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Abstract—This paper presents an enhanced version of NL-
SHADE-RSP, which won CEC’2021 competition on single objec-
tive bound-constrained numerical optimization for shifted and
rotated shifted functions. The proposed version uses the midpoint
of the population to estimate the optimum. The midpoint fitness
is also used to introduce a restart trigger. For large populations,
the midpoint is calculated after splitting the population into two
parts by the k-means algorithm. Other introduced modifications
include changing the bound constrain handling method and
reducing population size. The performance of the proposed
approach is evaluated on the CEC 2022 benchmark for single
objective bound-constrained numerical optimization. The results
confirm that each proposed modification gradually improves the
algorithm’s ranking on the benchmark.

Index Terms—differential evolution, CEC 2022, midpoint,
resampling

I. INTRODUCTION

Differential Evolution (DE) [1], [2] is a simple yet powerful
concept that created the whole algorithms family. Step-by-step
developed improvement of the family is a success story that
led to very competitive algorithms [3]. One example is NL-
SHADE-RSP [4] which won the CEC’2021 competition on
single objective bound-constrained numerical optimization [5]
for affine transformed, i.e., shifted or rotated, functions.

The aim of this paper is to enhance the winning algo-
rithm from the CEC’2021 competition. To enable it, several
components have been added to NL-SHADE-RSP to improve
its ranking on the CEC’2022 benchmark suite [6]. The first
component calculates and evaluates the midpoint of the popu-
lation, which better estimates the optimum than the best-so-far
solution [7]. The second introduces restart triggers, whilst the
third changes the bound constraint handling method. Finally,
the fourth component uses the machine learning method to
split the population into two more strongly related halves to
increase the chances of finding a better midpoint.

The empirical experiments validate the influence of each
component with three methods of comparison being used:
the ranking defined for CEC’2022, Wilcoxon signed-rank test,
and empirical cumulative distribution functions (ECDFs) [8].

According to the results, proposed modifications improved the
base method, especially for 20-dimensional problems.

This paper is organized as follows. In Section II a short
description of DE and NL-SHADE-RSP is provided together
with a short survey of restart methods and k-means clustering
applications in the DE family. Section III presents all modifica-
tions that were introduced to the NL-SHADE-RSP. The results
of experiments that investigate the impact of the introduced
changes are given in Section IV. Section V concludes the
paper.

II. RELATED WORK

This section presents a short survey of related works. After
a brief description of the NL-SHADE-RSP, which is a method
extended in this paper, there are subsections related to each
component used in the proposed method.

A. From DE to NL-SHADE-RSP

Since the first publications [1], [2] Differential Evolution
(DE) has been paid a growing attention thanks to the effi-
ciency of the method and simplicity of the basic idea. DE
maintains population of individuals. In the simplest version,
called DE/rand/1/bin, the i-th mutant is a combination of three
randomly selected solutions, i.e.: vi = xr3 + F · (xr1 − xr2),
where the scale factor F (usually F ∈ (0, 1]) is a parameter of
the algorithm. After mutation, a trial vector is generated by the
binomial crossover: for each dimension, a value is copied from
the mutant if a random number sampled from the standard
uniform distribution is less than the crossover ratio (CR) value.
Otherwise, it is copied from the i-th individual. The value of
CR is the algorithm parameter.

Numerous modifications of this scheme have been proposed
— see [9] for an overview — with the L-SHADE [10] being
one example. The L-SHADE adapts all parameters necessary
for DE, i.e., population size (µ), CR, and F . The value of
µ is linearly reduced from the maximal to the minimal value
during the search. Values of CR and F are generated randomly
before every mutation and crossover operation, taking into
account the most successful values that have been observed



in the search history. L-SHADE also uses an archive of
inferior solutions to guide mutation. The idea of L-SHADE
was extended by L-SHADE-RSP [11], which added a concept
of rank-based selective pressure (RSP), where probabilities of
selecting xr1 and xr2 are dependent on fitness-based ranks.

The NL-SHADE-RSP [4] is an extension of L-SHADE-
RSP. One of the differences was exposed in the algorithm’s
name, i.e., it uses non-linear population size reduction (NL).
In this idea, a new population size is calculated as follows:
µt+1 = b(µmin − µmax) s

1−s+µmaxc, where µmin and µmax

are minimal and maximal population size, and s is a ratio of
the current number of objective function evaluations to the
maximal budget. The rank-based selection was also changed
to apply only to xr2. There are also some minor changes,
like the introduction of the automatic tuning of archive usage
probability.

Unfortunately, due to the page limits, a more detailed de-
scription of the NL-SHADE-RSP and its predecessors cannot
be provided here.

B. Restarts in DE

The idea of restarts is frequently used within the EC
community. It is used to improve a CMA-ES [12], [13], but
is also known in the DE family. In [14] a restart strategy was
introduced into DE, SHADE, and L-SHADE. In modified DE
and SHADE, a restart is performed when: 1) solution vector
converged, i.e., changes in coordinates across the population
are below threshold; 2) fitness values in the population con-
verged; 3) there was no update of the best-so-far solution
during 500D fitness evaluations, where D is the problem
dimensionality. After the restart is triggered, the algorithm is
started from scratch, i.e., all data structures are cleaned. In the
L-SHADE, only the third restart trigger was used.

In [15] a restart differential evolution algorithm (RDEL) is
proposed. What is important here is that the whole algorithm
is not restarted; only random coordinates of individuals that
stagnated are either set to a random value or undergo an
additional mutation. The individual is considered stagnated
when its fitness has not changed by more than 10−6 every
25 iterations.

In [16] a variant of DE is proposed which uses random
reinitialization of 20% of the individuals, which is called
restart. The restart is triggered every 300 iterations. The best
individual is excluded from reinitialization.

In [17] the JADE algorithm is extended, with one of the
extensions being a restart mechanism. In that mechanism, the
stagnation is detected by analysis of the so-called ”variable
coefficient”, defined as the quotient of fitness standard devia-
tion and fitness mean. If this coefficient is below the specified
threshold, a restart is triggered. As a result, trial vectors are
generated by a special mutation. For each dimension, a value
from a normal distribution whose standard deviation depends
on the distance from bounds to the best solution xb is added
to xb. Additionally, the crossover ratio (CR) is reduced to 0.1.

C. K-means clustering in DE

K-means clustering method [18] plays an important role
in data mining and knowledge discovery. It separates given
observations into k clusters in a way to minimize within-
cluster variances.

In [19] an island model was used with DE. A population
was split into subsets called islands by the k-means clustering,
where k is a parameter of the algorithm.

In [20] a clustering-based differential evolution algorithm
was proposed. In the algorithm, every ten iterations, a popula-
tion is split into clusters by one step of the k-means algorithm.
It allows for the application of different mutation strategies for
each cluster. The number of clusters is randomly drawn from
2 to
√
µ, where µ is the population size.

In [21] the parent selection operator uses k-means to select
parents from different groups. This procedure is only applied
to 5% of the mutations.

D. Midpoint

In [7] it was shown theoretically and experimentally for DE,
JADE, SADE, and other methods, that a midpoint of the pop-
ulation better estimates the optimum than a commonly used
best-so-far solution. This knowledge was used to introduce
the RB-IPOP [13] which is a version of IPOP-CMA-ES [12].
In the RB-IPOP, the midpoint updates the best-so-far solution
and is used to define an additional restart trigger. The trigger
fires when the fitness of the midpoint does not change for a
predefined number of iterations.

III. MODIFICATIONS OF NL-SHADE-RSP

In order to further improve NL-SHADE-RSP results, four
new components have been added to the original algorithm.
The positive influence of each of them was verified using
ranking defined by organizers of the CEC’2022 competition
on single objective bound-constrained numerical optimization
[6].

The first added component calculates the midpoint of the
population at each iteration. The objective function of the
midpoint is used to update the best-so-far result. In addition,
the objective function of each midpoint is compared with
the objective of the nearest to midpoint individual in the
population, with the better of these two being retained.

The second new component is responsible for stagnation
detection and triggering restart. One such trigger checks
the distance between a new midpoint and a midpoint nine
iterations older. When the distance is below 10−9, a restart
is triggered. Another trigger stems from knowing that the
optimum does not lie on the bounds of the search space. Each
position i = 1 . . . µ in the population has an assigned counter
ci. For each iteration, it is verified whether the individual xi
lies on bound in at least one dimension. If so, the counter
ci is incremented. Otherwise, it is set to 0. When any of the
counters reaches ten, a restart is triggered.

The restarted algorithm loses all gained knowledge. It
starts from a randomly initialized population. It was observed
that NL-SHADE-RSP requires large populations for complex



problems. Therefore, when it is restarted, the initial population
size is set to 400. As in the original algorithm, the population
size is reduced in the function of the utilized budget. The
function responsible for calculating new population size is
modified to decrease faster. For this task, the homographic
function was used:

µt+1 = ba1 + 1/(b ∗ 10−6 + 2.57 ∗ a2)c (1)

where b is a number of evaluations used in the current restart,
and a1, a2 are the parameters set in a way to achieve 400 at
the beginning and 20 at the end of the current b range. The
comparison of curves used for population size reduction is
presented in Fig. 1, assuming budget left for restart is 105.
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Fig. 1. The comparison of curves used for population size reduction

The third modification of the algorithm changes the bound
constraint handling method from reinitialization to resampling.
In resampling, the mutation is repeated when a mutant is out of
bounds. According to [22] resampling was the best technique
for DE-based methods, while reinitialization achieved a middle
raking of 17 considered methods. In the version used here,
when an out-of-bounds solution is generated, the differential
mutation is repeated up to 10 unsuccessful trails without
changing F and CR parameters. After that, the parameters
are recalculated according to the rules defined by the NL-
SHADE-RSP. When a total number of mutation repeats for a
mutant achieves 100, the algorithm falls back to the default
repair mechanism. It never happened during the experiments.

The fourth modification stems from the observation that
the population in the algorithm is well spread, i.e., it does
not occupy a single optimum for a long time. For the sake
of making more use of the concept of the midpoint, the
population is grouped into two groups by k-means algorithm
[18]. The individuals inside each group are closer to one
another than individuals without grouping. Therefore, it is
more likely that they occupy the same attraction basin, which
increases the chances of finding a good midpoint. Grouping
into more clusters does not improve results, but it slows down
the algorithm. In order to save evaluations of the objective
functions, only midpoints resulting from grouping with quality
above the threshold are evaluated. The assessment is done
by the silhouette score [23] which values range from -1
(the worst) to 1 (the best). The k-means is not used when
population size drops below a specified threshold.

IV. RESULTS OF THE EXPERIMENTS

The implementation of NL-SHADE-RSP was downloaded
from [24]. All parameters were left untouched except for the
population size, which was set to 5D, where D is the problem
dimensionality. All introduced components were sequentially
added on top of accepted components. The modified version
described in the paper is available from [25].

The experimental setup strictly follows the CEC’2022 com-
petition rules [6]. The budget was set to 2 · 105 for 10 D, and
106 for 20 D. For each function in each dimensionality, 30
independent runs were performed. All objective function error
values smaller than 10−8 were set to 10−8. The seeds of the
Mersenne Twister pseudo-random generator were set to those
provided by the competition organizers. The initial population
is initialized with randomly generated individuals distributed
uniformly in the admissible area (±100).

The ranking defined by the competition organizers is used
here as one of the methods of algorithms comparison. The
ranking not only rewards the objective function value achieved
at the end of the search, but it also rewards faster algorithms
when the optimum is found. Using the comparison rule
mentioned above, all trials are ranked from the worst to the
best for each function. The score of each algorithm is a sum
of its ranks (the more, the better). When only two methods are
compared, the score reduces to the Mann-Whitney U-statistic.

A. Parameters setup

The implementations of the majority of modern optimiza-
tion methods are full of constants. Some are initial values of
parameters that undergo adaptation, and some are thresholds
used to make specific decisions. Usually, these constants
are not disclosed in the articles, making it impossible to
reimplement the method based only on the article.

The parameters of the original method undergo auto adap-
tation. All introduced modifications do not change the core of
the algorithm. Therefore, fine-tuning of the parameters is not
necessary.

This section describes how parameters were set up, whereas
their meaning was described in Section III. Generally, after the
initial guess, the parameter value was changed in the vicinity to
detect the promising direction of changes. If the changes in the
algorithm performance were small or (roughly) optimal value
of the parameter was found, parameter setup was finished.

To save computational time, newly introduced parameters
were set up using a 20-dimensional version of the benchmark.
The ranking defined for the CEC’2022 was used to decide
which parameter value is the best.

The midpoint component does not introduce any additional
parameters. The restart component required setting up restart
triggers, and the shape of the function used to decrease
population size. The maximal number of iterations on bounds
for an individual was set to 10 after examining values 8, 9, 10,
and 11. The trigger based on the midpoint location requires
two parameters, i.e., the difference threshold and the maximal
number of iterations. These parameters are dependent, but the
maximal number of iterations is more sensitive. Therefore, the



threshold was set to 10−9, and values 7, 8, 9, 10 were used
as candidates for the maximal number of iterations. Nine was
the best. After that, the default method of changing population
size was compared with the proposed one. Three alternative
multipliers of b from (1), i.e., 0.5∗10−6, 10−6, 2∗10−6 were
tested. The proposed method with a multiplier 10−6 was the
best.

The resampling component has two parameters: the max-
imal number of mutation repeats, which was initially set to
100, and the number of repair trials that use old F and CR
values, which was set to 10. There is no need to tune these
parameters. The maximal number of mutation repeats is only
for protection from an infinite loop. The limit was never hit
during the experiments. The maximum number of repair trials
using old F and CR values should be above 1 and below 100.
When it is 100, the repair mechanism sometimes fails when
randomly drawn F is 1. When it is 0, the results are slightly
worse.

The k-means component introduces the threshold that sep-
arates good groupings from weak ones. Values 1/

(
4
√
D
)

,

1/
(
3
√
D
)

, 1/
(
5
√
D
)

were examined; 1/
(
4
√
D
)

was the
best. The k-means is not used when population size drops
below a threshold. Three threshold values were examined: 4,
10, and 20. Based on the results of the experiments, the value
20 will be used as the minimum population size that enables
clustering.

B. Validating influence of added components

The influence of each added component was verified by
CEC’2022 ranking for all functions in 10D in Table I, for
20D in Table II and the sum of the scores for 10D and 20D
is provided in Table III.

TABLE I
CEC’2022 RANKING FOR EACH SUBSEQUENT MODIFICATION OF

NL-SHADE-RSP (D = 10). THE BEST RESULTS FOR EACH ROW WERE
TYPESET IN BOLD

nl-shade-rsp midpoint restart resampling k-means
F1 1055 1640 1933 1990 2384
F2 1534 1963 1989 1819 1890
F3 11 1981 1850 1691 3329
F4 1105 1627 1966 1862 2441
F5 1864 1752 1748 1792 1845
F6 1524 1964 1895 1893 1724
F7 1998 1729 1463 1934 1877
F8 1893 2050 1694 1627 1736
F9 1846 1770 1845 1770 1770

F10 2238 1666 1728 1816 1553
F11 1617 1979 1662 1678 2064
F12 1782 1862 1878 1821 1658

Sum 18465 21982 21594 21692 24269

All components were added sequentially upon previously
added ones. Therefore, each column shows the result of adding
a component whose name is in the column’s title on the
top of all components listed on the left in the table. For
instance, column ”restart” shows results of NL-SHADE-RSP
with midpoint and restart components, whereas column ”k-
means” shows the results of all introduced components.

TABLE II
CEC’2022 RANKING FOR EACH SUBSEQUENT MODIFICATION OF

NL-SHADE-RSP (D = 20). THE BEST RESULTS FOR EACH ROW WERE
TYPESET IN BOLD

nl-shade-rsp midpoint restart resampling k-means
F1 1115 1678 1840 1827 2540
F2 682 562 2696 2262 2799
F3 2 1790 1850 1758 3600
F4 285 693 2449 2766 2808
F5 704 1141 2478 2399 2278
F6 2153 1876 1626 1450 1895
F7 1650 1604 1932 1837 1977
F8 1781 1593 1364 1731 2531
F9 1800 1800 1800 1800 1800

F10 1254 1490 1595 2108 2554
F11 1302 1209 2075 2163 2251
F12 1946 1656 1600 1901 1898

Sum 14673 17091 23304 24539 28394

TABLE III
CEC’2022 RANKING FOR EACH SUBSEQUENT MODIFICATION OF

NL-SHADE-RSP (D=10 + D=20). THE BEST RESULT IS TYPESET IN
BOLD

nl-shade-rsp midpoint restart resampling k-means
Sum 33138 39073 44897 46231 52663

As could be seen for the sum of the scores for 10D (Table
I), for 20D (Table II) and overall for the whole benchmark
(Table III) each sequentially added component improves upon
a previous step.

When analyzing results for each function in 10D, it can be
observed that the original algorithm is the best for functions
5, 7, 9, and 10. Function 9 is challenging; most considered
methods could only find the same local optimum, which lies
on the bounds. Theoretically, restarts should help here, but
they only were able not to degrade the results of the original
method. The midpoint component made the algorithm the best
version for functions 2, 6, and 8. Enabling restarts made the
algorithm the best for function 12. Resampling was never the
best; k-means were best for functions: 1, 3, 4, 11. These
functions, except for F4, have in common that they were
solved to the optimum in more than half of the runs. All these
functions have in common that they do not have plateaus, and
they resemble noisy functions with visible global shapes.

Even though k-means was not consistently advantageous
for all functions, its usage gave an advantage over the plain
version of the algorithm of about 6000 ranking points.

The differences between examined versions are easier to
notice in 20D. The original version was the best only on
functions 6 and 12 (it did not achieve similar performance
for these functions in 10D). All versions failed on F9. The
restart enormously helped for function 5. K-means was the
best for the rest of the functions. In 20D, k-means gathered
two times more points than the base algorithm.

C. Examining the population size

According to the result shown in the previous section, en-
abling all additional components, including k-means, results in
a better method according to ranks. This section examines the



influence of population size on the performance of the k-means
version. As differences between variants of the algorithm were
bigger in 20D, this dimensionality was used here. The results
in a form of ranking for initial population size set to 40,
100, 160, 200, 400, 600 are presented in Table IV. It can

TABLE IV
THE INFLUENCE OF THE INITIAL POPULATION SIZE ON THE RESULTS OF
THE PROPOSED METHOD (D = 20). THE BEST RESULTS FOR EACH ROW

WERE TYPESET IN BOLD

40 100 160 200 400 600
F1 4500 3600 2700 1800 900 0
F2 2780 2362 1999 2493 2071 1796
F3 4500 3600 2700 1800 900 0
F4 2807 2383 2252 2282 2284 1494
F5 2644 2135 1279 1507 2351 3584
F6 306 2406 2471 2412 3419 2486
F7 1148 2545 2230 2207 2820 2551
F8 1328 2284 2244 2460 2576 2609
F9 2250 2250 2250 2250 2250 2250

F10 1068 4032 3420 2580 1650 750
F11 3208 2627 2042 2436 1722 1467
F12 1259 1528 1950 2531 3113 3119

Sum 27797 31751 27535 26757 26056 22105

be observed that the sum of the scores was the best for the
initial population size equal to 100, the second was 40, and
the third was 160. Finally, the population with 600 individuals
was the worst.

A somewhat different picture emerges when winners for
each function are analyzed. The population of 600 individuals
was the best for functions 5, 8, and 12, but it completely failed
for functions 1 and 3. Size 400 was the best for functions 6 and
7; size 100 was the best only for function 10, and the smallest
considered population size was the best for the rest of the
functions. All population sizes failed for function number 9.

To understand better what is happening, Fig. 2 presents the
results of the algorithm using the smallest, the largest, and
optimal population size. To visualize the results, the plots
of Empirical Cumulative Distribution Functions (ECDF) are
used. The ECDF curve describes the fraction of target fitness
values that are achieved in consecutive iterations by the best-
so-far solution observed in that run. The ECDF curves can
be averaged over many independent runs of the algorithm
and many different optimization problems. Thus, they are a
convenient tool for results aggregation and presentation.

It can be observed that when the initial population contained
100 individuals, it allowed for solving the largest number of
problems at the end of the optimization. The largest initial
population gave the lowest number of solved problems for
most of the search. On the contrary, the smallest population
gave the largest number of solved problems for most of
the search, but it was outperformed at the finish of the
search. Further analysis showed that good results of the small
population are caused by faster solving of the functions that
are solved to the optimum.

The version of NL-SHADE with all components, which uses
an initial population of 100 individuals, will be named NL-
SHADE-RSP-MID in the rest of the paper.
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Fig. 2. The influence of population size on the results of the proposed method
(D = 20)

D. Verification by other metrics

According to the outcome of the official ranking, NL-
SHADE-RSP-MID is better than plain NL-SHADE-RSP. In
this section, other methods are used to verify that. Table
V contains means and standard deviations, and the outcome
of the Wilcoxon signed-rank test calculated for each of the
functions in 10D.

According to the results, the proposed version is better on
function 4 and worse on function 10. No other statistically
significant differences were detected. It can be observed that
ignoring information about when the optimum is found makes
it harder to distinguish competitors. It makes it impossible to
differentiate methods that nearly always find the optimum (like
algorithms under comparison on functions 1, 2, 3, 7, and 11).

In 20D (Table VI), functions 1 and 3 are solved by both
methods, so algorithms are not distinguishable on these func-
tions. Both algorithms failed on F9. The proposed method was
better on 5 functions, and it was not distinguishable on the rest
of them. It looks like the advantage of the proposed method
grows with dimensionality.

The last type of comparison used ECDF curves. The curves
for 10D are presented on Fig. 3 and for 20D are presented on
Fig. 4.

The plots additionally include the result of the CMA-
ES [26], [27], and DES [28] as a reference. DES (Differential
Evolution Strategy) is an evolutionary algorithm that combines
DE with the ES’s internal dynamics. As shown in [28], its
evolution of expectation vectors and the covariance matrices
resembles the one observed in the CMA-ES without involv-
ing any matrix operations. At the CEC’2017 competition,
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Fig. 3. Comparison of the proposed method with NL-SHADE-RSP, CMA-ES,
DES in 10D.
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Fig. 4. Comparison of the proposed method with NL-SHADE-RSP, CMA-ES,
DES in 20D

TABLE V
AVERAGE FITNESS, STANDARD DEVIATIONS AND WILCOXON

SIGNED-RANK TEST OUTCOMES IN 10D (REFERENCE=NL-SHADE-RSP)

NL-SHADE-RSP Proposed version
F. Mean Std Mean Std T
1 1e−08 0e+00 1e−08 0e+00 =
2 1e−08 0e+00 1e−08 0e+00 =
3 1e−08 0e+00 1e−08 0e+00 =
4 1.6e+01 5.6e+00 1e+01 4.5e+00 +
5 1.7e+00 2.9e+00 1.7e+00 3.9e+00 =
6 1.8e−01 2.5e−01 1.7e−01 2.4e−01 =
7 3.7e−06 2e−05 1e−08 0e+00 =
8 2.2e−01 3e−01 2.4e−01 2.8e−01 =
9 2.2e+02 4.2e+01 2.3e+02 0e+00 =

10 1.3e−01 6.1e−01 4.5e+00 1.8e+01 −
11 1e−08 0e+00 1e−08 6.5e−10 =
12 1.6e+02 8.6e−01 1.6e+02 9.7e−01 =

TABLE VI
AVERAGE FITNESS, STANDARD DEVIATIONS AND WILCOXON

SIGNED-RANK TEST OUTCOMES IN 20D (REFERENCE=NL-SHADE-RSP)

NL-SHADE-RSP Proposed version
F. Mean Std Mean Std T
1 1e−08 0e+00 1e−08 0e+00 =
2 4.4e+01 1.2e+01 8.9e+00 1.7e+01 +
3 1e−08 0e+00 1e−08 0e+00 =
4 8.9e+01 1.9e+01 2.8e+01 7.8e+00 +
5 4e+02 3.2e+02 1.5e+02 7.6e+01 +
6 5.6e+00 5.6e+00 6.3e+00 5.4e+00 =
7 1.4e+01 8.2e+00 1.2e+01 9e+00 =
8 2e+01 9.3e−01 2e+01 1.2e+00 +
9 1.8e+02 0e+00 1.8e+02 0e+00 =

10 1e−03 5.7e−03 2.1e−03 7.9e−03 =
11 2.8e+02 7.6e+01 1.5e+02 1.5e+02 +
12 2.4e+02 4.4e+00 2.4e+02 4e+00 =

DES achieved the best results for multidimensional problems
amongst all participants.

The differences between NL-SHADE-RSP and its modifi-
cation are hardly visible in 10D. Both methods are better than
CMA-ES and DES at the finish of the search. DES is the best
for budgets visible in the middle of the plot.

For 20D proposed method is better than its predecessor for
most of the search. It is the best at the end of the search. For
small budgets, DES is the best.

E. CEC tables

According to the rules of CEC’2022, the results at the end
of the search should also be presented in the tables containing
best, worst, median, mean and standard deviation for each
function. The results for 10D are available in Table VII. The
results for 20D are presented in Table VIII.

If we assume that function is solved when the median is at
the optimum, the proposed method solves functions 1, 2, 3, 7,
10, 11 in 10D and functions 1, 3, 10 in 20D. For function 9,
the standard deviation is 0, which means that consistently the
same local optimum is found in all runs.



TABLE VII
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 30

INDEPENDENT RUNS ON CEC’2022 PROBLEMS FOR 10D. THE BEST
POSSIBLE VALUES WERE TYPESET IN BOLD

F. Best Worst Median Mean Std
1 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

2 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

3 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

4 2.98e+00 2.09e+01 9.45e+00 1.00e+01 4.55e+00

5 1.00e−08 1.66e+01 3.17e−01 1.69e+00 3.88e+00

6 1.78e−02 1.04e+00 9.65e−02 1.67e−01 2.45e−01

7 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

8 9.39e−05 6.58e−01 8.09e−02 2.38e−01 2.78e−01

9 2.29e+02 2.29e+02 2.29e+02 2.29e+02 0.00e+00

10 1.00e−08 1.00e+02 1.00e−08 4.53e+00 1.83e+01

11 1.00e−08 1.36e−08 1.00e−08 1.01e−08 6.50e−10

12 1.63e+02 1.66e+02 1.65e+02 1.65e+02 9.72e−01

TABLE VIII
BEST, WORST, MEDIAN, AVERAGE, AND STANDARD DEVIATION FOR 30

INDEPENDENT RUNS ON CEC 2022 PROBLEMS FOR 20D. THE BEST
POSSIBLE VALUES WERE TYPESET IN BOLD

F. Best Worst Median Mean Std
1 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

2 3.65e−05 4.91e+01 3.50e−01 8.93e+00 1.67e+01

3 1.00e−08 1.00e−08 1.00e−08 1.00e−08 0.00e+00

4 1.59e+01 5.77e+01 2.69e+01 2.79e+01 7.83e+00

5 1.48e+01 3.40e+02 1.39e+02 1.47e+02 7.61e+01

6 3.81e−01 2.18e+01 4.42e+00 6.35e+00 5.41e+00

7 9.95e−01 2.23e+01 7.16e+00 1.16e+01 8.99e+00

8 1.39e+01 2.05e+01 2.03e+01 2.00e+01 1.18e+00

9 1.81e+02 1.81e+02 1.81e+02 1.81e+02 0.00e+00

10 1.00e−08 3.12e−02 1.00e−08 2.08e−03 7.92e−03

11 1.00e−08 3.00e+02 1.50e+02 1.50e+02 1.53e+02

12 2.34e+02 2.52e+02 2.43e+02 2.43e+02 3.99e+00

F. Algorithm complexity

The experiments were performed on a laptop equipped with
an Intel Core i7-6500U @ 2.5GHz processor that was working
under the control of Ubuntu 20.04. The single threaded pro-
gram was written in the C++ language and compiled by gcc
with O2 flag. The rules of CEC 2022 [6] require measurements
of the runtime of several functions to allow for the comparison
of the complexity of the algorithms. More specifically, T0
is the execution time of 2 · 105 evaluations of some basic
mathematical expressions, T1 is the time of 2 ·105 evaluations
of function 1, and T̂2 is the mean taken from 5 independent
runs of the presented algorithm. Each algorithm run was
performed on a budget of 2 · 105 evaluations of function 1.
Target function value was set lower than a global optimum to
prevent the algorithm from stopping too early. In 10D several
restarts were triggered by stagnation detection mechanisms.

The results of the experiments are presented in Table IX.
It can be observed that the algorithm’s time complexity

grows linearly with problem dimensionality. A two-fold in-
crease in dimensionality increases more than twice the time
required by objective function evaluations, but it increases
less than twofold the time required by the whole algorithm.
It is due to the computational time required to prepare data
structures.

It can also be observed that the k-means component strongly

TABLE IX
COMPUTATIONAL COMPLEXITY OF THE ALGORITHM AND ITS VERSION

WITHOUT K-MEANS ON INTEL CORE I7-6500U @ 2.5GHZ PROCESSOR.
THE PROGRAM WAS WRITTEN IN C++ LANGUAGE AS A SINGLE

THREADED APPLICATION

Dim. & version T0 T1 T̂2 (T̂2− T1)/T0

10, default 0.0042 0.027 0.66s 150

20, default 0.0042 0.078 0.91s 197

10, no k-means 0.0042 0.027 0.18s 36

20, no k-means 0.0042 0.078 0.26s 44

increases the algorithm’s complexity. The speed can be easily
gained by using alternative versions of k-means and alternative
initialization methods. The code that converts data structures
between NL-SHADE-RSP and k-means can also be corrected.
We also have to bear in mind that thanks to using C++, T̂2 is
still below 1s, which cannot be achieved in some languages
the researchers frequently use. For example, T̂2 achieved by
the NL-SHADE-RSP-MID is about 83 times smaller than T1
computed in R language with the ’cecs’ package in 10D.

V. CONCLUSIONS

The enhanced version of NL-SHADE-RSP, called NL-
SHADE-RSP-MID, was proposed in this paper. The NL-
SHADE-RSP won CEC’2021 on single objective bound-
constrained numerical optimization for two categories of func-
tions: shifted and rotated shifted. The NL-SHADE-RSP-MID
extends its predecessor by adding four components: 1) the
concept of midpoint; 2) restarts; 3) resampling as bound
constraint handling; 4) k-means grouping. The midpoint of
the population is used to estimate the optimum. Midpoint’s
fitness is also used to introduce a restart trigger. For large
enough populations, the midpoint is calculated after splitting
the population into two parts by the k-means algorithm.
The resampling repeats mutation when an unfeasible point is
generated.

The performance of the proposed approach was evaluated
on the CEC’2022 benchmark for single objective bound-
constrained numerical optimization. According to the rank-
ing defined by the benchmark, each introduced component
improved the base algorithm in 10 and 20 dimensions. The
resulting algorithm was also compared to its predecessor using
ECDF curves and statistical tests performed on the results
obtained at the end of the budget. For these comparison
methods, significant changes were not detected in 10D but
were visible in 20D. The results of the NL-SHADE-RSP-MID
were also compared to the results of the CMA-ES and DES.
DES was the best for a low budget, but NL-SHADE-RSP-MID
won for a large budget on both dimensionalities.
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