair by projection is fast and simple to implement, all its vari-
ants have a negative impact on CMA-ES performance. Supposedly they induce
a disadvantageous change of the distribution of points generated by CMA-ES.

It was also observed that the influence of BCHMs on one optimization
method (e.g., DE) may not be the same as their influence on another (e.g.,
CMA-ES). One exception to this rule is resampling, which is good in CMA-ES
and in many variants of DE.
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