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CONSTRUCTIVE INDUCTION IN BIO-SEQUENCES

This  paper  is  devoted to analysis of DNA sequences.  The aim  of the  analysis is  to recognize  biologically 
important  sites, i.e. the coding and non-coding parts of the DNA sequence. We introduce a novel algorithm 
which uses constructive induction to perform classification tasks. Each attribute of a DNA sequence is based on  
the definition of certain pattern. The pattern construction problem is defined as a search task in the space of all  
possible patterns.  We briefly discuss  possible application  of the  algorithm  to domains  different  than  DNA 
analysis, where processing of datastream is required.

1. INTRODUCTION

Bioinformatics is a quite new field of research bringing together  biology, mathematics and 
computer  science.  Since the inception of the Human Genome Project,  bioinformatics has drawn 
much of attention. Upon completing any genome project one needs to analyze and interpret the vast 
amount  of data  (about  3 billion long DNA sequence for human). DNA sequence is a carrier of 
complete information about organism. It is composed of small building blocks – nucleotides. Each 
nucleotide consists of three parts: a base molecule (a purine or a pyrimidine), sugar, and one or more 
phosphorate groups. The purines are: adenine (A) and guanine (G), and the pyrimidines are cytosine 
(C) and thymine (T). Every DNA strand has its head called 5' end and its tail called 3' end. To be 
more stable, DNA strand is connected with another, a complementary one. Complementarity means 
that in each respective site, each strand contains a nucleotide complementary to the one in the other 
strand.  Adenine  bonds  exclusively with  thymine (A-T)  and  guanine  with  cytosine  (G-C).  The 
connected strands have opposite directions and are composed of complementary parts called base 
pairs (bp). When DNA is temporally in the form of a single sequence, it could connect with itself (A-
T,  C-G)  and  form two-  and  three-dimensional  structures.  Such  structures,  if  formed  have  an 
influence  on  various  operations,  e.g.  it  could  stop  transcription  of  DNA to  RNA and,  in  the 
consequence, the DNA would not lead to the synthesis of proper proteins as we discuss later in the 
text. 

Identification of all functional elements in the genome,  including genes and the regulatory 
elements, is a fundamental challenge in genomics and computational biology [5]. The first task is 
genome annotation which consists in finding sequences that encode proteins (genes). The synthesis 
of a protein is a two-step decoding process. The sketch of that process is depicted in Figure 1. The 
first stage is the transcription from DNA to RNA; the second stage is the translation of RNA to  
proteins. In higher organisms (eukaryotes) transcription produces pre-mRNA – the sequence that is 
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composed of regions (subsequences) that are responsible for information coding (exons) and those 
which are not (introns). During splicing, the mRNA is produced by removing introns from the pre-
mRNA by spliceosome; mRNA (messenger RNA) is a sequence that encodes a protein. The next 
stage of the protein synthesis process is translation. If we need to predict the protein sequence we 
should only find the ORF (Open Reading Frame) sequence – a part of the sequence that undergoes 
translation [9].

Fig. 1. Transcription and translation in eukaryotes

So far the annotation process has been performed in a collective way – by the community 
annotation via the Internet [4]. That kind of annotation needs supporting experimental evidences and 
www servers with dedicated tools. There exist libraries of such evidences that collect DNA resulting 
from the  reverse  transcription  from mRNA,  so  they  are  composed  of  exons  only.  Such  long 
sequences are called cDNA; short sequences, caused by the errors in reverse transcription, are called 
EST.  Internauts,  after reading tutorial, use www tools to  put  their annotations based on cDNA, 
EST,  and a  general knowledge.  Those  annotations  are  later  accepted  or  rejected  by experts  – 
curators of the database. This procedure needs great effort of many experts and still there are no 
supporting sequences for some annotations.

DNA annotation  covers  the  understanding of  all functions  that  are  encoded  in the  DNA 
sequence. In this paper, we propose a framework for performing annotation tasks in biosequences. 
For  clarification purpose  we will concentrate  on recognizing coding sequences (exons)  in DNA 
sequences.

1.1. PATTERN REPRESENTATION

Every problem connected with the computational DNA analysis, annotation being an example, 
is at least related to the issues of pattern representation, building, and matching.

Several notations for describing patterns have been used [8], but most of them are the versions 
of a standard notation used in regular expressions. The basic pattern notation is just a sequence of 
characters, each of them denoting a single nucleotide or a group of nucleotides. A more powerful 
representation introduces ambiguous symbols. An ambiguous symbol is the expression that allows 
more  than  a  single  nucleotide  in  certain  position.  In  the  most  commonly used  notation  [8], 
alternatives for considered position are enclosed in square brackets, e.g. A-[TC] matches sequences 



AT and AC. A special case of those patterns are patterns with so called "don't care" symbols or gaps, 
e.g. A-x-T-x-x-G. Such symbol represents any letter from the alphabet. A flexible gap is defined by 
two numbers: the minimum and the maximum number of "don't cares" allowed, e.g. [CG]-x(2,3)-T 
matches sequences of the length four or five that end with T and start  with C or G. That kind of 
patterns is used, for instance, in the PROSITE database (database of protein families described by 
common patterns). PROSITE notation introduces also symbols which allow for relating pattern to 
the matching position. Symbol ‘<’ before pattern P means that we require P to match at start of a 
sequence, and ‘>’ after P, requires P in the sequence end. Such patterns are quite powerful but hard 
to be effectively acquired from sequences.

Another  approach is a matrix pattern representation.  The basic idea is to  use a  matrix of 
numbers containing scores for each nucleotide in each position of a fixed-length subsequence. There 
are two types of weight matrices: a position frequency matrix (PFM) and a position weight matrix 
(PWM).  PFM records  the  position-dependent  frequency of  each nucleotide,  and PWM contains 
logarithmic weights for computing a match score. 

Patterns are also modelled by Markov Models. The k-order Markov Model is the probabilistic 
model that takes into consideration  k previous elements in the sequence. The higher order of the 
model, the better ability to describe DNA, but the more parameters to be estimated (so the harder to  
compute). In practice k ranges from 0 to 5. Unfortunately even such a sophisticated model cannot 
capture distant dependences which often occur in DNA sequences.

1.2. ALGORITHMS FOR GENE FINDING

A main part of the annotation process is gene finding. This task includes detection of protein 
coding genes and splice sites. There are two types of splice sites: a donor site (start of the intron) 
and an acceptor site (the intron end). 

Most  of  the  algorithms,  like  those  described  in [9],  decompose  the  splice site  detection 
problem into two tasks: finding a donor site and finding an acceptor  site. Saeys [9] proposed an 
approach based on a classifier with the attributes induction. He aligned all training sequences to start 
in a certain site, e.g., in a donor site. After that, he generated position dependent features using the 
schema: if a nucleotide T is in the right first position of the donor site, then the attribute T1 is set to 1 
and attributes  A1,  C1,  G1 are  set  to  0.  In a  similar way he also defined a large set  of position 
independent  attributes.  He  also  performed  transformation  of  DNA  sequence  into  the  Fourier 
spectrum trying to  capture periodicity in DNA, and, as the result of that, he generated additional 
attributes. He used counters of AT/TG dinucleotide percentage upstream and other features. Having 
huge amount of features he used few of the feature selection techniques to  reduce the number of 
features. After that, he applied a few classification algorithms.

Although he defined such large set of attributes, he still did not cover all the important DNA 
features.  DNA and RNA could fold into  the secondary structure.  That  kind of folding depends 
mainly on complementary matches of distant parts of a sequence which could not be captured by his 
approach.  Defining large  set  of  simple  attributes  needs  great  computational  effort.  Moreover, 
classification algorithm cannot  be successfully applied to  such large set.  There is a need to  use 
feature  selection techniques  that  unfortunately do  not  guarantee  that  important  features  will be 
conserved in the final feature set.

Another  popular approach is represented  by Genscan algorithm [3].  Genscan models gene 
using finite state automata. Each state that corresponds to important functional sequence fragment 
(intron, exon, promoter,  intergenic region and others) is modelled by the Hidden Markov Model 
(HMM).

This  approach  has  also  its  drawbacks.  Predicted  gene  number  may not  be  correct;  the 
algorithm was developed for human/vertebrate sequences, which results in lower accuracy for other 



types of sequences.  Internal exons are predicted more accurately than initial and terminal exons. 
Another  constraints  comes  form  using  HMMs,  e.g.  algorithm  cannot  capture  long-distant 
interactions in DNA sequence.  

2. THE KIS ALGORITHM

Because existing approaches are still far away from being perfect and they do not consider 
some important properties of DNA, we proposed a new algorithm for gene finding called KIS (KIS 
is an abbreviation from Polish translation of: constructive induction in sequences).  

2.1. PROBLEM DEFINITION

The term “gene finding” is narrower than annotation but it is still connected with many tasks. 
We will concentrate only on one of them – recognizing exons. The presented problem we perceive as 
a classification task – problem of classifying sequences into the two classes: exons and not exons. 
We use the decision tree based classifier and ID3 algorithm [7]. To be able to use the classifier we 
need  attributes.  The  process  of  generating  new attributes  from the  data  is  called  constructive 
induction [6]. The main goal of KIS is to generate good attributes from the DNA sequence, a good  
attribute should meaningly contribute to the classification accuracy; in the same time, the attribute 
value should be easy to compute.

2.2. ATTRIBUTES

We focus on attributes that can be derived from similarity patterns only (i.e., we do not use 
Fourier transforms). Therefore to define an attribute, a similarity pattern should be defined first. As a 
base for our pattern notation we choose PROSITE notation. That notation was extended to capture 
important  DNA  features,  and  in  particular,  it  allows  to  express  distant  relationships,  e.g.  A-
x(100,200)-T, and it is easy to extend and readable for humans. 

To express some DNA features (2D conformations, periodicity in exons), we use additional 
special symbols added to the standard PROSITE notation:

 C(l, fL, fH) – complementary sequence,
 P(l, fL, fH) – palindromic sequence,
 L(l, fL, fH) – palindrome of complementary sequence,
 R(l, fL, fH) – repeated sequence,
 Q(l, t, n) – sequence repeated with a period t.

Parameter l is the sequence length; parameter fL is minimum and fH maximum gap length. Parameter 
n is the percentage of hits,  e.g.  50% means that  sequence matches in half of possible positions 
according to  period  t. Example: assume that we have pattern  P(3,8,9)-T-C-A-G. The parameter  l 
here is 3, fL is 8 and fH is 9. The number l=3 is positive that means that palindrom of 3 consecutive 
nucleotides from the right hand site of P (underlined sequence) will be placed on the left of P after 
flexible gap x(8,9). When l is a negative number, then nucleotides from the left of P will be placed on 
the right. In this example after replacing P(3,8,9)  with appropriate nucleotides and flexible gap we 
will  have  pattern  A-C-T-x(8,9)-T-C-A-G.  Second  example:  pattern A-T-T-C-A-P(-3,2,2) will 
become  A-T-T-C-A-x(2,2)-A-C-T.  Proposed extensions to  a  pattern  language allow for  building 
improper patterns, i.e. patterns with conflicts on some positions. This problem is easy to eliminate 
during pattern  construction  process.  Every extended  pattern  will be  converted  to  the  standard 
PROSITE notation in the way mentioned above.  



We  will  say  that  pattern  matches  sequence  when  sequence  contains  subsequence  with 
nucleotides conformant with the pattern. Some patterns are also connected with their correct relative 
matching point,  e.g.  some pattern may match at  second position from the beginning of exon. If 
patterns without  information about  relative matching point are only allowed, than short  but very 
distinctive subsequences will not be discovered. 

Now on we are able to define attribute. Every attribute is connected with exactly one pattern 
and it returns value one when pattern matches a sequence, and zero otherwise. 

As we already mentioned earlier a good attribute should be “orthogonal” to the others, that is, 
it should meaningly contribute to the classification accuracy. The word orthogonal will be used in 
that context, not in its pure mathematical meaning. 

Because we have large data sets we could allow simple orthogonalization approach. We will 
eliminate all correctly classified sequences from training set. In that case a good new attribute would 
allow to  classify cases which were improperly classified with the other attributes,  so every good 
attribute would be orthogonal to others.

2.3. METRIC SPACE OF PATTERNS

Consider the set  of patterns.  Each pattern matches a set  of sequences.  Pattern P 1 is more 
general than P2, if the set of sequences matched by P2 is completely contained in the set of sequences 
for P1; in addition, the set of sequences for P1 may contain sequences that are not matched by P2. We 
will refer to P2 as to a more specific pattern. Specifity and generality relation can be used to define a 
metric in the space of sequences. As a metric choose a function that equals a minimum number of 
elementary operations that have to be performed to get one pattern from another one. An elementary 
operation is either concretization (making the pattern more specific) or generalization of a pattern.  
The size of such defined space is huge but only current working point will be stored in a memory. In 
each iteration the set of all points is generated that are neighbours of a current point. Then patterns 
that do not fit the training data are removed from the set of neighbours. That is why searching over  
that space is feasible. 

Note that it is possible to get any pattern from any other one with the finite set of elementary 
changes, so the search space is consistent and the metric values have a finite upper bound. Moreover, 
for a pair of patterns it may be possible to find many distinct paths between them.

2.4. SCORING FUNCTION

The score result of a pattern should be related to the number of the pattern matches in positive 
class (exons), in negative class, and to the number of cases when the pattern is met exactly in the  
same position in different  sequences.  That  position could be related  to  the  left  or  the  right  of 
subsequences form certain class (e.g. exons). To express afore mentioned features as one number we 
define the following scoring function to be maximized:

|| RNLNRPLP SSSSQ  (1)

where L and R indexes for scores S stands for left and right sequence alignment; P and N stands for 
positive and negative class,  and a  score  for  appropriate  alignment  and class is computed  from 
equation:
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where M is the set of positions of pattern match and ni is the number of matches at position i. 
The Q = 0 is minimum score and it means that pattern do not match to the sequence or the pattern 
has weak distinguish power.

2.5. SEARCH METHODS

We perceive the problem of pattern induction as a search task in the space of patterns. The 
search starts from some starting point and it is performed until a stop criterion is met. Having the 
search  space  defined,  it  is possible to  use  general purpose  search methods.  We will use  three 
different search techniques: evolutionary algorithm, Monte Carlo search and greedy search.

2.5.1. EVOLUTIONARY ALGORITHM
Evolutionary algorithm (EA) is a method inspired by principles of the natural evolution. EA is 

powerful global search method that many times was successfully applied to various instances if NPC 
problems (e.g. travelling salesman problem [10]). EA maintains a population of encoded solutions 
(points from the search space). In each iteration, the population is processed by the selection and 
genetic operators (see [1] for detailed description). 

In our approach, the mutation will be defined as the transition to a random neighbouring node. 
We plan to use the nonelitist, tournament selection of size two. The population size will initially be 
set to 20 and the number of generations to 200. The best individual from the last generation will be 
returned as the result.

2.5.2. MONTE CARLO SEARCH
In the Monte Carlo search a random walk towards more specific patterns will be performed. 

The probability of pattern concretisation will decrease in proportion to the distance of a current point 
to the point that represents an empty pattern. The number of walks will be equal to the product of 
the number of generations and the population size from evolutionary algorithm. A pattern with the 
best score according to the training set will be returned as a result. Such simple algorithm is one of 
the global search methods and is able to produce good results in certain conditions. It is also good  
baseline to compare with the evolutionary algorithm.

2.5.3. GREEDY SEARCH
Greedy search is a fast local search method. The algorithm maintains a single working point 

from the space of patterns. In each iteration, a new working point is selected which maximizes the 
scoring function in the neighbourhood of the current working point. The algorithm stops if there is 
no better point in the neighbourhood of the current working point.

2.6. STARTING POINT

The computation time and the final result of the algorithm depends on selection a starting point 
for search methods. Conceptually the easiest way is to start from the most general pattern, i.e. ‘x’. 
This approach  guarantees  that  finding every important  pattern  is at  least  theoretically possible. 
Unfortunately this approach will dramatically slow down the computations. Because DNA alphabet 
size is only four,  small patterns (e.g.  “A”) will occur  many times in exons and other  functional 
elements. The same about  pattern T, [AT],  etc.,  even pairs or  triplets will have no classification 
power. The more sophisticated methodology will be used. First, all training sequences will be aligned 
to  the starting positions of exons. Then we will be able to  compute some kind of histogram for 
exons. Having histogram allows us to  detect anomalies like high peaks for specific nucleotides at 
specific positions. These anomalies may be biologically important places and so, good starting points 



for a search algorithm could be generated. To get more interesting starting points beside exons left 
alignment, we will also perform exons right alignment and introns left and right alignments.

3. GENERAL FRAMEWORK

It is not so easy to provide any algorithm that solves complicated problem, e.g. recognizing 
exons. In that case a good idea is to split the problem into smaller ones that will be easier to solve. 
Sometimes big problem could also be split  to  a  set  of  already solved problems. The proposed 
approach does so – it splits the problem of exon recognition into a set of problems that have been 
already solved, and leaves two smaller problems how to  define the neighbourhood in the search 
space and how to score elements from such defined space. 

Various kinds of problems (signal detection, credit card assignment, robot  movement, etc.) 
could be perceived as classification tasks. Having only a set of labelled examples (training set) allows 
us to use one from the set of off-the-shelf algorithms to build a classifier. A typical situation is that 
the features used to build a classifier have the form of attributes, which can be grouped into a vector.  
Unfortunately, if we analyse sequential data we do not have well-defined attributes so we should 
construct them.

The attribute definition is another big problem, but if we think of that task as a space search 
problem, all we need is to define the search space (neighbourhood relation), the scoring function, and 
to choose one of the search algorithms.  It looks like building solutions from small building blocks. 
Most of those blocks could be exchanged by other with similar function. So we could try different 
combinations of space, different algorithms and scoring functions. That framework was already used 
by the authors to search for the best classifier [2]. 

Every  algorithm searches  some  space  but  in  most  cases  it  is  hidden  somewhere  inside 
algorithm  and  we  do  not  have  ability  “to  play”  with  different  search  methods,  with  the 
neighbourhood relation etc. When something is hidden we are not able to optimize it.

4. CONCLUSIONS

The assumption of a new algorithm (KIS) for recognizing exons in eukaryotes was presented. 
It  brings  a  mixture  of  machine  learning  and  optimization  into  the  bioinformatics.  Using  very 
successful concepts of a classifier and global search methods gives a possibility to overtake existing 
approaches based only on elementary statistics. Deriving general framework from KIS allows us to 
simply switch to other problems in bioinformatics and far beyond.
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