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Abstract—This paper presents the RB-IPOP-CMA-ES algo-
rithm which is an enhanced version of IPOP-CMA-ES. The
algorithm uses midpoint of the population as an approximation
of the optimum. The midpoint fitness is also used to introduce
a new restart trigger for IPOP. Other IPOP restart triggers and
parameters are also corrected.

The performance of the proposed approach is evaluated on 30
problems from the CEC 2017 benchmark for 10, 30, 50 and 100
dimensions. The results confirm that RB-IPOP-CMA-ES achieves
better results than its version that does not utilize midpoint and
is a considerable improvement over a plain IPOP-CMA-ES.

I. INTRODUCTION

The CMA-ES [1] algorithm has become a standard for real
parameter optimization. Since it is a very robust but local
optimizer [1], it could stop its operation in any of local optima.
To improve CMA-ES results on multimodal problems, several
restart strategies have been proposed. One of them is IPOP-
CMA-ES [2] which involves restarts with increased population
size when stagnation is detected. This simple approach won the
CEC 2005 competition [3]. An implementation of IPOP-CMA-
ES is provided by the cmaesr package [4] in the R language
[5]. Its code was used as a base to develop the algorithm
presented in this paper and it was also used as a reference
method.

Every evolutionary optimization process consists of two
phases: exploration, when the algorithm explores new regions
of the search space, and exploitation, when the algorithm is
trying to locate a (possibly local) optimum as accurately as
possible. In evolutionary algorithms the exploitation phase
can be sped-up by computing the population midpoint [6].
The midpoint better estimates an optimum than the best-
so-far solution when the population has settled down in an
attraction basin of a local optimum. It can be easily seen
and theoretically proven for quadratic functions but it was
also shown in [7] that computing and evaluating the midpoint
is a cost worth paying for a wider class of functions. The
published experiments showed that even for difficult problems
taken from CEC 2005 and CEC 2013 [8] the improvement
achieved by computing the midpoint is easily noticeable for a

generational evolutionary algorithm, an evolutionary strategy,
classical differential evolution and CMA-ES.

The remainder of this paper is organized as follows. Section
II describes the IPOP-CMA-ES algorithm. Section III presents
all modifications that were introduced to the IPOP-CMA-ES
R implementation. The experimental comparison of the IPOP-
CMA-ES version introduced in [2] to its R implementation is
given in Section IV-A. Section IV-B investigates the impact
of changes introduced in RB-IPOP-CMA-ES on optimization
results. The full CEC tables are given in Section IV-C. Section
V concludes the paper.

II. IPOP-CMA-ES

Since RB-IPOP-CMA-ES is an extension of IPOP-CMA-
ES a description of IPOP will be provided in this section.
The pseudo-code of IPOP is presented in Fig. 1. It can
be observed the algorithm require an initial solution to be
optimized. The method consists in iterating CMA-ES and
recording the best-so-far solution. The CMA-ES is stopped
not only when convergence is observed but also when its
parameter values indicate that further proceeding will become
ineffective. Before each restart of CMA-ES the population size
is increased, and a new initial solution is selected. The best-
so-far solution, that has ever been observed in all turns of the
loop, is returned as the algorithm result.

Paradoxically in the R implementation of the IPOP-CMA-
ES restarts are disabled by default. They could be enabled by
setting the max.restarts variable to a value greater than zero
and setting the restart.triggers variable to a list of stopping cri-
teria names which instead of terminating optimization should
result in a restart. The default stopping criteria are as follows:

• tolX – the standard deviation of the normal distribution is
below tolerance in all coordinates, with default tolerance
set to 1e-12,

• noEffectAxis – addition of 0.1 ∗ σ in a principal axis
direction of the covariance matrix (C) does not change
the mutation distribution mean value (m),
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Require: initial solution
while not stop do

run CMA-ES with modified stop criterion
increase population size and sample an initial solution

end while
return best-so-far

Fig. 1. Pseudo-code of IPOP-CMA-ES.

• noEffectCoord – addition of 0.2 ∗ σ in any coordinate
does not change m,

• conditionCov – condition number of the covariance ma-
trix exceeds a tolerance value, with default tolerance set
to 1e14,

• indefCovMat – the covariance matrix is not numerically
positive definite.

Other stopping criteria are also available:
• stopOnOptValue – stop after reaching the optimal fitness

value with a given tolerance,
• stopOnMaxEvals – stop after a specified number of

objective function evaluations,
• stopOnMaxIters – stop after a specified number of itera-

tions,
• stopOnOptParam – stop after finding the optimal param-

eters with a given tolerance,
• stopOnTimeBudget – stop if maximal running-time bud-

get was reached.
As it was described in [2], in IPOP-CMA-ES a stagnation of

the algorithm is detected by examining the best fitness value
of the LastIts search iterations, where LastIts is defined as
follows:

LastIts = 10 + d30n/λe (1)

If the range of the best objective function values of the last
LastIts iterations is zero, or the range of these function values
and all function values of the recent generation is below
10−12 then a restart is triggered. This restart strategy is not
implemented in the R version of the algorithm.

In the IPOP-CMA-ES R implementation when a restart is
triggered, a new starting point is set to the mean (m) of the
search distribution that was calculated just before the restart. In
the original version of the algorithm [2] a new starting point is
randomly drawn from a uniform distribution in the admissible
area.

In the IPOP-CMA-ES R implementation all CMA-ES-
related parameters are set as in plain CMA-ES, i.e., the
offspring population size λ is set to 4 + b3 ∗ log(n)c, where
n is problem dimensionality, the population size µ is set to
bλ/2c, and the initial step size σ is set to 0.5.

III. IMPLEMENTATION AND TUNING OF
RB-IPOP-CMA-ES

The RB-IPOP-CMA-ES is based on the freely available R
implementation of the IPOP-CMA-ES [4]. The pseudo-code
of the presented approach is identical to the pseudo-code of
IPOP that was presented in Fig.1. All aforementioned default

stopping criteria of the R implementation of the IPOP-CMA-
ES were used as restart triggers. The maximum number of
restarts was set to 100.

According to the CEC2017 rules [11] the following stopping
criteria were used:

• stopOnOptValue – stop after reaching the optimal value
with tolerance 1e-8,

• stopOnMaxEvals – stop after a specified number of
objective function evaluations.

A. Parameter tuning

The most straightforward way to improve an algorithm’s
performance is to tune its parameters. Two main CMA-
ES parameters were changed. One is the default offspring
population size λ, which was multiplied by 4, and the other
is the initial value of σ (initial step-size), which was set to
7. The intuition behind increasing λ is that a very small
population size is not able to correctly sample landscapes
of sophisticated benchmark functions. The change of σ was
triggered by inconsistency of its default value and values used
in IPOP-related publications, e.g., it was set to 100 in [9], or
even to 120 in [10]. Each introduced change underwent limited
verification in 10 dimensions on functions 5 and 6 from the
CEC 2017 [11] benchmark.

B. Starting point

CMA-ES requires providing a starting point. Selecting ran-
domly such a point may result in a start in a very poor area
of the search space. Therefore in this work the best from 100
randomly generated solutions is used as a starting point.

C. IPOP modifications

To achieve further improvements, some modifications of
the algorithm were introduced. They can be divided into two
groups: 1) to force algorithm to restart as early as possible
to avoid useless evaluations of the fitness function; 2) to
repair parameters which went out of reasonable bounds after
adaptation performed during evolution.

In the considered R implementation of IPOP-CMA-ES it is
assumed that if any eigen vector value of the covariance matrix
(C) is less than the first eigen vector value multiplied by 2.22e-
16 then a restart is performed. In the proposed approach all
values below 1e-15 are set to 1e-15. A restart is performed
when the maximum eigen vector value exceeds the minimal
eigen value multiplied by 1e14.

In the default restart criterion stopOnNoEffectAxis a restart
is performed if addition of 0.1 multiplied by σ does not change
the mean value (m). In the proposed modified version of the
algorithm 0.1 was changed to 0.3.

In the IPOP-CMA-ES R implementation when a restart is
triggered, a new starting point is set to the mean (m) of the
search distribution that was calculated just before the restart.
The algorithm was changed to restart with a new solution
randomly drawn from a uniform distribution in the admissible
area as it was described in [2].



Another modification of the algorithm was introduced to
reduce mutation strength, i.e., when any value from the
σ ∗

√
diag(C) vector exceeds Max = (u − l)/5 then σ is

set to min(Max/
√
diag(C))/4, where u and l are the box

constraints of the search space. If in the current run of the
algorithm the number of σ corrections is greater than 5, a
restart is performed.

Whenever a flat fitness landscape is detected in the IPOP-
CMA-ES algorithm, the value of σ is increased. In the
presented approach the corrected σ is additionally multiplied
by 2 to speed up the escape from the current region of the
search space.

D. Utilizing population midpoint

In the case of CMA-ES the midpoint does not have to
be calculated from the population because the population is
generated from one point (m), which is the mean of the search
distribution. Therefore in the presented algorithm m is directly
used as a midpoint.

The midpoint is used for two purposes: 1) to detect stagna-
tion of the algorithm; 2) to approximate the optimum.

In the presented approach the stagnation detection is not
based on examining the best fitness value of the LastIts search
iterations as in IPOP. Here it is based on the fitness of the
midpoint. Every LastIts iterations of the algorithm the quality
of the midpoint is evaluated. If the difference between two
consecutive evaluations is less than 1e-8 then a restart is
triggered.

In the CEC 2017 competition the task of participants is to
report the error value achieved after a specified fraction of
the maximum available budget. The list of 14 fractions is as
follows: 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1. In the proposed approach before generating
every report the midpoint is evaluated and compared with the
best-so-far solution. The better of the two is considered as the
result of the algorithm. Of course the cost of 14 evaluations
is subtracted from the budget available for the algorithm.

IV. EXPERIMENTAL VALIDATION

The experimental validation of the described method was
performed according to the rules of the CEC 2017 Special
Session and Competition on Single Objective Real-Parameter
Numerical Optimization, bound constrained case [11]. There
is no official version of the benchmark in the R language but
a wrapper to the official C code has been made available [12].

All 30 functions defined in the benchmark were minimized.
For each considered dimension (D), 51 independent runs of
the algorithm were executed. Each run was terminated after
10000∗D fitness evaluations. The cost of all evaluations used
to select the starting point and to asses the fitness of the
midpoints is subtracted from the budget available for CMA-
ES.

A. Comparison of IPOP-CMA-ES to its R implementation

As described in section III, the R implementation of IPOP-
CMA-ES does not exactly follow the description provided in

TABLE I
AVERAGE FITNESS, STANDARD DEVIATIONS AND PAIRED WILCOXON TEST

OUTCOMES IN 10D (REFERENCE=IPOP-CMAESR)

IPOP-CMAESR IPOP-CMA-ES
F. Mean Std Mean Std T
1 1.0847e+02 7.7463e+02 2.5035e+08 5.6755e+08 +

2 0.0000e+00 0.0000e+00 8.1556e+09 4.3847e+10 +

3 1.4271e−08 5.3663e−09 9.0450e+03 2.1127e+04 =

4 1.5183e−08 4.7717e−09 1.4423e−08 5.5710e−09 =

5 6.5153e+01 2.4114e+01 6.4636e+01 2.3804e+01 =

6 5.0469e+01 1.1180e+01 5.0838e+01 1.0730e+01 +

7 3.1167e+02 7.1574e+01 3.1372e+02 7.2287e+01 =

8 5.9689e+01 1.9943e+01 5.9701e+01 1.9987e+01 +

9 1.2940e+03 5.7372e+02 1.3017e+03 5.7659e+02 +

10 1.3745e+03 3.7569e+02 1.3708e+03 3.6843e+02 +

11 7.1603e+01 3.6178e+01 7.6368e+01 5.8374e+01 =

12 6.8545e+02 5.1423e+02 1.1316e+07 2.1261e+07 +

13 9.2730e+02 4.3981e+03 2.3467e+04 2.6452e+04 +

14 9.0421e+01 6.4653e+01 4.6364e+03 5.5081e+03 +

15 1.0066e+02 6.0873e+01 4.1247e+04 7.3777e+04 +

16 4.9515e+02 1.8285e+02 5.0312e+02 1.8166e+02 +

17 2.4886e+02 1.4636e+02 2.4865e+02 1.4734e+02 =

18 3.7562e+03 9.5736e+03 1.2639e+06 4.1164e+06 +

19 5.5076e+01 3.9701e+01 1.3307e+05 7.6558e+05 +

20 2.3372e+02 1.0322e+02 2.3500e+02 1.0048e+02 +

21 2.3321e+02 6.0428e+01 2.3276e+02 6.0241e+01 =

22 1.2006e+02 1.4194e+02 1.2103e+02 1.4791e+02 =

23 4.1745e+02 5.3291e+01 4.2041e+02 5.4951e+01 =

24 4.1356e+02 1.1122e+02 4.2163e+02 1.1402e+02 =

25 4.2098e+02 5.1808e+01 4.2057e+02 5.1009e+01 =

26 6.6121e+02 5.9627e+02 6.1373e+02 5.7441e+02 =

27 4.6323e+02 5.5548e+01 4.4858e+02 4.9957e+01 −
28 4.8007e+02 1.5957e+02 4.7723e+02 1.5708e+02 +

29 5.3868e+02 1.8035e+02 5.4491e+02 1.8069e+02 =

30 9.4061e+06 1.6644e+07 1.6131e+07 2.2653e+07 +

[2]. Therefore the results of the R implementation of IPOP-
CMA-ES will be called IPOP-CMAESR within this paper.

The two important nonconformities of IPOP-CMAESR have
been detected: 1) IPOP-CMA-ES has an additional restart
strategy in which stagnation of the algorithm is detected
by examining the best solution fitness dynamics; 2) when a
restart is triggered in IPOP-CMA-ES, a new starting point is
randomly drawn from uniform distribution unlike in IPOP-
CMAESR, where it is set to mean of the search distribution.

It is interesting to find out whether changes introduced in
the R implementation improve or deteriorate the performance
of the algorithm. To investigate that, an experiment was
performed with 51 independent runs of the original and R
version of the algorithm with the same set of starting points.
The obtained mean and standard deviation values are reported
in Table I. The results were also compared by the paired
Wilcoxon test with a confidence level of 0.95.

It can be observed that IPOP-CMAESR is generally better
than IPOP-CMA-ES. For that reason the IPOP-CMAESR will
be used as a reference method in the remainder of the paper.

The inferiority of IPOP-CMA-ES may result from its stag-
nation detection strategy that is based on the analysis of the
best solution dynamics. That strategy invokes restarts too early



TABLE II
AVERAGE FITNESS, STANDARD DEVIATIONS AND PAIRED WILCOXON TEST

OUTCOMES IN 10D (REFERENCE=RB-IPOP)

RB-IPOP No midpoint IPOP-CMAESR
F. Mean Std Mean Std T Mean Std T
1 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.1e+02 7.7e+02 +

2 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 0.0e+00 0.0e+00 =

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.4e−08 5.4e−09 +

4 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.5e−08 4.8e−09 +

5 1.6e+00 2.0e+00 2.2e+00 2.9e+00 = 6.5e+01 2.4e+01 +

6 2.0e−07 6.2e−07 3.3e−07 1.6e−06 + 5.0e+01 1.1e+01 +

7 1.0e+01 2.7e+00 1.0e+01 1.9e+00 = 3.1e+02 7.2e+01 +

8 2.0e+00 2.3e+00 1.7e+00 2.0e+00 = 6.0e+01 2.0e+01 +

9 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.3e+03 5.7e+02 +

10 4.4e+02 1.9e+02 4.2e+02 1.9e+02 = 1.4e+03 3.8e+02 +

11 1.7e−01 4.1e−01 9.1e−02 2.8e−01 = 7.2e+01 3.6e+01 +

12 1.1e+02 9.4e+01 1.1e+02 8.6e+01 = 6.9e+02 5.1e+02 +

13 4.2e+00 3.6e+00 3.4e+00 3.1e+00 = 9.3e+02 4.4e+03 +

14 1.6e+01 1.2e+01 1.9e+01 1.1e+01 = 9.0e+01 6.5e+01 +

15 4.9e−01 4.8e−01 5.1e−01 4.5e−01 = 1.0e+02 6.1e+01 +

16 9.7e+01 1.0e+02 8.9e+01 1.1e+02 = 5.0e+02 1.8e+02 +

17 5.2e+01 3.4e+01 5.3e+01 3.4e+01 = 2.5e+02 1.5e+02 +

18 2.0e+01 2.3e+01 2.0e+01 1.7e+01 = 3.8e+03 9.6e+03 +

19 1.8e+00 3.3e+00 1.4e+00 1.2e+00 = 5.5e+01 4.0e+01 +

20 1.1e+02 7.0e+01 1.1e+02 7.4e+01 = 2.3e+02 1.0e+02 +

21 1.4e+02 4.9e+01 2.1e+02 5.4e+01 + 2.3e+02 6.0e+01 +

22 9.9e+01 5.6e+00 1.0e+02 1.2e−01 + 1.2e+02 1.4e+02 +

23 2.8e+02 7.1e+01 3.1e+02 3.1e+01 + 4.2e+02 5.3e+01 +

24 2.0e+02 1.0e+02 3.1e+02 8.5e+01 + 4.1e+02 1.1e+02 +

25 4.0e+02 6.5e+01 3.9e+02 7.9e+01 = 4.2e+02 5.2e+01 +

26 2.7e+02 1.5e+02 2.8e+02 1.5e+02 = 6.6e+02 6.0e+02 +

27 3.9e+02 1.1e+00 4.0e+02 6.5e+00 + 4.6e+02 5.6e+01 +

28 4.0e+02 1.6e+02 4.3e+02 1.7e+02 + 4.8e+02 1.6e+02 +

29 2.7e+02 4.5e+01 2.7e+02 4.6e+01 = 5.4e+02 1.8e+02 +

30 2.0e+03 1.0e+04 2.2e+03 9.2e+03 = 9.4e+06 1.7e+07 +

for the most of the CEC 2017 functions, especially for highly
conditioned functions.

B. Comparison of RB-IPOP-CMA-ES to its simplified methods

A comparison of the method proposed by this work (RB-
IPOP) to its version without the utilization of midpoints (No
midpoint) and to the IPOP-CMA-ES R implementation (IPOP-
CMAESR) was performed. All algorithms were run on the
same set of starting points. The mean, standard deviation, and
the outcome of the paired Wilcoxon test (with a confidence
level of 0.95) are presented in Table II (10D), III (30D), and
IV (50D).

According to the Wilcoxon test (columns ’T’ of Tables
II, III, IV), the RB-IPOP-CMA-ES was never worse than
the other algorithms under comparison. It was better than its
version without utilizing midpoint on 6 to 9 functions. Its
worth noticing that the number of functions with improvement
due to midpoint utilization increased with dimensionality of
the problem (from 7 in 10D to 9 in 50D). The RB-IPOP-
CMA-ES was better than IPOP-CMAESR on 29 functions in
all dimensions.

C. CEC 2017 tables

Following the rules of the CEC 2017 benchmark for single
objective bound constrained problems, the results of 51 inde-
pendent runs of RB-IPOP-CMAES were gathered for problem

TABLE III
AVERAGE FITNESS, STANDARD DEVIATIONS AND PAIRED WILCOXON TEST

OUTCOMES IN 30D (REFERENCE=RB-IPOP)

RB-IPOP No midpoint IPOP-CMAESR
F. Mean Std Mean Std T Mean Std T
1 3.2e−08 2.8e−08 5.3e−08 1.9e−08 + 6.0e−07 2.3e−06 +

2 0.0e+00 0.0e+00 7.4e+16 5.3e+17 = 1.1e+41 5.0e+41 +

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.8e−08 1.8e−09 +

4 5.5e+01 1.6e+01 5.4e+01 1.8e+01 = 4.6e+01 2.7e+01 =

5 1.6e+00 1.4e+00 1.6e+00 1.4e+00 = 3.7e+02 7.2e+01 +

6 1.2e−07 4.0e−08 1.5e−07 2.0e−08 + 7.1e+01 9.0e+00 +

7 3.4e+01 1.3e+00 3.4e+01 1.1e+00 = 2.2e+03 4.9e+02 +

8 1.8e+00 1.6e+00 2.0e+00 1.7e+00 = 3.1e+02 4.9e+01 +

9 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 8.2e+03 1.8e+03 +

10 1.4e+03 5.8e+02 1.4e+03 5.6e+02 = 4.6e+03 8.0e+02 +

11 4.1e+01 4.8e+01 5.8e+01 5.6e+01 = 1.8e+02 6.1e+01 +

12 1.1e+03 2.8e+02 1.1e+03 3.3e+02 = 5.1e+07 3.6e+08 +

13 1.2e+02 4.0e+02 5.2e+01 1.2e+02 = 3.0e+07 2.2e+08 +

14 9.1e+01 5.6e+01 9.1e+01 4.9e+01 = 1.0e+05 7.2e+05 +

15 2.2e+02 1.8e+02 2.3e+02 1.8e+02 = 1.0e+04 1.7e+04 +

16 5.0e+02 2.5e+02 5.1e+02 2.6e+02 = 1.4e+03 4.7e+02 +

17 1.3e+02 9.5e+01 1.4e+02 9.4e+01 = 1.0e+03 3.0e+02 +

18 1.6e+02 1.1e+02 1.7e+02 8.2e+01 = 1.8e+06 9.4e+06 +

19 1.1e+02 6.6e+01 1.2e+02 6.9e+01 = 4.5e+06 2.2e+07 +

20 3.0e+02 1.2e+02 2.7e+02 1.4e+02 = 8.9e+02 2.3e+02 +

21 2.1e+02 1.7e+01 2.1e+02 1.9e+01 + 5.3e+02 6.1e+01 +

22 6.7e+02 7.6e+02 5.8e+02 7.4e+02 = 5.3e+03 1.2e+03 +

23 3.4e+02 4.9e+01 3.6e+02 1.2e+01 + 1.1e+03 1.4e+02 +

24 4.2e+02 3.1e+00 4.3e+02 1.3e+01 + 7.6e+02 2.9e+02 +

25 3.9e+02 1.5e−02 3.9e+02 1.2e−02 = 3.9e+02 2.4e+00 +

26 3.9e+02 2.2e+02 4.3e+02 2.1e+02 = 5.8e+03 3.3e+03 +

27 5.1e+02 1.1e+01 5.1e+02 9.6e+00 = 6.4e+02 2.7e+02 +

28 3.1e+02 3.0e+01 3.3e+02 4.5e+01 + 3.6e+02 6.8e+01 +

29 4.9e+02 1.0e+02 5.2e+02 8.9e+01 = 1.3e+03 3.5e+02 +

30 2.8e+03 1.9e+03 4.1e+03 5.7e+03 = 2.1e+08 2.6e+08 +

dimensions 10, 30, 50 and 100. For each test function and each
dimension the best, worst, median and average error value
and its standard deviation were calculated. These values are
reported for 10, 30, 50 and 100 dimensions in Tables V, VI,
VII and VIII, respectively.

It can be observed that from the set of unimodal functions
(1-3) the first one is the hardest. When looking at the median
value it can be seen that functions 2 and 3 were solved in
all dimensions. Function 1 was solved in 10 dimensions, and
nearly solved in other dimensions.

Considering simple multimodal functions (4-10), function 9
is the easiest. It was solved in all dimensions. Function 4 was
solved in 10 dimensions.

From the set of hybrid functions (11-20) only function 11
was solved in 10 dimensions.

None of the composition functions was solved. Function 30
was the hardest to solve.

D. Algorithm complexity

The experiments were performed on a machine equipped
with an Intel Xeon CPU E7-4830 v3 @ 2.1 GHz that
was working under the control of Linux Debian Jessie. The
program was written in the R language and running in a
single thread. The complexity of the algorithm was calculated
according to [11]. More specifically, T0 is the execution
time of one million evaluations of some basic mathematical



TABLE IV
AVERAGE FITNESS, STANDARD DEVIATIONS AND PAIRED WILCOXON TEST

OUTCOMES IN 50D (REFERENCE=RB-IPOP)

RB-IPOP No midpoint IPOP-CMAESR
F. Mean Std Mean Std T Mean Std T
1 1.1e−07 4.3e−08 1.1e−07 3.6e−08 = 3.9e+02 1.9e+03 +

2 2.8e+05 2.0e+06 1.8e+08 1.3e+09 = 6.4e+82 3.9e+83 +

3 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 1.9e−08 1.1e−09 +

4 3.0e+01 4.1e+01 4.3e+01 4.4e+01 = 4.0e+01 4.6e+01 =

5 2.8e+00 1.4e+00 2.7e+00 1.7e+00 = 6.9e+02 8.5e+01 +

6 1.6e−07 1.4e−07 1.6e−07 2.1e−08 + 7.7e+01 6.5e+00 +

7 5.7e+01 1.4e+00 5.7e+01 1.7e+00 + 4.5e+03 4.2e+02 +

8 2.6e+00 1.8e+00 2.8e+00 1.6e+00 = 6.9e+02 7.1e+01 +

9 0.0e+00 0.0e+00 0.0e+00 0.0e+00 = 2.1e+04 3.5e+03 +

10 1.7e+03 9.5e+02 1.9e+03 1.0e+03 = 8.2e+03 1.3e+03 +

11 1.8e+02 5.2e+01 2.1e+02 6.3e+01 + 3.0e+02 7.6e+01 +

12 2.4e+06 1.7e+07 2.5e+03 5.2e+02 = 2.0e+10 2.8e+10 +

13 1.7e+03 1.1e+03 1.4e+03 1.2e+03 = 3.6e+07 2.6e+08 +

14 2.4e+02 7.1e+01 2.4e+02 7.4e+01 = 1.1e+06 6.0e+06 +

15 5.3e+02 1.2e+02 5.4e+02 1.6e+02 = 9.5e+03 1.1e+04 +

16 8.9e+02 3.7e+02 9.2e+02 4.2e+02 = 2.2e+03 5.6e+02 +

17 4.0e+02 1.6e+02 4.2e+02 2.1e+02 = 1.4e+03 4.4e+02 +

18 3.6e+02 1.6e+02 3.6e+02 1.6e+02 = 9.7e+06 3.5e+07 +

19 1.4e+02 4.8e+01 1.6e+02 5.8e+01 + 8.9e+06 5.2e+07 +

20 5.5e+02 2.3e+02 6.1e+02 2.8e+02 = 1.9e+03 3.8e+02 +

21 2.1e+02 3.2e+00 2.3e+02 1.9e+01 + 9.3e+02 8.0e+01 +

22 2.1e+03 1.8e+03 1.8e+03 1.2e+03 = 8.8e+03 1.2e+03 +

23 4.2e+02 1.4e+01 4.3e+02 1.2e+01 + 1.8e+03 1.7e+02 +

24 4.9e+02 5.7e+00 4.9e+02 8.6e+00 = 1.0e+03 4.1e+02 +

25 4.8e+02 5.2e+00 4.9e+02 2.3e+01 + 5.1e+02 3.6e+01 +

26 6.5e+02 3.0e+02 7.7e+02 2.5e+02 + 6.0e+03 4.9e+03 +

27 6.1e+02 5.9e+01 6.3e+02 5.4e+01 + 1.4e+03 9.4e+02 +

28 4.7e+02 1.9e+01 4.8e+02 2.4e+01 = 4.9e+02 2.3e+01 +

29 6.7e+02 2.0e+02 6.5e+02 2.0e+02 = 1.7e+03 7.1e+02 +

30 6.5e+06 5.1e+06 6.3e+06 3.5e+06 = 1.6e+09 2.2e+09 +

TABLE V
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 51

INDEPENDENT RUNS ON CEC 2017 PROBLEMS FOR DIMENSION 10

F. Best Worst Median Mean Std
1 0.0000e+00 1.4935e−08 0.0000e+00 0.0000e+00 2.0913e−09

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

5 0.0000e+00 9.9496e+00 9.9496e−01 1.5802e+00 1.9616e+00

6 1.8682e−08 3.9800e−06 7.9057e−08 2.0103e−07 6.2085e−07

7 6.4345e−07 1.2216e+01 1.0815e+01 1.0110e+01 2.6905e+00

8 0.0000e+00 1.1939e+01 9.9496e−01 1.9704e+00 2.3248e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 3.7473e−01 1.0308e+03 4.0726e+02 4.3543e+02 1.9035e+02

11 0.0000e+00 1.9899e+00 0.0000e+00 1.7118e−01 4.1048e−01

12 2.0814e−01 4.6092e+02 1.1995e+02 1.1046e+02 9.3745e+01

13 0.0000e+00 1.6291e+01 4.8371e+00 4.1702e+00 3.6141e+00

14 1.1805e−07 5.8803e+01 2.0008e+01 1.5933e+01 1.2492e+01

15 6.5063e−04 2.3778e+00 4.9999e−01 4.9090e−01 4.7594e−01

16 6.5509e−01 3.5886e+02 1.1914e+02 9.7098e+01 1.0294e+02

17 6.6927e+00 1.6403e+02 4.1752e+01 5.2461e+01 3.3580e+01

18 2.6422e−02 1.4434e+02 2.0511e+01 1.9722e+01 2.3494e+01

19 1.9432e−02 2.3615e+01 1.2091e+00 1.8158e+00 3.2994e+00

20 1.6193e+00 2.6380e+02 1.3847e+02 1.0605e+02 6.9525e+01

21 1.0000e+02 2.0906e+02 1.0000e+02 1.3735e+02 4.9239e+01

22 6.0274e+01 1.0040e+02 1.0000e+02 9.9259e+01 5.5693e+00

23 1.0000e+02 3.0916e+02 3.0287e+02 2.7502e+02 7.0550e+01

24 1.6466e−06 3.4517e+02 2.0000e+02 1.9758e+02 1.0164e+02

25 1.0000e+02 4.4338e+02 3.9804e+02 4.0227e+02 6.5374e+01

26 1.1399e−06 1.1802e+03 3.0000e+02 2.7269e+02 1.5110e+02

27 3.9382e+02 3.9863e+02 3.9501e+02 3.9486e+02 1.0888e+00

28 3.0446e−07 6.1182e+02 3.0000e+02 4.0226e+02 1.6374e+02

29 2.2625e+02 4.8150e+02 2.5444e+02 2.6583e+02 4.5310e+01

30 3.9461e+02 7.4708e+04 4.4266e+02 2.0460e+03 1.0390e+04

TABLE VI
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 51

INDEPENDENT RUNS ON CEC 2017 PROBLEMS FOR DIMENSION 30

F. Best Worst Median Mean Std
1 0.0000e+00 1.0572e−07 3.1423e−08 3.1535e−08 2.7534e−08

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 6.4117e+01 5.8562e+01 5.5276e+01 1.6455e+01

5 2.1074e−08 4.9748e+00 9.9501e−01 1.6486e+00 1.3719e+00

6 3.8387e−08 1.8404e−07 1.3284e−07 1.2079e−07 3.9666e−08

7 3.2707e+01 3.7733e+01 3.4052e+01 3.4334e+01 1.2764e+00

8 0.0000e+00 6.9647e+00 9.9608e−01 1.7564e+00 1.6477e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 3.8330e+02 2.7665e+03 1.3644e+03 1.4426e+03 5.8271e+02

11 0.0000e+00 1.6644e+02 9.9564e+00 4.1069e+01 4.7633e+01

12 4.4403e+02 1.7377e+03 1.0632e+03 1.0933e+03 2.8097e+02

13 3.9798e+00 2.5382e+03 2.6454e+01 1.1873e+02 3.9972e+02

14 2.0229e+01 2.0039e+02 1.0955e+02 9.0827e+01 5.6177e+01

15 5.0000e−01 6.2613e+02 2.2398e+02 2.1772e+02 1.8406e+02

16 1.7076e+01 1.2366e+03 5.0113e+02 5.0162e+02 2.5411e+02

17 2.3326e+01 4.1301e+02 1.0280e+02 1.3226e+02 9.5401e+01

18 2.2484e+01 5.9360e+02 1.2600e+02 1.6005e+02 1.1400e+02

19 7.8457e+00 2.9443e+02 1.0392e+02 1.1455e+02 6.5932e+01

20 4.1928e+01 5.1036e+02 2.8532e+02 2.9653e+02 1.1908e+02

21 1.0000e+02 2.2341e+02 2.1045e+02 2.0858e+02 1.6676e+01

22 1.0000e+02 2.5115e+03 1.0000e+02 6.7163e+02 7.6258e+02

23 1.0000e+02 3.6627e+02 3.4658e+02 3.3935e+02 4.9294e+01

24 4.1146e+02 4.2481e+02 4.1989e+02 4.1938e+02 3.0639e+00

25 3.8669e+02 3.8676e+02 3.8671e+02 3.8671e+02 1.4745e−02

26 2.0000e+02 8.4792e+02 3.0000e+02 3.9386e+02 2.1681e+02

27 4.8971e+02 5.3947e+02 5.1164e+02 5.1178e+02 1.1318e+01

28 3.0000e+02 4.1398e+02 3.0000e+02 3.0893e+02 2.9560e+01

29 3.7031e+02 9.6428e+02 4.6622e+02 4.9332e+02 1.0360e+02

30 1.9503e+03 1.4306e+04 2.2860e+03 2.8438e+03 1.9413e+03

TABLE VII
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 51

INDEPENDENT RUNS ON CEC 2017 PROBLEMS FOR DIMENSION 50

F. Best Worst Median Mean Std
1 3.2919e−08 2.3301e−07 1.0505e−07 1.1306e−07 4.2646e−08

2 0.0000e+00 1.4114e+07 0.0000e+00 2.7675e+05 1.9764e+06

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 1.2573e+02 1.2036e+01 2.9587e+01 4.0680e+01

5 0.0000e+00 6.9647e+00 2.9849e+00 2.7898e+00 1.4352e+00

6 5.2292e−08 1.0909e−06 1.5047e−07 1.6319e−07 1.3794e−07

7 5.4304e+01 6.0908e+01 5.6511e+01 5.6631e+01 1.3900e+00

8 0.0000e+00 6.9647e+00 1.9899e+00 2.5752e+00 1.7929e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 1.2639e+02 4.1803e+03 1.7272e+03 1.7262e+03 9.5307e+02

11 6.6141e+01 2.9978e+02 1.8549e+02 1.8324e+02 5.2028e+01

12 1.6142e+03 1.2422e+08 2.3739e+03 2.4381e+06 1.7394e+07

13 6.3405e+01 3.7377e+03 1.9913e+03 1.6518e+03 1.1454e+03

14 2.1840e+01 4.3624e+02 2.4486e+02 2.4162e+02 7.0739e+01

15 3.4950e+02 7.8741e+02 5.2693e+02 5.2901e+02 1.1525e+02

16 1.4859e+02 1.8037e+03 8.6909e+02 8.8992e+02 3.6631e+02

17 8.6526e+01 8.7743e+02 3.7960e+02 3.9780e+02 1.5827e+02

18 6.3134e+01 7.1648e+02 3.4772e+02 3.5735e+02 1.5580e+02

19 7.4424e+01 3.2139e+02 1.2475e+02 1.3935e+02 4.7737e+01

20 7.7765e+01 1.2599e+03 5.3862e+02 5.4683e+02 2.3306e+02

21 2.0000e+02 2.1766e+02 2.0559e+02 2.0619e+02 3.2302e+00

22 1.0000e+02 7.1608e+03 1.5584e+03 2.0512e+03 1.7615e+03

23 3.9645e+02 4.6619e+02 4.2054e+02 4.2269e+02 1.3915e+01

24 4.8292e+02 5.1022e+02 4.8972e+02 4.9116e+02 5.7300e+00

25 4.5828e+02 4.9198e+02 4.8024e+02 4.8070e+02 5.1849e+00

26 3.0000e+02 1.1885e+03 5.8541e+02 6.5482e+02 3.0146e+02

27 5.2678e+02 8.1430e+02 5.8721e+02 6.0807e+02 5.8628e+01

28 4.5885e+02 5.0769e+02 4.5885e+02 4.7000e+02 1.9362e+01

29 3.8642e+02 1.1983e+03 6.4562e+02 6.6896e+02 1.9917e+02

30 1.2222e+06 2.6593e+07 4.5093e+06 6.4600e+06 5.0714e+06



TABLE VIII
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 51

INDEPENDENT RUNS ON CEC 2017 PROBLEMS FOR DIMENSION 100

F. Best Worst Median Mean Std
1 1.8302e−07 4.0782e−07 2.6482e−07 2.7587e−07 5.8809e−08

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 2.1583e+02 2.0074e+02 1.5599e+02 8.8599e+01

5 9.9498e−01 2.9849e+01 7.9597e+00 1.1001e+01 7.6741e+00

6 3.8019e−08 2.0079e−07 1.6033e−07 1.3307e−07 5.3676e−08

7 1.0863e+02 1.4612e+02 1.2183e+02 1.2650e+02 9.6212e+00

8 1.3573e−04 3.0844e+01 8.9546e+00 1.2198e+01 9.0777e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 1.3136e+02 1.1603e+04 5.4197e+03 5.5858e+03 3.4942e+03

11 2.1233e+02 1.6378e+03 1.0606e+03 1.0471e+03 2.3321e+02

12 3.6924e+03 2.6871e+06 5.3889e+03 5.7900e+04 3.7552e+05

13 2.2993e+03 6.2723e+03 4.4422e+03 4.5107e+03 9.4601e+02

14 4.0544e+02 7.8970e+02 5.8716e+02 5.7849e+02 8.9984e+01

15 2.3410e+02 1.0296e+03 7.6475e+02 7.5638e+02 1.4895e+02

16 7.9312e+02 2.7056e+03 1.7456e+03 1.6950e+03 4.6783e+02

17 7.4783e+02 2.0307e+03 1.3245e+03 1.3805e+03 2.6901e+02

18 1.8577e+02 5.6367e+02 2.9723e+02 3.1596e+02 8.3147e+01

19 2.7071e+02 1.1361e+03 5.8672e+02 5.9372e+02 2.2800e+02

20 1.0572e+03 2.9430e+03 1.8766e+03 1.9045e+03 3.7526e+02

21 2.2728e+02 2.5659e+02 2.4449e+02 2.4502e+02 5.8477e+00

22 3.4468e+02 1.4018e+04 6.4820e+03 6.3236e+03 4.0126e+03

23 5.4454e+02 7.4577e+02 5.6272e+02 5.8402e+02 5.2869e+01

24 8.6734e+02 9.2594e+02 8.9315e+02 8.9323e+02 1.4066e+01

25 5.7705e+02 7.8242e+02 6.9797e+02 6.7749e+02 4.3374e+01

26 3.0000e+02 4.1014e+03 2.9769e+03 2.8935e+03 5.6801e+02

27 6.2435e+02 7.2711e+02 6.7280e+02 6.7285e+02 2.2579e+01

28 3.0000e+02 6.2814e+02 5.1875e+02 4.9760e+02 8.0150e+01

29 1.3248e+03 3.0219e+03 2.0719e+03 2.0284e+03 4.0100e+02

30 4.8924e+03 2.3265e+04 1.1775e+04 1.1909e+04 3.7262e+03

TABLE IX
COMPUTATIONAL COMPLEXITY OF THE ALGORITHM ON INTEL XEON

CPU E7-4830 V3 @ 2.1 GHZ. THE PROGRAM WAS WRITTEN IN R
LANGUAGE AS A SINGLE THREADED APPLICATION

Dim. T0 T1 T̂2 (T̂2− T1)/T0

10 2.1s 1.9s 2.1s 0.1

30 1.8s 1.5s 6.0s 2.5

50 1.8s 1.9s 10.1s 4.6

expressions, T1 is the time of 200000 evaluations of function
18, and T̂2 is the mean taken from 5 independent runs of the
presented algorithm. Each algorithm run was performed on a
budget of 200000 evaluations of function 18. According to the
rules of the benchmark, evaluations of function 18 that were
used to calculate T1 were performed in an identical way as it
is in the actually used implementation.

The results of the experiments are presented in Table IX.
It can be observed that the time complexity of the algorithm

grows linearly with problem dimensionality.

V. CONCLUSIONS

The enhanced version of IPOP-CMA-ES, called RB-IPOP-
CMA-ES, was proposed in this paper. The algorithm was
used to solve problems from the CEC 2017 competition on
single objective real-parameter numerical optimization. It was
empirically shown that the introduced algorithm modifications
substantially improved its results. It was also shown that
utilizing the midpoint of the population to detect stagnation
of the algorithm and as an approximation of the optimum
improves the algorithm’s performance on several functions in
all considered dimensions.

The proposed approach is capable to obtain good solutions
in a fast and reliable way.
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