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Abstract—It is advocated that monitoring the population mid-
point allows for improving the efficiency of population based evo-
lutionary algorithms in R

d. The theoretical motivation supporting
this hypothesis is provided in this paper, and this phenomenon is
empirically confirmed for selected typical evolutionary algorithms
by a series of tests for fitness functions contained in the CEC2005
and CEC2013 benchmark sets.
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I. INTRODUCTION

E
VOLUTIONARY algorithms (EAs) are iterative stochas-

tic search techniques. The state of an EA is characterized

by a population of individuals which are points in the search

space. In each iteration, new individuals are randomly gener-

ated according to a procedure that includes the reproduction

of individuals from the current population followed by their

crossover and mutation. The whole process is based on the

natural evolution model by Darwin and his followers.

This contribution explores a practical consequence of the

theoretical achievements that have been made in the analysis

of dynamics of populations processed by various types of EAs

for a continuous domain. A common result of this analysis,

for several important types of EAs, is that the expectation

vector of populations converges in some stochastic sense to

the optimum of the fitness function.

For classical EAs with Gaussian mutation, this result was

achieved using the “infinite population size” model developed

in [1], [2]. For this model it was proved, e.g. in [3], that if the

fitness function is a Gauss function, then the expected pop-

ulation mean converges to the global optimum of the fitness

function and the expected population variance converges to a

characteristic value which can be predicted in advance when

the EA parameters are known. The results hold for any even,

unimodal, concave fitness function.

For Differential Evolution (DE), it has been reported that

the probability distribution function of points in consecutive

generations should converge to Dirac’s delta, located in the

local optimum [4]. This implies that the expected value of gen-

erated points should stochastically converge to the optimum.

There is also some experimental evidence about the profits of

computing the midpoint when the population is evaluated in

parallel on a GPU [5].

According to the aforementioned theoretical findings, it can

be expected that a midpoint of the current population should

stochastically converge to the local optimum of the fitness

function, provided that the population has settled down in its

basin of attraction. Consequently, computing the population

midpoint should improve effectiveness in the exploitation

phase of the evolutionary search. The price to pay for this

improvement is the computing cost of evaluating an additional

point in the population.

In the analysis presented here it is assumed that the midpoint

will not become a population member. We do not change the

way in which individuals are processed or generated by the

analyzed algorithms. We believe that addition of the midpoint

to the population would result in processing more compact

populations which would introduce a higher risk of premature

convergence.

In this paper we provide a series of arguments for computing

the fitness value of the population midpoint. We start in

Section II, where we provide a statistical analysis of a set of

points which are generated randomly with a multidimensional

normal distribution around some expectation vector. Statistical

analysis shows that the population mean will usually be closer

to the expectation vector than any other point in the population.

More practical issues are studied in Section III, where

various types of EAs are used for searching for the optimum

value of the quadratic function. Two definitions of midpoint

are examined: arithmetic mean and the median. The results

of conducted experiments confirm a quality gain due to

computing the fitness value of the population midpoint.

The most realistic arguments are raised in Section IV,

where the results of benchmarking using the CEC2005 [6]

and CEC2013 [7] benchmark sets are provided. We analyze

various types of algorithms, with and without computing the

population midpoint. In the set of considered algorithms we

include not only plain classical EAs and DE, but also a few

selected methods which achieved good results at CEC compe-

titions: CMA-ES[8], JADE [9], SADE [10] and b6e6rl [11].

We assume the finite budget according to the benchmarking

criteria and the results are compared to the statistical basis

using the Wilcoxon test. This methodology is in agreement

with recommendations published in [12]. The results confirm

the thesis on the profitability of midpoint analysis. The paper

is briefly concluded with Section V.

II. STANDARDIZED NORMAL VARIATES IN R
d

Prior to discussing any EA, let us study some phenomena

that can be observed in a population of d-dimensional normal
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variates. These effects relate to a situation when an EA has

converged to a local optimum of a fitness function.

Consider a Euclidean norm of a vector in R
d:

||~x|| =

√

√

√

√

d
∑

i=1

(xi)2 (1)

which takes its minimum at ~0.

Assume a population X ⊂ R
d containing N points

which were independently generated with a standardized, d-

dimensional normal distribution. In other words, the coordi-

nates of each point ~x ∈ X are independent and identically

distributed standardized normal variates. Recall that the root of

the sum of squares of d independent normal variates has a chi

distribution with d degrees of freedom [13]. In our example,

this will be the distribution of the Euclidean norm of points

contained in X . Since they are generated randomly and the

expectation vector is zero, the norm value of point ~x ∈ X
equals the distance between ~x and the expectation vector.

Note that for d ≥ 2, the most probable values of ||~x|| span a

range which does not include values very close to zero, which

follows from properties of the chi distribution. Moreover, the

average value of ||~x|| increases along with
√
d.

Fb(y) — the cumulative distribution function (cdf) — of

the smallest value of points from X can be derived directly

from the definition of the cdf:

Fb(y) = Pr(||b(X)|| ≤ y) = 1− Pr(||b(X)|| > y) =

= 1− Pr(min
~x∈X

(||~x||) > y) = (2)

= 1−
∏

~x∈X

(1− Pr(||~x|| > y)) = 1− (1 − Fχ(y))
N

where Fχ is the cdf of the chi distribution with d degrees of

freedom, and b(X) is the point from X with the smallest norm

value:

b(X) = argmin
~x∈X

||~x|| (3)

Note that the point b(X) is the best approximation of the

expectation vector among all points from X , since the expec-

tation vector is ~0.

The mean vector of the population X is defined as

m(X) =
1

N

∑

~x∈X

~x (4)

Recall that ~x ∈ X are standardized normal independent vari-

ates. Therefore, the mean vector m(X) is normally distributed

with zero expectation and its covariance matrix equals I/N ,

where I is the identity matrix. This means that the value of

||m(X)|| is chi distributed and its cdf equals:

Fm(y) = Fχ(N · y) (5)

Plots of the cdf of the best and the mean point in the popu-

lation of d-dimensional standardized normal random variates

are depicted in Fig. 1 for different values of the population

size N and the dimension d. It can be observed that for

any considered combination of d and N , the probability of

observing a point whose norm value (and in the same time

the distance from the expectation vector) falls into the range
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Fig. 1. Semilog plots of the cdf of observed norm values for the best point
(a,b) and the mean point (c,d) of the population. Plots were generated for d =

10 and N ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000} (a,c) and for N = 100

and d ∈ {2, 5, 10, 20, 50, 100} (b,d)

(0, a) is always greater for the midpoint m(X) than for the

best point b(X) for all a > 0. Hence, the population midpoint

will approximate the expectation vector much better than the

best point from the population. The superiority of m(X) over

b(X) grows along with the population size N and the search

space dimensionality d.

Recall that for several types of EAs it can be proved that the

expectation vector of the population converges stochastically

to the fitness optimum. When this occurs, the expected value

of the midpoint will converge as well. Moreover, if the fitness

function is locally convex, the population midpoint may be

located closer to the local optimum than any point from the

population.

III. DYNAMICS OF POPULATIONS FOR THE QUADRATIC

FITNESS FUNCTION

This section illustrates relations between the midpoint fit-

ness and the best point fitness assuming the quadratic fitness

function. Quadratic function is a convex function with a

unique optimum, therefore global optimization techniques are

not methods of the first choice in this case. Nevertheless,

the experimental analysis for the quadratic function allows

for checking efficiency of evolutionary techniques in precise

location of optimum.

In certain classes of optimization problems, quadratic func-

tion may be a good local approximation of the fitness function

nearby local optima. Good examples are the problems of least-

squared fitting nonlinear models to data.

Observations made in the previous section indicate that if

the population were generated with the expectation vector

which would perfectly match the optimum, then it could be
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expected that the population midpoint would usually be a

better approximation of the optimum than the best point in the

population. For realistic EAs, even when populations converge

to the optimum, they will approach it in an irregular random

fashion. Then the expectation vector of the population is not

perfectly matched with the optimum and it cannot be assumed

that the population is a set of independent normal variates

either.

Then the arithmetic mean might be not the best estimator

of the local optimum and robust statistics might work better.

Therefore, in addition to the arithmetic mean, the population

median point is considered. Its j-th coordinate is the median

of the j-th coordinate of points from the population X :

m(X)j = median(X1,j , ..., XN,j) (6)

where

median({s1, ..., sN}) =
{

s 1

2
(N+1) when N is odd

1
2 (sN

2

+ sN

2
+1) when N is even

(7)

assuming that the set {s1, ..., sN} is sorted.

Below we illustrate dynamics of populations’ best fitness

and the quality gain due to computing the midpoint fitness for

the quadratic fitness function:

q(~x) =

d
∑

i=1

x2
i (8)

assuming the number of dimensions d = 10.

We considered seven EAs — three of them represented

“classical” methods and four others were sophisticated meth-

ods whose versions were among winners of black box opti-

mization competitions:

1) GEA: a generational EA with Gaussian mutation with

an identity covariance matrix, arithmetic crossover with

probability 0.7, and nonelitist binary tournament selec-

tion,

2) DE: a classical DE/rand/1/bin algorithm with the scaling

factor F = 0.9 and the crossover rate CR = 0.9,

3) ES: the (µ+ λ) Evolution Strategy with self adaptation

of the vector of mutation variance values, (µ = 25, λ =
100),

4) CMA-ES [8] which was implemented in [14],

5) b6e6rl [11] which was implemented in [15],

6–7) own implementation of SADE [10] and JADE [9], based

on cited papers.

For CMA-ES and b6e6rl we accepted default parameter values

and for SADE and JADE we followed the parameter values

suggested in cited papers.

In Fig. 2 we provide convergence curves of the fitness

function computed for the arithmetic mean, the median and

for the best point in the population. The curve value for

iteration t represents the best-so-far value of the best points

or midpoints that have been observed from the first to the t-
th generation. All algorithms generated N = 100 individuals

in each generation except for CMA-ES, which evaluated only

N = 10 points. The population was initialized with uniform

distribution in a rectangle (−100, 100)d.

The simulation results show that for the quadratic fitness

function, the fitness value of the population midpoint usually

converged faster than the value for the best point in the

population. The convergence speed was significantly different

for compared methods, which can be observed when looking

at different span of values on the y-axis of plots in Fig. 2.

Therefore a direct comparison of convergence curves for

different methods is impossible. A better insight into the

results can be gained by analyzing the ratio of fitness values

of the best-so-far midpoint and the best-so-far individual for

each generation:

r(t) =
mink=1,...,t(q(b(Xk)))

mink=1,...,t(q(m(Xk)))
(9)

where Xk stands for the population in the k-th generation, q
is the fitness function and m(Xk), b(Xk) are the midpoint and

best point of Xk. The evolution of the r(t) value in consecutive

generations is plotted in Fig. 3 for both the mean point and

the median point.

The fitness of the population mean was on average 32 times

smaller than the best individual for DE. For GEA, JADE, ES

and b6e6rl, values of r(t) fluctuated around 12, 13, 14 and 15,

respectively. In the case of SADE, r(t) took values around 7

and for CMA-ES — around 2.

The ratio r(t) for the median point was generally smaller

than for the mean point, which indicates that the mean point

converged faster than the median for the quadratic fitness

function.

IV. EXPERIMENTS FOR FITNESS FUNCTIONS FROM

CEC2005 AND CEC2013 BENCHMARK SETS

Observations made for the quadratic function encourage to

formulate a hypothesis that the quality of results yielded by

EAs will be improved by monitoring the population midpoint.

Such improvement can be expected in the exploitation phase

when the population is contained by the attraction basin of a

local optimum.

Possibility of such improvement was experimentally verified

for optimization problems defined in the CEC2005 [6] and

CEC2013 [7] benchmark sets.

We performed experimental analysis, making two extreme

assumptions about how to consider the midpoint. In the first

case, it was assumed that computing the midpoint is cost-free.

In the second case, the midpoint costs as much as a single point

in one generation, and the number of individuals generated in

each iteration was decreased by one. The analysis covered

results generated by GEA, DE, ES, CMA-ES, JADE, SADE

and b6e6rl for 10, 30 and 50 dimensions, for all functions

from the CEC2005 and CEC2013 benchmark sets.

Since the goal of the paper is to illustrate an improvement

introduced by midpoint monitoring rather than to beat the

best result for the CEC benchmark sets, the parameters of the

compared EAs were set as in Section III without any tuning.

a) Conditions of experiments: Both benchmark sets con-

tain problems with box constraints. In the experiments, these

problems were handled by a repairing mechanism. Every time

an infeasible mutant ~x was generated, it was substituted by a

feasible point ~y which was created by reflecting all infeasible
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Fig. 2. Convergence curves of the best-so-far solution (squares) and the best-so-far midpoint value for two midpoint definitions: arithmetic mean (circles)
and the median (stars), for GEA (a), DE (b), ES (c), JADE (d), b6e6rl (e), SADE (f) and CMA-ES (g); note different scales for the y-axis
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Fig. 3. Ratio of the fitness of the best-so-far individual to the best-so-far mean point (a) and median point (b) for CMA-ES (squares), SADE (circles), GEA
(crosses), JADE (stars), ES (pluses), b6e6rl (triangles) and DE (diamonds)

coordinate values as appropriate limiting values, according to

the formula:

yi =











2li − xi when xi < li

xi when li ≤ xi ≤ ui

2ui − xi when xi > ui

(10)

where xi and yi denote the i-th coordinate values of the mutant

and its feasible substitute, and li, ui denote the lower and

upper limiting values for the i-th dimension. The exception

for that rule was SADE, where each infeasible point was

replaced with a new point which was picked up randomly with

uniform distribution in the feasible area. This inconsistency

of constraint handling techniques was due to the definition

of SADE, where handling constraints by replacement with

the uniformly generated random individual was explicitly

postulated.
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The experiment was organized as follows. For each algo-

rithm, each dimension, each benchmark set and each fitness

function, 51 independent pairs of runs were performed. In each

run, the number of the fitness function evaluations was limited

to K = 10, 000 · d, according to the benchmarking rules. The

first run in a pair was started with a population of N points

initialized uniformly in the feasible area. Two statistics were

recorded:

1) The best fitness value of all individuals generated in that

run, denoted by αj ,

2) The best fitness value of all generated individuals and

of all midpoints, denoted by βj ,

where j = 1...51 is the number of a pair of runs.

The second run in the pair was performed assuming N − 1
points in each population. For CMA-ES we assumed that N−1
points are generated in each iteration, and for ES we set λ =
99. The initial population was equal to the initial population

from the first run in the pair, except for the last individual. We

again recorded the best fitness value of all individuals and all

midpoints, denoted by γj .

For each benchmark set, each function, each dimension and

each algorithm, the set of A = {α1, ..., α51} was compared

with the set B = {β1, ..., β51}, and the statistical significance

of the difference was checked using the Wilcoxon test in

pairs. We also made a similar comparison between set A and

G = {γ1, ..., γ51}. For each algorithm and each dimension,

the number of fitness functions was counted when set B was

superior to A, which reflects the case when the midpoint

fitness is computed with zero cost. Similarly, the number of

fitness functions when set G was superior or inferior to set A
shows the consequences of computing the midpoint in each

generation at a unit cost. The results of the comparison are

summarized in Table I.

b) Results of experiments: Comparison of quality gain

obtained using the arithmetic mean and the median point does

not show any clear difference. For this reason the arithmetic

mean is more advisable, since it can be computed faster.

When the cost of evaluating the fitness of midpoints was

zero, it was a rule that computing midpoints improved the

quality of results for some fitness functions. The improvement

in quality depended on the algorithm and on the problem di-

mension. For simple algorithms (GEA, DE, ES) and for CMA-

ES the improvement rate was high, for b6e6rl it was moderate,

and for SADE and JADE — almost negligible. There is no

clear pattern of influence of the problem dimensionality on the

improvement rate. Improvement was more often observed for

the CEC2013 benchmark set.

When the midpoint was evaluated at the expense of one in-

dividual from the population, the improvement rate decreased

in comparison to the zero-cost case. It even happened that for

some fitness functions, results became worse in the statistically

significant case. When looking at particular algorithms, for

GEA, ES, CMA-ES and DE , improvement was observed more

frequently than deterioration. JADE, SADE and b6e6rl were

different again — in their case, the number of fitness functions

with improvement was small and not very different from

the number of fitness functions with deterioration. Moreover,

TABLE I
NUMBER OF FITNESS FUNCTIONS WHEN INTRODUCING THE MIDPOINT

IMPROVED (‘+’) OR DETERIORATED (‘–’) THE OVERALL RESULT WITH

STATISTICAL SIGNIFICANCE ACCORDING TO THE WILCOXON TEST IN

PAIRS. TWO CASES WERE CONSIDERED: POPULATION SIZE N AND

REDUCED POPULATION SIZE N − 1

Results for CEC2005

10D 30D 50D

alg. midpoint N N − 1 N N − 1 N N − 1

type def. + + – + + – + + –

GEA mean 13 4 0 14 8 0 15 7 0

median 10 3 0 11 6 0 15 7 0

ES mean 14 6 2 19 13 0 20 16 0

median 15 5 2 18 14 0 20 16 0

CMAES mean 18 4 0 6 3 1 23 8 0

median 18 3 1 4 2 1 21 4 0

DE mean 10 9 0 10 9 0 8 6 2

median 13 8 0 14 11 0 10 9 2

JADE mean 3 2 0 5 3 1 2 0 4

median 1 1 0 0 1 1 0 0 4

SADE mean 5 2 1 3 6 4 1 0 0

median 1 2 1 0 3 4 1 0 0

b6e6rl mean 9 6 1 8 3 1 6 1 2

median 5 4 1 4 2 1 6 2 3

Results for CEC2013

10D 30D 50D

alg. midpoint N N − 1 N N − 1 N N − 1

type def. + + – + + – + + –

GEA mean 20 4 0 21 5 4 23 14 1

median 20 4 0 21 5 4 23 14 1

ES mean 26 7 1 27 12 0 27 16 0

median 23 4 1 26 11 1 26 16 0

CMAES mean 21 5 1 9 3 1 21 8 4

median 21 4 4 7 3 1 20 7 5

DE mean 19 13 1 17 13 1 17 10 0

median 21 15 1 22 15 1 22 13 0

JADE mean 4 3 0 4 1 1 2 1 1

median 4 3 0 2 2 1 1 2 0

SADE mean 3 4 0 2 0 1 2 2 0

median 2 3 0 2 0 1 2 3 0

b6e6rl mean 5 3 1 8 2 1 10 4 0

median 5 3 2 7 3 2 10 5 0

it happened that the number of deteriorations exceeded the

number of improvements.

c) Comments: The results show that for a variety of

EAs, monitoring population midpoints is an effective way

to improve the quality of results. Even if the midpoint is

computed at every generation at the expense of one individual,

an improvement of overall results can be expected more often

than deterioration and the price of additional evaluations of

midpoints is worth paying.

In the case of SADE, JADE and b6e6rl, computing mid-

points did not achieve an impressive improvement, and in the

scenario with N − 1 points in populations it even yielded a

deterioration of results for few benchmark problems. Interpre-

tation of this phenomenon would need much deeper insight
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into the dynamics of populations processed by the analyzed

methods and will go far beyond the scope of the paper. We

can only conjecture that this effect can be explained in the

following way.

Improvement of results due to the midpoint monitoring can

be expected when the population is a group of individuals

concentrated around a certain midpoint. In practice, individuals

will form clusters, whose number and location will vary over

time. Then the population midpoint will not match the center-

point of any cluster. Since sustainable clusters will be rather

located nearby local optima, the midpoint of the population

with clusters will usually mismatch any local optimum.

The tendency to form clusters and the number of generations

they may last in populations depends on the algorithm and its

parameters. In CMA-ES, such clusters would not last more

than one generation, since in every generation all individuals

will be generated from the multivariate normal distribution.

In GEA or ES, clusters are continuously formed since one

individual may be multiply selected, but in the same time

there is a tendency to reduce the number of clusters since every

individual competes with all others to reproduce. In algorithms

from the Differential Evolution family, each individual from

the parent population competes with exactly one offspring

individual. Therefore, it may be kept in its old position

for many generations until it can be substituted by a better

offspring. Consequently, clusters are expected to last relatively

long.

The plain DE differs significantly from SADE, JADE and

b6e6rl in the improvement due to the midpoint monitoring.

We believe that this can be explained in the light of the

convergence curves from Fig. 2. DE converges very slowly,

whereas SADE, JADE and b6e6rl are much faster. Therefore,

the quality of results for the plain DE is poor enough to be

improved by the midpoint.

V. CONCLUSIONS

This paper provided analytical reasons for evaluating the

fitness function for the population midpoint. It empirically

showed that the effectiveness of population based EAs in R
d

can be improved with this addition. In the experiment using

fitness functions from the CEC2005 and CEC2013 benchmark

sets, a significant improvement was observed for several types

of EAs. Two exceptions to this rule were observed, possibly

due to a formation of clusters introduced by specific schemes

of differential mutation. Deeper insight into this effect is

planned for further research.

In this paper, we studied extreme cases — when the fitness

of the midpoint was evaluated cost-free and when it cost one

individual. In practical application, there would be no need

to evaluate the fitness of the midpoint in every generation.

Instead, one can imagine less costly strategies, e.g. computing

the midpoint in every k-th generation, computing the midpoint

after stagnation of the best-so-far fitness value, or performing

clustering and then computing the midpoints of clusters. We

believe that these issues define the next steps of research to

be taken.
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