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Abstract
Automated verification of distributed systems becomes very important in distributed computing. The graphical insight into 
the system in the early and late stages of the project is essential. In the design phase, the visual input helps to articulate the 
collaborative distributed components clearly. The formal verification gives evidence of correctness or malfunction, but in 
the latter case, graphical simulation of counterexample helps for better understanding design errors. For these purposes, 
we invented Distributed Autonomous and Asynchronous Automata (DA3), which have the same semantics as the formal 
verification base—Integrated Model of Distributed Systems (IMDS). The IMDS model reflects the natural characteristics of 
distributed systems: unicasting, locality, autonomy, and asynchrony. Distributed automata have all of these features because 
they share the same semantics as IMDS. In formalism, the unified system definition has two views: the server view of the 
cooperating distributed nodes and the agent view of the migrating agents performing distributed computations. The automata 
have two formally equivalent forms that reflect two views: Server DA3 for observing servers exchanging messages, and 
Agent DA3 for tracking agents, which visit individual servers in their progress of distributed calculations. We present the 
DA3 formulation based on the IMDS formalism and their application to design and verify distributed systems in the Dedan 
environment. DA3 formalism is compared with other concepts of distributed automata known from the literature.

Keywords  Distributed systems · Distributed system modeling · Distributed automata · Graphic modeling · Formal methods

1  Introduction

IMDS (Integrated Model of Distributed Systems [1]) is a 
formalism used to identify and verify distributed systems, in 
particular to detect deadlocks and check distributed termina-
tion. The formalism reflects the behavior of components of 
distributed systems: servers in a distributed environment act 
asynchronously and make decisions autonomously. How-
ever, many modeling and verification formalisms provide 
mechanisms based on simultaneous actions of processes, 
like synchronous transitions on common symbols in Büchi 
automata [2] or Timed Automata [3], synchronization on 
send and receive operations in CSP [4] or Uppaal Timed 

Automata [5], synchronous operations on complementary 
input and output ports in CCS [4] or Occam [6]. Several 
automata-based formalisms (including Büchi automata and 
Timed Automata) use synchronous coordination. By con-
trast, IDMS models may be checked asynchronously.

The main feature of our IMDS is providing two views 
of a distributed system: cooperating servers or migrating 
agents. The system definition is uniform, but two projections 
allow for observation and verification of different properties: 
communication deadlock in the server view, and resource 
deadlock and distributed termination in the agent view. 
Mostly they are the same deadlocks but observed from dif-
ferent perspectives [1]. The vital feature of IMDS is finding 
partial deadlock/termination, in which a subset of processes 
is involved.

Students and engineers avoid formal methods, especially 
model checking, because determining the properties of a 
system in temporal formulas is not an easy task [7]. Avoid-
ing formal methods is also a summary of our several years 
of observation. In order to persuade users to use formal 
methods, on the one hand, it is necessary to facilitate the 

Communicated by Gordon Blair.

 *	 Wiktor B. Daszczuk 
	 wbd@ii.pw.edu.pl

1	 Institute of Computer Science, Warsaw University 
of Technology, Nowowiejska Str. 15/19, 00‑665 Warsaw, 
Poland

http://orcid.org/0000-0001-7532-362X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00917-7&domain=pdf


	 W. B. Daszczuk 

1 3

specification of the system to be verified, and on the other 
hand, to simplify the verification process as much as possi-
ble. We achieved the latter by “push the button” verification, 
as we developed general temporal formulas, independent 
of the structure of the system under test. These formulas 
are built into the verifier and invisible to the user, who sees 
only the result of the verification in the form of meeting 
certain properties or not. A counterexample or a witness 
allows seeing the sequence of system behavior leading to 
the given result.

However, the verification itself must be preceded by a 
formal system specification, which is not an easy task. Ide-
ally, we can describe the system components, and the verifier 
will automatically build a global model. These are the rea-
sons for creating, for example, temporal verification systems 
for source languages, such as Bandera [8]. Likewise, in our 
Dedan environment, the imperative higher-level program-
ming language Rybu [9] has been developed, however, it is 
beyond the scope of this article.

Also, the observation of the results and verification in the 
form of sequence diagrams is not an easy matter in the case 
of large systems. The development of an automatic model of 
system components, the semantics of which corresponds to 
a formal mathematical model, can facilitate both the speci-
fication of the system as a graphical input of the verifier and 
the observation of the verification result as a simulation of a 
counterexample over a graphical representation in the form 
of automata.

In this article, we describe just such an automata-based 
model, which is a graphical counterpart of the formal IMDS 
model. Together with automatic verification, our distrib-
uted automata make it easy for students and other users 
to enter easily and apply formal verification of distributed 
systems. Just as IMDS allows the system to be projected 
onto cooperating nodes or migrating agents, likewise distrib-
uted automata in graphical representation take the form of 
server automata or agent automata. The designer can choose 

between these two forms of specification and observation, 
and the verifier allows for easy switching between server and 
agent views, even with a partially completed model.

The contribution of this article is the introduction of 
DAAA—Distributed, Asynchronous and Autonomous 
Automata for modeling distributed systems (shortened to 
DA3—D-triple-A or DA-cubed). Their goal is to define dis-
tributed systems graphically and to simulate modeled sys-
tems graphically. An essential function of the simulation 
is to show changes in system components according to the 
verification counterexample. There are two versions of DA3 
that reflect the communication duality: Server DA3 (S-DA3) 
and Agent DA3 (A-DA3). Both have the semantics equiva-
lent to the IMDS specification, and therefore to each other. 
These two forms reflect two ways of describing distributed 
systems: as cooperating servers in the Client–Server-like 
specification or as traveling agents in the Remote Procedure 
Call (RPC) view [10]. They also reflect the fundamental 
characteristics of distribution: unicast communication, local-
ity of execution, autonomy of decisions, and asynchrony of 
operation and communication.

First, we introduce the idea of DA3. Figure 1 presents an 
informal view of a distributed system buffer. This figure 
enumerates the elements of the example system, which are 
introduced formally later in the article. The system consists 
of 1-element buffer buf, and two users—producer Sprod 
and consumer Scons, so there are three servers presented 
in red. Each server can be in one of the states shown as 
red ovals; the initial states have a double border. Servers 
offer services presented by green arrows. These services are 
invoked by messages sent in the context of distributed com-
putations called agents. The agents Aprod and Acons are 
initiated on the Sprod and Scons servers, respectively, 
and they migrate in the system to the server buf and back 
using messages identified with servers’ services. Here we 
do not distinguish between the concepts of service and mes-
sages, this distinction will be described in Sect. 5. Besides, 

Fig. 1   The example 1-element 
buffer system
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the agents call from their home servers doSth services on 
the same servers, which models performing of activities 
other than operations on buf. Those messages are shown 
as Looping arrows. Initial messages (just doSth) have a 
double border.

The system evolves by performing an action: each action 
takes a message in a given server state and creates a new 
server state and a new agent message that invokes the next 
action on some server.

The automata are graphical Mealy-style [11] projections 
of the system onto distributed components, i.e., servers 
or agents. Server automata S-DA3 are presented in Fig. 2. 
The automata headings are the server names in rounded red 
boxes. The nodes of individual automata (we do not call them 
“states” to avoid ambiguity) are placed vertically under the 
automata headings. Automata nodes are server states. In the 
full notation provided in Sect. 4, they have the form (server, 
value), here shortened to the value only, because the server 
name is the automaton heading. Actions are modeled as the 
transitions from a node to another node, having agent mes-
sages being input and output symbols. Messages are triples 
(agent, server, service) made up of the service name, and 
the server and agent names that match the action context. 
Service names, being part of message triples, are underlined. 
They are introduced in the informal Fig. 1. The automata are 
equipped with input sets of pending messages that are in no 
way organized into data structures such as vectors, stacks, or 
queues. The sets are shown as bags under the automata, with 
their initial contents. The view of these S-DA3 automata in 
the Dedan program is presented later in Fig. 6.

The same system projected onto agents is presented in 
Fig. 3. In this view, everything is dual: the automata nodes 

are the agents’ messages, while the servers’ states occur as 
the transition input/output symbols. The automata headings 
are the agent names in rounded green boxes. The nodes of 
individual automata are placed vertically under the automata 
headings. States (server, value) consist of the server name 
and the state value. Message triples in the full notation pro-
vided in Sect. 4 are (agent, server, service), here shortened 
to the pairs (server, service), because agent name is the 
automaton heading. States are pairs (server, value) made up 
of the server name and state value. State value names, being 
part of state pairs, are underlined. They are introduced in 
the informal Fig. 1.  The states are input and output symbols 
on the automata transitions. There is also a global vector of 
current server states, shown below the automata. The view 
of the A-DA3 automata in the Dedan program is presented 
later in Fig. 7.

The basic formalism for specifying and verifying dis-
tributed systems is IMDS, rather than the DA3. Automata 
facilitate the specification of the graphics system as a set of 
cooperating state machines. At the same time, in the Dedan 
environment, it is possible to simulate system operation in 
terms of automata and to track the steps of the counterex-
ample obtained from model checking. The source IMDS 
code of a distributed system has semantics in the form of 
labeled transition system (LTS). A fragment of the LTS of 
the example system is presented in Fig. 4. We will show 
that the LTS-es produced by both forms of DA3 define the 
same semantics.

Our approach is not completely different from the other 
proposed automata models. The main difference is in the com-
bination of the automata-based and the process-based model, 
the two formalisms with equivalent semantics but different 

Fig. 2   Server automata for the 
buffer system
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in the way they express the behavior of servers and migrant 
agents. The textual process model is ideal for studying the 
characteristics of specific systems using temporal logic and 
other algebraic methods. On the other hand, the automata are 
closer to the designer's intuition and are perfectly suited to 
the specification of the system, its simulation or the observa-
tion of the course of counterexamples obtained from temporal 
verification. The duality of the automata model is important 
in this context, as it emphasizes the cooperation of distributed 
servers, or the migration of agents traveling between nodes. 
It is an extension of Lauer Needham's concurrency dualism 
postulate [12] to distributed environments.

IMDS as a broad theoretical base has been discussed 
in several articles, including [1]. The present article is the 
continuation of the work presented in [13], in which the 
informal background of DA3 was given. The novelty of the 
approach presented in the present article is:

•	 More formal specification, as the construction of the LTS 
for a set of automata was not defined yet;

•	 On the base of the DA3 LTS, and the IMDS LTS the 
specification, the equivalence between IMDS and DA3 
is described;

•	 The application of DA3 in modeling and verification of 
distributed systems was previously presented in brief 
three paragraphs, now we present some procedures of 
verification and simulation in the Dedan environment in 
detail; these procedures evolved during several years of 
developing and using Dedan, mainly in education;

•	 Only a tiny model was provided as the subject to IMDS 
and DA3 specification, now we discuss a reasonable size 
system;

•	 A new feature is added to the Dedan verification environ-
ment and described in this article: the simulation of DA3 
run following a counterexample; this is very useful in the 
verification procedure.

The article is organized as follows. The numerous for-
malisms known as distributed automata are discussed in 
Sect. 2. The definition of the basic IMDS formalism is given 
in Sect. 3. Section 4 provides an IMDS specification of the 
same buffer system as seen above. An informal view of the 
distributed automata DA3 is given in Sect. 5, and the defini-
tion in two forms S-DA3 and A-DA3, in Sect. 6. A practical 
example of DA3 application is described in Sect. 7. Section 8 
presents an example of how Dedan works when simulating 
an example from Sect. 4. Also shown are examples of S-DA3 
and A-DA3 views in the Dedan environment. Conclusions 
and further work are covered in Sect. 9. The equivalence of 
basic IMDS and both versions of DA3 is presented in the 
Appendix.

2 � Related work

Discrete event systems are those whose evolution is trig-
gered by symbols produced and consumed or exchanged 
with the external world. They are especially useful for 

Fig. 3   Agent automata for the 
buffer system
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modeling digital distributed systems. Among them, the 
most common are Petri nets, process algebras, and finite 
automata [15]. Generally, automata-based specification 
consists in connecting some states by means of transitions 
[16]. Formally, states are valuations of internal variables of 
a system. The transitions show changes between these states 
in response to occurring symbols (letters of the input alpha-
bet). In practice, these symbols denote external events sent 
to the automaton, such as signals or messages. Distribution 
is often modeled as decomposing the global automaton into 
a set of concurrently behaving component automata, and 
splitting the set of symbols into subsets, which can overlap. 
Private symbols mean local actions, while common symbols 
are treated as communication [17].

An important element of the automaton is the current 
state, which illustrates the phase in the automaton evolve-
ment. The automaton starts from the initial state. Addition-
ally, some approaches require final states and some do not. 
In formal linguistics, final states accept input sequences, 
while in behavioral automata they are treated as termination.

Automata are used to express the behavior of state-based 
systems that are most commonly used in computer science 
and technology. The second area of application is formal 
linguistics, used to check whether a given sequence belongs 
to a language or to transform an input sequence to an output 
sequence. Sometimes these two functions are combined, for 
example in compilers. This article covers the first area that 
describes the behavior of a system as a state-transition dia-
gram. Whereas actions typically happen on the transitions, in 
some approaches the states also encapsulate activity, consist-
ing of sequences or parallel combinations of actions. Exam-
ples of activity states include the tasks of BPMN (Business 
Process Model and Notation) [18] and the states of UML 
(Unified Modeling Language) State Machine Diagrams [19]. 
An important feature of automata is their descriptive graphic 
form, friendly to human perception. Therefore, automata are 
widely used in education, digital circuit design, information 
systems specification, and other purposes.

Concurrency is a crucial issue in hardware and software 
design. For this purpose, sets of cooperating automata have 
been developed. In a system of concurrent automata, their 
states form a state vector describing the global state. Con-
current automata are used, for example, in hardware design, 
communication protocol specification, and parallel programs 
description. Two important considerations are: how the tran-
sitions in component automata are combined to global tran-
sitions and how the symbols are exchanged. Externals events 
may come from outside the system and events generated by 
automata, that are offered to other automata and to the exter-
nal world. The system is open if events can come from the 
external world, and closed if they come only from automata.

The semantics of an automaton is defined such that if it 
remains in a given state and an input letter is proposed that 

matches a letter on the transition, the automaton changes its 
state to the target of the transition. If the same letter triggers 
multiple transitions, or if more than one letter is offered at 
the same time, the automaton is assumed to be nondeter-
ministic. The semantics of concurrent automata concerns 
the way of combining the transitions of individual automata: 
in parallel, interleaved or mixed. Parallel semantics is the 
simultaneous execution of enabled transitions, interleaving 
means execution of one transition at a time. In the case of 
mixed semantics, for example in parallel Büchi automata 
[2], parallel transitions mean synchronization, while inter-
leaved transitions refer to individual behavior. The com-
munication structure can be designed in various ways, e.g., 
when signals are received by every automaton, it is assumed 
to be a kind of global ether through which all distributed 
components observe symbols. If the automata cooperate in 
pairs, synchronous or asynchronous communication chan-
nels are assumed. Some intermediate communication struc-
tures may exist, such as the previously mentioned stacks or 
queues, which further complicate the semantics and which 
may introduce additional asynchrony (aspects of asynchro-
nous behavior are discussed below). Even more complicated 
structure of the multi-access Reo channels is proposed in 
[20]. Many types of concurrent or parallel automata were 
elaborated [21–23]. The timed versions are described in 
[24], and probabilistic versions in [25].

Many works describe formalisms called "distributed 
automata." There are fundamental differences between par-
allel but centralized, and distributed automata that model 
distributed computing. A significant difference between 
our automata and other presented models is the reflection 
of the actual features in distributed systems of communi-
cating nodes. The features of these systems are unicasting, 
autonomy, locality, and asynchrony. It is imperative to fully 
explain our understanding of these concepts to avoid termi-
nological confusion. Of course, other authors may use a dif-
ferent interpretation of the given terms, and they have every 
right to do so. However, we will focus on the interpretation 
that, in our opinion, reflects the specifics of the operation of 
actual components of existing distributed systems, because 
we focus on modeling and verification of such systems.

•	 addressed communication—there are different commu-
nication methods in distributed systems, and here we 
have no ambition to cover all possible ways. Systems 
that disseminate information about events or provision 
of services may naturally use a broadcasting model of 
communication (messages are sent to every component 
node). Systems that consist of replicated server clusters 
may naturally use a multicasting communication model 
(messages are targeted at relevant subsets of the compo-
nent nodes, of which one or another node may choose 
to respond). Systems that model distributed computing 
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explicitly are best described using a unicasting model 
(messages target specific component nodes in the sys-
tem, where migrating agents may execute sequences of 
operations on the target server). Examples of the kind of 
distributed processing environment suitable for unicast-
ing include: object-oriented middleware, in which pro-
cesses migrate between distributed objects that execute 
these; or systems of communicating physical agents, such 
as autonomous vehicles, or collections of communicat-
ing nodes in IoT networks, or similarly in web services 
computing. Each event should be routed precisely to the 
server automaton rather than available for all compo-
nents. We deliberately exclude broadcast or multicast-
based systems that are modeled for example in CSM 
(Concurrent State Machines [26]);

•	 locality—in a distributed environment, the components 
do not have access to the global state. The automaton’s 
knowledge of other automata is limited to the last com-
munication with them. The decision of each automaton 
is made on the basis of its local state and received events. 
In a centralized solution, an automaton can observe the 
global state, i.e., the values of all global items: states 
of other automata, globally pending symbols and/or 
global variables, if they are present in the formalism. 
The automata shown in Fig. 5 , which are components 
of automata systems (PDA—Pushdown Distributed 
Automaton, MPA—Message Passing Automaton and 
DA3—our distributed automaton), can be assumed dis-
tributed when composed with other automata of the same 
communication scheme, because the automaton and its 
input structure (stack, queue or set, respectively) provide 
a local framework for making decisions which transition 
to execute. We could think of a set of locally pending 
messages as an extension of the server state, but we think 
that it is more convenient to extract them as carriers of 
distributed agents. Whether the server remains in a state 
or leaves—it depends entirely on its current state and 
pending messages, it is not affected by any non-local sys-
tem elements: the states of other servers, the actions they 
take, or refraining from taking any action;

•	 autonomy—the automaton autonomously decides which 
event is accepted and causes the transition to be executed. 
No action or property of the environment can order or pre-
vent a server from taking a certain action. It is modeled as 
collecting events on the automaton’s input, that can trigger 
transitions outgoing from a given state, each triggered by 
an input symbol (or in some solutions by a combination 
of symbols). In nondeterministic models, the same sym-
bol can trigger more than one transition. In some formal-
isms, the freedom of the automaton is limited, as depicted 
in Fig. 5 . It shows two concepts of automata that only 
have access to one of the pending symbols. They are: PDA 
that gets the symbol on the top of the stack, and MPA that 

gets the symbol waiting the longest in the input queue. The 
third type DA3, the subject of this article, chooses freely 
from its input set. The random selection of the input mes-
sage is realized comparably to the guarded select state-
ment. Of course, what actions can be taken under what 
circumstances depends on the "program" contained on the 
server, which we model as a set of actions that have the 
server states and messages directed to this server on their 
input. It is up to the designer to accept the message and 
take action (or not accept a certain message in a particular 
state). Messages are treated the same way: there is no data 
structure that stores messages and makes them available in 
a particular way—like a queue or a stack. If the designer 
wants to accept messages in a specific regime, he or she can 
program this feature in the server action set. Significantly, 
delivering new messages to a server can never reduce 
the set of actions allowed in a given state, it can at most 
increase that set. Obviously, accepting the message leads 
the server to a new state in which specific actions may be 
forbidden. Autonomy is closely related to locality, but in 
our opinion, it is not conceptually identical with it;

•	 asynchrony—can be considered in three aspects: asyn-
chrony of actions in processes, asynchronous delivery of 
messages, and whether the communication primitives are 
blocking or non-blocking.

	 i.	 The asynchrony of actions consists in the fact that two 
processes provide in a certain way the input elements 
necessary for its execution, in our case: the state of 
the server and the message. There may times when 
the process itself provides all the elements (in the DA3 
case, it happens when a message is sent to the same 
server—then the same process provides the state and 
the message). In this case, both are delivered synchro-
nously, but the synchrony is hidden inside the pro-
cess. If two processes need to deliver the items at the 
same time, or if the delivery of the item depends on 
what is happening in the other process, we will call 
the action synchronous. This is the idea behind Büchi 
automata and Timed Automata [27], where two (or 
more) automata perform a synchronous joint action 
(although the authors call them asynchronous because 
the remaining local actions are performed completely 
independently). The necessary condition for the per-
formance of this joint action is that both automata 
reach the states preceding these synchronous transi-
tions, which we can interpret precisely as providing 
the elements necessary for its implementation. If the 
processes (in our case two, but in other formalisms 
there may be more of them) provide the elements nec-
essary to perform the action without looking at the 
other—then the action is asynchronous.
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		    In our case, apart from the situation of sending 
the message to the same server, in the action λ of 
the server s, the output message m to is delivered to 
another server s’—the message m target server. The 
servers’ can already be waiting in the state p’ for the 
message m. In such a case, an action λ’ will be ini-
tiated on the target server s’ (see Sect. 3 for formal 
details of action as the relation between messages and 
states). If the message m is not an input pair with the 
current state p’ of the server s’, then the message m 
will wait on the server s’ for such a state. The new 
state p’’ of the server s, generated in the action λ, can 
match one or more messages waiting on the server s, 
which together with the state p’’ will initiate another 
action λ’ on the server s. If the state p’’ does not match 
any of the messages pending at the server s—it will 
wait for the matching one to appear. On both serv-
ers s and s’, the actions are initiated asynchronously: 
the state is waiting for a message, or the message is 
waiting for the matching state. Of course, this always 
happens in the interleaved model, which is ours. In 
some models with coincident semantics, the state and 
message may appear simultaneously but accidentally. 
However, this accidental synchrony is not required for 
the asynchronous execution of actions.

	 ii.	 Communication asynchrony—the moment of send-
ing the message does not depend in any way on the 
recipient's readiness to accept it, the recipient's state 
or actions performed in it. Models such as the coinci-
dent, precisely synchronous message delivery in two 
Büchi automata or Timed Automata are not adequate 
for distributed processing in our opinion. In the Büchi 
and TA formalisms, automata communicate by per-
forming a joint transit with the same symbols. This 
is usually interpreted as sending and receiving a mes-
sage. In TA implementation of the Uppaal verifier, this 
common symbol even comes with attributes ! and ?, 
denoting sending and receiving of the message. This 
corresponds to actions (which in Büchi and TA are 
equivalent to communication, but not in our case, 
because the actions are local) when automata reach 
certain states at the same time or need to find out what 
the current node of the other automaton is (i.e., syn-
chrony or non-locality). In fact, in our opinion, there 
is no other way to know if the other server is willing 
to accept the message other than sending the message 
and waiting for a reply. Moreover, receiving a reply 
informs only the state of the second server at the time 
of sending the reply, but at the moment of receiving 
the reply, it is not known what could have happened 
after sending it. In some models, asynchrony is mod-
eled by a kind of "buffer" separating servers [28]. The 
process can send to the buffer at any time, and the 

reception will take place at the right moment. In our 
opinion, this significantly limits modeling, as such 
buffers clearly organize messages (typically FIFO), 
and there is also a problem with determining the buff-
ers capacity (see below). A direct consequence of the 
asynchrony of communication is the indefinite time 
of message delivery, which is also a way of defin-
ing this asynchrony [29]. On the other hand, in [30]
[31], the communication asynchrony is defined as the 
separation of the operations of sending and receiv-
ing messages. In summary, it can be said that in the 
synchronous model, the automata synchronize to com-
municate, while in the asynchronous model, they com-
municate in order to synchronize.

	 iii.	 The third aspect is blocking: synchronous communica-
tion consists in passively waiting for sending/receiv-
ing a message when the partner is not ready, i.e., non-
blocking communication as opposed to blocking [32, 
33]. While sending, the sender waits until the recipient 
is ready to receive the message, unless it is already 
ready. When receiving, the recipient waits for the mes-
sage after initiating the operation, unless it is already 
ready to receive it. So we refer again to knowing the 
state of the other server, or the communication takes 
place at the same time. While from the recipient’s point 
of view, it is possible to imagine blocking communica-
tion, from sender’s point of view it is unrealistic, for 
the reasons already discussed. In our model, communi-
cation is non-blocking both on the part of the sender’s 
side, i.e., sending the message is sent without knowing 
the recipient's state, as well as on the receiver’s side, 
because the recipient is always sensitive to receiving 
new messages from any sender, even if it is waiting for 
a specific message.The third aspect is blocking: syn-
chronous communication consists in passively waiting 
for sending/receiving a message when the partner is not 
ready, i.e., non-blocking communication as opposed to 
blocking [32, 33]. While sending, the sender waits until 
the recipient is ready to receive the message, unless it 
is already ready. When receiving, the recipient waits 
for the message after initiating the operation, unless 
it is already ready to receive it. So we refer again to 
knowing the state of the other server, or the com-
munication takes place at the same time. While from 
the recipient’s point of view, it is possible to imagine 
blocking communication, from sender’s point of view 
it is unrealistic, for the reasons already discussed. In 
our model, communication is non-blocking both on 
the part of the sender’s side, i.e., sending the message 
is sent without knowing the recipient's state, as well as 
on the receiver’s side, because the recipient is always 
sensitive to receiving new messages from any sender, 
even if it is waiting for a specific message.
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All the above features of asynchrony are met by the con-
struction both in the IMDS formalism and in the DA3 model 
that is unambiguous with it. Note that a synchronous system 
can be defined as one in which all distributed components 
execute in lock-step, using the same central clock, for exam-
ple CSM [26]. Therefore, an asynchronous system is one in 
which all distributed components execute following their 
own local clocks, out of lock-step. In our approach, we do 
not introduce any notion of clocks, neither central nor local.

Another aspect of distributed computations is commu-
nication duality—this non-obvious feature applies to two 
aspects of distributed computations. The famous Lauer-
Needham postulate [12] concerns the equivalence of com-
munication through messages and resources (variables). 
This duality expresses itself in distributed systems as the 
alternative of Remote Procedure Call versus Client–Server 
architectures. Thus, the system described in the two para-
digms should have two forms of automata: distributed 
servers communicating via messages and traveling agents 
communicating by servers’ states. This leads to unobvi-
ous assumptions about the states of distributed automata 
and exchanged events: in the view of the servers following 
the Client–Server architecture, there are natural automata 
nodes reflecting the server servers, and the transitions are 
triggered by events—messages exchanged between servers. 
However, in the view of RPC architecture, in which the com-
putations take the form of agents traveling between servers, 
the automata nodes should be assigned to the messages by 
which the agents run, and the events relate to the states of the 
servers. This turns the description of the distributed system 
upside down, but after reflection it is as natural as the wave-
particle duality in Physic. However, everything is fine if both 
descriptions—distributed server automata versus traveling 
agent automata—have the same semantics, described as all 
possible system executions.

Note that in Fig. 1 , and in all subsequent figures, all ele-
ments related to the servers and their states are colored red, 
while all elements related to agents and their messages are 
colored green.

In the literature, several types of automata are called dis-
tributed (DA).

1.	 Automata on distributed alphabets, communicating by 
means of common symbols, based on Zielonka’s autom-
ata [34]. The automata are called DA in many works 
concerning the behavior of concurrent systems (some-
times additionally equipped with real-time clocks for 
time analysis with real-time constraints): [35–37]. Those 
automata are called asynchronous in [38, 39], although 
they perform actions (execute the transitions) asyn-
chronously only if the input symbols are different. They 
make synchronous moves on common input symbols 
(and it is the only common aspect of separate automata). 

From our point of view, those automata should be called 
synchronous. Alur’s Timed Automata [3] (sometimes 
called DA [35]) are very close to Zielonka’s automata; 
they are additionally equipped with time constraints and 
time invariants. CSP processes are similar, synchroniz-
ing on ! and ? operations instead of common alphabet 
symbols. The advantage of CSP is to specify the direc-
tion of communication (! sends, ? receives), which in 
the case Zielonka’s automata should be provided infor-
mally. A similar concept is used in modeling distributed 
hardware systems in [40]. The hierarchical description 
of distributed symbols is undertaken using the nested 
version of such automata [41].

2.	 Close to Zielonka’s automata are Büchi automata. They 
differ in distinguishing some states as accepting, used 
for LTL model checking (for instance, in Spin [2]). They 
are called DA in [42].

3.	 Message Passing Automata (MPA, called DA in [43, 
44]) are really distributed and asynchronous. They con-
tain ordered sets on symbols waiting for acceptance, 
called buffers or queues. Such automata using FIFO 
buffers are called asynchronous DA in [45].

4.	 Pushdown Distributed Automata (PDA) are equipped 
with local memories of input symbols (stacks) [46].

5.	 The two former cases (MPA and PDA) are combined in 
[47, 48] and called DA.

6.	 Cellular automata are sometimes called DA [49]. They 
are synchronous in nature, but their evolution does not 
depend on the global state. Only the previous state of 
the cell and its neighbors’ states are taken into account. 
Cellular automata with reduced communication for the 
purpose of distributed implementation are presented in 
[50].

Above listed formalisms are referred to as “automata,” but 
there are other models of distributed systems, some of them 
even closer to some of the requirements presented, for example, 
synchronous statecharts with sets of input events [51] and asyn-
chronous statecharts with input dispatchers [14]. Communicat-
ing stream X-machines [52] with input buffers communicate 
asynchronously. We can treat any buffered communication as 
asynchronous because no knowledge about the target compo-
nent state is required. However, they are formally intractable 
because of unbounded delays. Moreover, such buffers are unre-
alistic to implement, and if they are bounded, incoming mes-
sages must be blocked or lost in a case of a full buffer. There-
fore, some knowledge about the receiver state comes back. In 
addition, the size of the input buffers is difficult to define, and 
too small buffers can cause deadlocks [53]. Note that in our 
formalism, the messages are the carriers of agents, therefore the 
total number of messages pending on input of servers is limited 
to the number of agents. Also, the agent is the context of the 
message, and the message is part of the action definition, so the 
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maximum number of messages in a given server is limited to 
the number of agents that can invoke the server’s services. Mes-
sage designates something like "agent state," and therefore there 
is exactly one system-wide message for each non-terminated 
agent, so the same agent cannot route multiple messages to a 
node, for example, messages coming from different servers.

In our opinion, none of the aforementioned formalisms 
fully meet the requirements set by DA described above: 
addressed communication, locality, autonomy, asynchrony, 
and communication duality. We developed Distributed 
Autonomous, Asynchronous Automata—DA3 (D-triple-A 
or DA-cubed, to distinguish them from all the outlined for-
malisms, all called DA). Our automata reflect the behavior 
of distributed components. Servers independently make 
decisions (perform actions) without knowing the state and 
pending messages in other servers (autonomy), and mes-
sages are sent regardless of the states and messages in the 
target servers (asynchrony). Since there are two distributed 
system views in IMDS, two forms of DA3 have been devel-
oped—Server-DA3 and Agent-DA3 (S-DA3 and A-DA3). We 
present them in Sect. 5 after describing the basic IMDS for-
malism. Both forms of DA3 are equivalent to IMDS.

3 � Integrated Model of Distributed Systems 
(IMDS)

We model closed distributed systems, i.e., those in which all 
activities depend on internal components and are not possible 
to interact with the outside world. All the signals that cause 
changes to the system come from its distributed components. 
If there are user processes that interact with the system, they 
must be modeled as components inside. No external signal 
can be observed, but the signals generated in the system can 
be observed from the outside, informing about system activity.

In IMDS [1], a distributed system is simply a set of 
actions, having pairs of state and message on input and on 
output. It is based on the observation that the server is acti-
vated by an incoming message in a distributed environment. 
If the message is accepted—which depends on the server’s 
current state—it performs some action. The action executes 
the specified service and generates the next server state. The 
messages are the carriers of agents. The agent has a mis-
sion to fulfill in a distributed environment. This mission is 
accomplished through distributed computing performed on 
servers. Therefore, the action on its output generates a new 
agent message in addition to the new server state. Typically, 
a new message is sent to continue the agent computation on 
a different server or sometimes on the same server. Thus, 
the system actions are the relation Λ on the set P of serv-
ers’ states and the set M of agents’ messages. Precisely, 
the action λ ∈ Λ connects two pairs: an input pair (message, 
state) and a similar output pair:

There are sets of servers S = {s1, s2, …, sn} and agents 
A = {a1, a2, …, ak}. The set P is split into disjoint subsets 
attributed to the servers: Ps1, …, Psn, while the set M is split 
into disjoint subsets attributed to the agents: Ma1, …,Mak. 
The mapping Ms is the same as assigning agent visits to 
servers; it means that the corresponding agent messages 
will be seen by the appropriate servers. The action λ ∈ Λ, 
λ = ((m, p), (m’, p’)) involves server si and agent aj. The 
input and output state belong to the same server: p, p’ ∈ Pi, 
and the input and output message belong to the same agent: 
m, m’ ∈ Mj. Each state is attributed to a server, and each mes-
sage is directed to the specific server to invoke its service, 
which is modeled by functions Ps: P → S, Ms: M → S, Ma: 
M → A. In each pair (m, p) which is the input of action λ, the 
server components must match: Ms(m) = Ps(p).

Agents can be infinite or may terminate in special actions 
of the form λ = ((m, p), (p’)), where the output message is 
absent. Note that we exclude broadcast and multicast com-
munication because the messages are agents carriers.

The behavior of the distributed system is determined by 
its labeled transition system—LTS [54]. The vertex in LTS 
(we do not use the name “state” to avoid ambiguity) is a 
configuration T of IMDS model: a set of current states of 
all servers and current messages of all agents (except termi-
nated). The initial configuration T0 contains initial states P0 
and initial messages M0. The input configuration Tinp(λ) of 
the action λ = ((m, p), (m’, p’)) contains m and p belonging 
to its input pair (m, p) and the output configuration Tout(λ) 
contains m’ and p’ of its output pair (m’, p’). Obviously, 
Tinp(λ) and Tout(λ) are not functions because they include 
the elements of the pairs (m, p) and (m’, p’), respectively, 
all states and messages about servers and agents other than 
those participating in λ are arbitrary.

Actions are interleaved (one action executed at a time 
[55]). Note that each server performs its action locally and 
autonomously (only the state of the server and the messages 
pending on that server are taken into account). In addition, 
the communication is asynchronous: the server process 
sends a message to another server process (or the agent sets 
the server state for another agent) regardless of the current 
situation of the target process (and any other process). The 
pair (message, state) that triggers the action does not occur 
synchronously: the state is waiting for a matching message, 

(3.1)𝛬 ⊂ (M × P) × (M × P)

(3.2)

LTS = ⟨Q, q0, W⟩where ∶
Q =

�
T0, T1, …

�
(vertices)

q0 = T0(initial vertex)

W = {
�
T , �, T �

�
,… �� ∈ �,

T = Tinp(�), T
� = Tout(�) } (transitions)
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or the message is waiting for a matching state. The only 
exception is the message sent to the server itself: the new 
state and the new message appear in the server synchro-
nously. This is natural because synchrony is allowed on a 
single server. As a result, we may call the processes autono-
mous and asynchronous, and the action is executed locally.

Note that in real distributed systems, there is no interleav-
ing; unrelated activities may run in parallel but are not syn-
chronized. Interleaving is one of the possible semantics of 
parallelism, another is the semantics of simultaneity, more 
akin to the operation of a distributed system. We use inter-
leaved semantics because of its simplicity, and Manna and 
Pnueli have shown that it is equivalent to concurrent [56]. 
Also, please note that the servers are autonomous, thus no 
action can invalidate another action in other server. On the 
other hand, the actions enabled in the same server are always 
in conflict due to interleaving: one of them is executed at a 
time and typically it disables other actions prepared in the 
same server (if the output state is different from the input one).

Processes in the system are defined as sequences of actions. 
Suppose two consecutive actions in the process are connected 
by the server state. In that case, it is a server process that com-
municates with other server processes by means of messages 
(states are carriers of server processes). If two consecutive 
actions in the process are connected by an agent message—it 
is an agent process that communicates with other agent pro-
cesses through the states of the servers (agents’ messages are 
carriers of agent processes). As some actions may be inacces-
sible in a given system, they are not included in any process, 
as they are not part of any sequence. To avoid such “orphan” 
actions, we allocate them to sets instead of sequences. The 
process Bi of the server si is the set of actions with the sever 
si states on input. The process Cj of the agent aj is the set of 
actions with the agent aj message on input.

The decomposition of the system into server processes is 
called the server view, and the other is the agent view.

Examples of distributed systems modeled in IMDS can be 
found in [57]. In [58], the verification of the Karlsruhe Pro-
duction Cell is covered, in which servers implement devices 
in the cell and agents implement metal plates that are pro-
cessed. In automatic vehicle guidance system [59]—servers 
implement road segment controllers, and agents implement 
vehicles.

(3.3)

Bi = {�1, �2,… ∈ �|� =
(
(m, p),

(
m�

, p�
))

∨ � =
(
(m, p),

(
p�
))
, p, p� ∈ Pi}, i = 1,… , n

Cj = {�1, �2,… ∈ �|� =
(
(m, p),

(
m�

, p�
))

∨ � =
(
(m, p),

(
p�
))
,m,m� ∈ Mj}, j = 1,… , k

(3.4)
B = {B1,B2,… ,Bn}

C = {C1,C2,… ,Ck}

4 � Simple IMDS example: buffer

The Dedan program was developed for the specification and 
verification of distributed systems. A distributed system in 
IMDS is simply a set of actions and initial items (states and 
messages), but for programming purposes, the input form of 
Dedan contains a definition of types and variables, formal 
and actual parameters, and an initialization part. In addition, 
actions are grouped for individual servers or agents, and 
repeaters can be applied to facilitate the definition of sets of 
similar actions. For the action λ = ((m, p), (m’, p’)), treated 
as the execution of the service on the server, a more conveni-
ent notation is used, in which the server state p is denoted 
as pair (s, v), where s is the server and v is the value of the 
state, s ∈ S, v ∈ V. This allows the introduction of server types 
with similar sets of states, but differing in s. We have two 
server vectors mE[2] and lotE[2] in AVGS source code 
in Sect. 7. The message m is denoted as triple (a, s, r), in 
which agent a invokes the service r is on the server s, a ∈ A, 
s ∈ S, r ∈ R. Therefore, instances of the agent type can differ 
only in a or in a and s. We have the agent vector AMP[N], 
N = 2 in AVGS code. The server type can offer a number of 
services, for example, wait and signal on a semaphore, put 
and get on a buffer, etc. The action λ = (((a, s, r), (s, v)), ((a, 
s’, r’), (s, v’))) has the form {a.s.r, s.v}- > {a.s’.r’, 
s.v’} in Dedan source code. Note that the symbol → does 
not represent a function; it is introduced to show the progress 
of the action from its input to its output items and is similar 
to the graphical representation of an automaton transition as 
an arrow. Also note that a single action is deterministic as it 
is a tuple in the Λ relation. The nondeterminism lies in the 
fact that the same pair (m, p) can be an input pair of many 
actions, corresponding to nondeterministic divergences, for 
example λ1 = ((m, p), (m’, p’)), λ2 = ((m, p), (m’’, p’’)). Non-
determinism can refer to the server: m’ = m’’, p’ ≠ p’’, to 
the agent: m’ ≠ m’’, p’ = p’’, or both: m’ ≠ m’’, p’ ≠ p’’. Yet 
another type of nondeterminism arises from interleaving, 
since when multiple actions are enabled, only one of them 
is executed. If the actions are in different servers, then the 
execution of the action cannot invalidate the action in the 
other server.

The more abstract imperative language Rybu has been 
developed [9], but the basic IMDS notation is more appro-
priate for the purposes of this article, so we do not refer to 
Rybu here.

A simple example of a buffer with producer and con-
sumer agents (each one originating from its own server) is 
provided in the listings below, to illustrate the two views of a 
distributed system. First, the server view follows. The nota-
tion is intuitive: server types are defined (lines 2, 9, 16). The 
formal parameters specify the agents and other servers used. 
Each server type contains states (3, 10), services (4, 11), and 
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actions (6–7, 13–14). Then the server and agent variables are 
declared (17,18). Variables can have the same names as the 
types; they are distinguished by context. If a variable has the 
same identifier as its type, then the variable:type declaration 
may be suppressed to a single identifier, as in the example. 
Finally, servers (20–22) and agents (23,24) are initialized, 
and variable names are associated with formal parameters 
of servers.

Sample action (6) reads: when the agent Aprod invokes 
the service put on the server buf, and the server is in 
no_elem state, then the server changes its state to elem 
and the message ok_put is issued to the server Sprod in 
the context of the same agent. The system converted to the 
agent view (this is done automatically by the Dedan pro-
gram) is as follows.
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distributed systems designed in IMDS: A special kind of 
bounded buffer with agents switching between producer and 
consumer roles [60] or buffer with a capacity > 1, that can 
accept both putting and getting if it is neither full nor empty 
[1]. In student exercise examples shown later in Fig. 24, 
S-DA3 views on the left are almost all nondeterministic: 
more than one transition is enabled (highlighted). The sys-
tem components in the present example could be easily 
converted to nondeterministic, allowing the producer and 
consumer to do something different in many steps between 
their activities connected with the buffer. Actions introduc-
ing nondeterminism in producer would, according to the 
server view, be additional action 13a:
13a. {Aprod.Sprod.doSth, Sprod. 

neutral}—> {Aprod.Sprod.doSth, Sprod.
neutral}.

and according to the agent view, additional action 8a (in 
fact, it is the same action buf in different grouping):

Note that the set of system actions is uniform; the views 
differ only in a manner actions are grouped. In the server 
view, the actions are grouped into individual server types, 
while in the agent view, they are grouped into individual 
agent types.

A fragment of the LTS of the example system is presented 
in Fig. 4 . The vertices in the first line display messages of 
the agents Aprod and Acons are (without agent identi-
fiers), and the states of all servers (buf, Sprod, Scons) 
are displayed in the second line (without server identifiers). 
Of course, the LTS’es generated from both the server view 
and the agent view are identical because they are projections 
on servers and on agents of a uniform system, and the views 
are its decompositions.

In the example, the servers and agents are deterministic, 
just to reduce the system and its LTS to a small size. Non-
determinism in the LTS comes from concurrency. Nondeter-
ministic automata can be found in our other papers, where 
automata notation is used informally for the illustration of 
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8a. {Aprod.Sprod.doSth, Sprod. 
neutral}—> {Aprod.Sprod.doSth, Sprod.
neutral}.

Nondeterminism can result from multiple agents that run 
is a single server. For example, if we have several producers, 
any of them can call put on the buffer. The changes of the 
source code in the server view are (original line numbers are 
preserved, and line 0 is added for a constant definition, the 
differences are underlined):

5 � Informal view of Distributed Automata 
DA3

We are introducing DA3 informally but systematically. Since 
everything is dual in IMDS, we build the automata so that 
in server automata, the transitions lead from state to state 
(of the same server), having messages as input and out-
put symbols on the transitions. In the opposite view, agent 
automata lead from message to message (of the same agent), 

Using Dedan, communication deadlocks in the server 
view and resource deadlocks in the agent view can be iden-
tified, and distributed termination can be checked. There is 
no deadlock in our example; deadlocked systems are pre-
sented with counterexamples in [57][58][59]. For a simple, 
practical example, see Sect. 7. A counterexample or other 
behavior can be tracked in Dedan using the simulator. The 
simulation is performed over the LTS of the verified system. 
Often, however, the simulation would be better performed 
over the components (servers and agents) of the verified sys-
tem, shown separately and cooperating with each other. For 
this reason, we have introduced distributed automata—an 
alternative formulation of IMDS systems. Our distributed 
automata are equivalent to IMDS, but allow for graphical 
definition and graphical simulation of distributed systems in 
terms of its components. Of course, the graphic form should 
maintain the locality of actions, the autonomy of compo-
nents and the asynchrony of their behavior. The duality of 
communication must also be preserved, so two forms of 
graphical specification have been developed: one for the 
server view and the other for the agent view.

having servers’ states as input and output symbols on the 
transitions. So for the action ((m, p), (m’, p’)), we have the 
transition p

m ∕ m’

��������⃗ p’ in server automaton s = Ps(p) and the 
transition  m

p ∕ p’

�������⃗ m’ in agent automaton a = Ma(m).
Let us look at the server view first. To avoid ambiguity, 

we call the automaton states nodes, as the term “state” is 
attributed to IMDS servers. Each server process is modeled 
using a server automaton equipped with its input message 
set. This models distributed servers communicating through 
message passing, similar to the Client–Server model of dis-
tributed systems [10]. There are three severs automata in the 
buffer example depicted in Fig. 2. In the automaton Sprod, 
its nodes are simply the states of the server Sprod: (Sprod, 
neutral) and (Sprod, prod). Since the name of the server is 
the same in both pairs, the figure shows only the state values 
in the ovals of the nodes. Each transition relates to an action 
in the server Sprod, triggered by a message addressed to the 
server, which matches its current state. The figure shows 
the initial content of the input sets. The initial nodes of the 
automata have double borders. The view of these server 
automata in the Dedan program is presented in Fig. 6 .

For example, the node (Sprod, neutral) accepts 
the message (Aprod, Sprod, doSth) ,  which is 
the input symbol of the automaton transition 
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(Sprod, neutral)
(Aprod, Sprod ,doSth) ∕ (Aprod ,buf ,put)

�����������������������������������������������������⃗ (Sprod, prod)  . 
The message must be stored in the input set of the automa-
ton to fire the transition. The action generates the new state 
of the server (Sprod, prod) and the new message (Aprod, 
buf, put), which are modeled as the destination node (Sprod, 
prod) of the transition and the output symbol of the transi-
tion (Aprod, buf, put): the message generated on the transi-
tion. Since the action took the only message from the input 
set, and the new message is addressed to the buf automaton, 
the Sprod input set becomes empty. Therefore, no action can 
be executed in the automaton Sprod at this time. However, if 
in the future the automaton can receive a message to its input 
set, and if this message matches the state (Sprod, prod), then 
the transition in the automaton will be possible.

The input set of the automaton buf can contain two mes-
sages simultaneously: (Aprod, buf, put) and (Aprod, buf, 
get). However, only one of them can be accepted in a given 
node, which triggers the appropriate transition: the first one 
in the node (buf, no_elem), the second in the node (buf, 
elem). Initially, the input set is empty.

Figure 4 shows a set of agent automata, which is equiva-
lent to the previously described set of server automata. How-
ever, this form of automata highlights the resource sharing 
aspect of a distributed system, where traveling agents com-
municate by setting the server state values. This model con-
forms to the Remote Procedure Call paradigm [10]. In the fig-
ure, each agent travels between its home server and the shared 
buf server. Let us focus on producer Aprod. The agent name 
is omitted from message triples because it is common to all 
Aprod messages. The automaton starts from the initial node 
(message) of the Aprod automaton (Aprod, Sprod, doSth). 
The Sprod server initial state: (Sprod, neutral) is the input 
symbol of the transition from the node (Aprod, Sprod, doSth) 
so that the transition can be executed, leading to the next node 
(message) of the agent: (Aprod, buf, put) which transfers the 
agent to the buf server. In addition, the action generates a new 
state of the Prod server (Sprod, prod), which is the output 
symbol of the transition. If the current state of the buf server 
is (buf, no_elem), which means this symbol is present, the 
next Aprod transition can be fired. If not, the agent is waiting 
for such state of the buf server to occur. The next transition 
leads from (Aprod, buf, put) to (Aprod, Sprod, ok_put) and it 
changes the current state of buf from (buf, no_elem) to (buf, 
elem), which are the input and output symbol of the transition 
(Aprod, buf , put)

(buf ,no_elem) ∕ (buf ,elem)

���������������������������������⃗ (Aprod, Sprod, okput)   . 
Thus, in the agent automaton, we see the messages as the 
nodes, and the automata states as input and output symbols of 
the transitions. This is counterintuitive to a user who is used 
to other kinds of automata and takes some getting used to.

We see that server states are common to some agents; 
in the example, the state of the buf server is important to 
both agents: Aprod and Acons. Thus, we have a vector of the 

current server states, common to all agents, which contains 
input symbols for transitions and receives their output sym-
bols. This is safe because the transitions are interleaved, so 
there can be no conflict between the transitions in distinct 
agent automata that set new states of the same server.

Automata in their nondeterministic form, in which the 
producer can perform several steps of doing something else 
between producing subsequent elements, are presented in 
Fig. 8, as sever automaton and agent automaton (nondeter-
ministic transitions are shown as bold blue arrows).

6 � Distributed Autonomous 
and Asynchronous Automata (DA3)

6.1 � Server automata S‑DA3

The IMDS system in the server view can be represented as 
a set of communicating automata S-DA3 (distributed server 
automata), similar to MPA (point 3 in the enumeration in 
Sect. 2). The server states are the nodes (we do not use 
“state” to avoid ambiguity) of the corresponding automaton.

The initial state of the server is the initial node of the 
automaton. The server process actions are automaton. The 
automaton is Mealy-style [11], the transition labels in the 
automaton have the form extracted from actions; IMDS 
action λ = ((m, p), (m’, p’)) is converted to a transition from 
p to p’ with the label m/m’ (m is the input symbol firing the 
transition while m’ is the output symbol generated on the 
transition). Transitions in the server si automaton are the 
relation in Pi × M × M × Pi. Of course, m fulfils Ps(m) = si. 
Note that "traditional" distinction between transition rela-
tion Pi × M × Pi and output function (Pi × M × Pi) → M is not 
held because the set of actions may contain nondetermin-
istic actions λ1 = ((m, p), (m’, p’)), λ2 = ((m, p), (m’’, p’)), 
m’ ≠ m’’. The automaton is equipped with an input set—a 
set of input symbols, corresponding to a set of messages 
pending at the server. Firing the transition (p, m/m’, p’) in 
the server s automaton retrieves the symbol m from the input 
set of this automaton and inserts the symbol m’ to the input 
set of the server s’ automaton, appointed by m’, Ms(m’) = s’. 
The initial input set consists of the initial agents’ messages 
that are directed to this server. The special agent-terminating 
action λ = ((m, p), (p’)) is converted to a transition that gen-
erates no output symbol. To distinguish between the two 
types of actions, we call the former form a progress action.

Formally, having the definition of S, A, V, R, P, M in 
IMDS (respectively: servers, agents, values, services, 
states, messages), we have the set Ψ (originally we used 
reflected S, but there was a problem with typesetting of 
this symbol in the article) of n distributed sever automata, 
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Ψ = {ψi | i = 1, …, n}, where n is the number of servers in 
set S. Intuitively, Ψ is the set of automata in which each 
automaton ψi corresponds to the server si in the IMDS sys-
tem. Therefore, S is the set of servers while Ψ is the set of 
server automata. In the definition below, exp(arg) is used for 
powerset 2arg. The ith distributed server automaton is ψi = (
si, Pi, p0i, Fi, Xi, X0i) ∈ Ψ, where:

•	 si ∈ S—the ith server,
•	 Pi—the set of nodes, which are the states of si,
•	 p0i ∈ Pi—the initial node,
•	 Fi = { (p1, m/m’, p2) for λ = ((m, p1), (m’, p2)) or (p1, m/, p2) 

for λ = ((m, p1), (p2)) | p1, p2 ∈ Pi, ∃aj ∈ A: m, m’ ∈ Mj}—
the set of transitions (for ordinary actions and agent-
terminating actions, respectively),

•	 Xi ∈ exp({m|Ms(m) = si})—the input set; Xi is the variable 
having a set value: each transition λ = ((m1, p1),(m2, p2)) 
removes its input message m1 from the input set of the 
server s1 appointed by the message m1, Ms(m1) = s1, and 
inserts the message m2 to the input set of the server s2 
appointed by m2, Ms(m2) = s2 (except for the agent-termi-
nating transition), accordingly to the rules for semantics 
described below,

•	 X0i ∈ exp({m|Ms(m) = si, m ∈ M0})—the initial input set 
of the server si.

The following conditions must hold, but they are achieved 
by construction using the rules for semantics described 
below:

•	 ∀m1 ∈ Xi, m2 ∈ Xj, m1 ∈ Mk, m2 ∈ Ml: m1 ≠ m2 ⇒ k ≠ l: for 
each agent at most one message can exist in the global 
configuration,

•	 ∀(p1, m/m’, p2) ∈ Fi ∃Fj: m’ ∈ Fj: each output symbol (m’) 
is an input symbol of an automaton belonging to Ψ.

The server automata of the example buffer system in the 
server view are illustrated in Fig. 3. The initial nodes of 
the server automata have double borders. Server names are 
omitted in the node labels, because they are identical for 
all nodes of a given server automaton. The input sets of the 

automata Xbuf, XSprod and XScons are shown with their initial 
contents at the bottom of the picture; they change as the 
automata run.

The semantics of Ψ is defined as global vertex space 
({TΨ}, TΨ0

 , nextΨ), where {TΨ} is a set of global vertices, 
TΨ0

 is the initial global vertex, and next Ψ is the transition 
relation, defined as follows:

•	 The global vertex of Ψ is TΨ = ((p1, X1), (p2, X2), …, (pn, 
Xn)) (current states and input sets of pending messages 
of all servers).

•	 If in TΨ there exists an ψi in which (pi1,  Xi), 
(pi1, m/m’, pi2) ∈ Fi, m ∈ Xi, Ms(m’) = sj then a possible 
next global vertex T’Ψ is:

(the automaton ψi changes its node from pi1 to pi2, all 
other automata preserve their nodes; the message m is 
extracted from the input set Xi of the automaton ψi, the con-
tinuation message m’ is inserted into the input set Xj of the 
automaton ψj appointed by m’, Ms(m’)= sj, all other input 
sets remain unchanged; the special case is for (i = k = j, first 
case), where the server si sends the message m’ to itself).

•	 If in TΨ there exists an ψi in which (p1,  Xi), 
(pi1,  m/,  pi2) ∈ Fi, m ∈ Xi (message m terminates the 
agent), then a possible next global vertex is:

(the automaton ψi changes its node from pi1 to pi2, all 
other automata preserve their nodes; the message m is 
extracted from the input set Xi of the automaton ψi, all other 
input sets remain unchanged).

•	 The initial global vertex is TΨ0 = ((p01, X01), (p02, X02), …, 
(p0n, X0n)).

•	 For a given global vertex TΨ, the transition relation 
nextTΨ(TΨ) is the set of pairs (TΨ, T’Ψ). The transition 
relation nextΨ = 

⋃
T
�

nextT(T).
	   Comment: in the execution, if for TΨ there exist mul-

tiple possible next global vertices, one of them is chosen 
in nondeterministic way; however, it is not important in 
the definition of the global vertex space.
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The global vertex space of Ψ cooperation is a counterpart 
to the LTS of IMDS system: global vertices contain states 
of all servers, input symbol (message) of a transition should 
be attributed to a source global vertex, while output symbol 
(message) to a target global vertex. The fragment of a global 
vertex space for the buffer system is presented in Fig. 9.

The nodes of server automata Ψ = {ψbuf, ψSprod, ψScons} 
(server states) shown in Fig. 3 are (note that the server state 
has the form (server, value)):

Pbuf = {(buf, no_elem), (buf, elem)},
PSprod = {(Sprod, neutral), (Sprod, prod)},
PScons = {(Scons, neutral), (Scons, cons)}.
The sets of transitions are (the message has the 

form (agent, server, service), and the transition has 
the form (input node = (s,  v), input symbol = (a,  s,  r)/
output symbol = (a,s’,  r’), output node = (s,  v’)), or 
(s, v)

(a,s,r)∕(a,s’,r’)

������������������⃗ (s, v’) , where nodes are states and symbols 
are messages):

Fbuf = {((buf, no_elem), (Aprod, buf, put)/
(Aprod, Sprod, ok_put), (buf, elem)),
((buf,  elem ), (Acons,  buf,  get )/
(Acons,  Scons,  ok_get ), (buf, 
no_elem))},
F Sprod  =  { ( (S p r o d ,   n e u t r a l ) , 
(A p r o d ,   S p r o d ,   d o S t h ) /
(Aprod, buf, put), (Sprod, prod)),
((Sprod, prod), (Aprod, Sprod, ok_put)/ 
(Aprod,  Sprod,  doSth ), (Sprod, 
neutral))}
F Scons  =  { ( (S c o n s ,   n e u t r a l ) , 
(A c o n s ,   S c o n s ,   d o S t h ) /
(Acons, buf, get), (Scons, cons)),
((Scons, cons), (Acons, Scons, ok_get)/ 
(Acons,  Scons,  doSth ), (Scons, 
neutral))}

Every automaton is equipped with the input set of pending 
messages:

Xbuf ∈ exp({(Aprod, buf, put), (Acons, buf, 
get)}),
XSprod ∈ exp({(Aprod, Sprod, doSth), (Aprod, 
Sprod, ok_put)}),
XScons ∈ exp({(Acons, Scons, doSth), (Acons, 
Scons, ok_get)}).

Note that both messages in the base set of XSprod cannot be 
included in XSprod at the same time, as they belong to the 
same agent, likewise in the case of XScons.

The initial input sets of ψbuf, ψSprod and ψScons are:

X0buf = ∅,
X0Sprod = {(Aprod, Sprod, doSth)},
X0Scons = {(Acons, Scons, doSth)}.

S-DA3 are similar to Message Passing Automata. The dif-
ference is in the ordering of messages at the input of the 
automaton: in MPA, pending messages are ordered in the 
input queue (or input buffer) [43][44], while in S-DA3 any 
message form the input set may fire a transition (no ordering). 
If the input buffers in the MPA implementation are limited, 
a deadlock can occur due to all processes sending messages/
data to the full buffers. This situation can occur when the size 
of the buffers is set to a too small value [53]. IMDS helps 
overcome this problem by posing an accurate size limit to the 
input set: it is simply the number of agents, or precisely: the 
number of agents visiting the server (occurring in its actions). 
For example, the repertoire of agents putting their messages 
into the input set of the buf automaton is {Aprod, Sprod}, 
while in the case of the Sprod automaton, it is {Aprod}. 
Therefore, the sizes of the input sets in the implementation 
of the servers should be: 2 and 1, respectively.

6.2 � Agent automata A‑DA3

The IMDS system in the agent view can be shown as a set of 
communicating automata A-DA3 (agent distributed autono-
mous and asynchronous automata). We use the term node 
in these automata instead of state, because the states are 
attributed to servers in IMDS, and this could be misleading. 
The A-DA3 automata are similar to timed automata with 
variables used in Uppaal [5] (but here we only consider 
timeless systems):

•	 The agent messages are the nodes of the automaton.
•	 The agent’s initial message is the automaton initial node.
•	 The actions of the agent process are the automaton transi-

tions.
•	 The automaton is Mealy-style [11]; the labels of the 

transitions in the automaton have the form extracted 
from actions; IMDS action λ = ((m, p), (m’, p’)) is con-
verted to a transition (m, p/p’, m’) from the node m to 
the node m’ with the label p/p’ (p is the input symbol 
conditioning transition, while p’ is the output symbol 
generated on the transition; as before a transition relation 
in Mi × P × Mi and output function (Mi × P × Mi) → P are 
replaced by a single relation in Mi × P × P × Mi because 
of the possible nondeterminism in the set of actions: 
λ1 = ((m, p), (m’, p’)), λ2 = ((m, p), (m’, p’’)), p’ ≠ p’’.

•	 In the case of the agent-terminating action 
λ = ((m,p), (p’)), the special terminating node ta in the 
automaton is added to be the target node of the transition, 
Ma(m) = a, and the transition is of the form (m, p/p’, ta). 
For node ta, there are no outgoing transitions. The action 
((m, p), (p’)) in the agent a automaton, a = Ma(m), has 
the form m

p∕p’

����⃗ ta (see below), while in the server automa-
ton Ψs, s = Ps(p), the transition is p

m∕

��⃗ p
’.
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•	 The automata system is equipped with a global input 
vector—a vector of current input symbols for the tran-
sitions of the agent automata: servers’ states. The vec-
tor is indexed with the servers. Firing the transition 
(m, p/p’, m’) in the automaton replaces the symbol p in 
the vector with the new symbol p’ in the position of the 
server s = Ps(p). The initial global input vector consists 
of initial states of all automata.

Note that in server automata, the transitions are stretched 
between states, and the input/output symbols are agent mes-
sages. Everything is dual in the agent view of the system, 
i.e., the transitions lead from one message to another, while 
server states are input and output symbols. This is counter-
intuitive to a user who is used to other kinds of automata and 
takes some getting used to.

Formally, having the definition of P, M, S, A, V, R from 
IMDS (respectively: states, messages, servers, agents, val-
ues, services), we have the set Ʉ (A upside down, rounded to 
distinguish it from the general quantifier ∀) of k distributed 
agent automata, Ʉ = {ɐi | i = 1, …, i}, where k is the number 
of agents in the set A, and n is the number of servers in the 
set S (used in the agent automaton definition below). Intui-
tively, Ʉ is the set of automata in which each automaton ɐi 
corresponds to the agent ai in the IMDS system. Therefore, 
A is the set of agents while Ʉ is the set of agent automata. 
The ith distributed agent automaton is ɐi  =  (ai, Mi, m0i, tɐi, 
Gi, Y, Y0) ∈ Ʉ, where:

•	 ai—the ith agent,
•	 Mi ∪ {tɐi}—the set of nodes, which are the messages of 

the agent ai; tɐi is the destination node of the agent-ter-
minating transitions if the agent ai terminates (tɐi appears 
as the target node of the agent-terminating transition),

•	 m0i ∈ Mi—the initial node,
•	 Gi = { (m1,  p/p’,  m2) for λ = ((m1,  p),  (m2,  p’)) or 

(m1,  p/p’,  tɐi) for λ = ((m1,  p),  (p’)) | m1,  m2 ∈ Mi, 
∃sj ∈ S: p,p’ ∈ Pj}—the set of transitions,

•	 Y = [p1, …, pn] | pj ∈ Pj—the global input vector (common 
for all automata ɐi in the system); Y is the vector of vari-
ables, Y/j is the jth position of Y, every variable Y/j has 
the range over the set of states of the server sj: the action 
λ1 = ((m, p), (m’, p’)) changes the value of the variable 
Y/j at the position of its input and output state server, 
Ps(p) = Ps(p’) = sj; accordingly to rules for semantics 
below,

•	 Y0 = [p01,…, p0n] | pj ∈ Pj, pj ∈ P0—the initial global input 
vector, consisting of initial states of all servers.

The semantics of Ʉ is defined as global vertex space 
({TɄ}, Tᵾ0, nextɄ), where {TɄ} is a set of global vertices, 

Tᵾ0 is initial global vertex, and nextɄ is a transition relation, 
defined as follows:

•	 The global vertex of Ʉ is TɄ = {m1,  …,  mk,  Y}, 
mi ∈ Mi ∪ {tɐi}. If in TɄ there exists mi, for which there 
exists (mi, p/p’, mj) ∈ Gi, p, p’ ∈ Px (message mi causes a 
change of a state from p to p’ in a server sx, Ms(mi) = sx, 
and a message mj to a server sy, Ms(mj) = sy is issued) 
then a possible next global vertex is: 

(the automaton ɐi i changes its node to mj, all other 
automata preserve their nodes; the state p in input vector Y, 
in the position appointed by p and p’, sx=Ps(p)=Ps(p’), all 
other elements of the vector Y remain unchanged).

•	 If in { TɄ} there exists mi, for which there exists 
(mi, p/p’, tɐi) ∈ Gi, p, p’ ∈ Px (message mi is the last mes-
sage in the run of agent ai, then the agent terminates, 
the sever sx appointed by the message mi, Ms(mi) = sx, 
changes its state from p to p’) then a possible next global 
vertex is: 

(the automaton ɐi changes its node to tɐi all other automata 
preserve their nodes; the state p in Y is replaced by p’ as 
above).

•	 The initial global node TɄ0 = {m01, …, m0n, Y0}. For a 
given global vertex TɄ, transition relation nextTɄ(TɄ) is 
a set of pairs (TɄ, T’Ʉ).

•	 The transition relation nextɄ  =UTɄnextTɄ(TɄ).  
Comment: in the execution, if there are multiple next ver-
tices possible, one of them is chosen in nondeterministic 
way; however, it is not important in the definition of the 
global vertex space.

The distributed agent automata for the buffer system 
Ʉ = {ɐAprod, ɐAcons} are illustrated in Fig.  4. The initial 
nodes of the automata, being the initial messages of the 
agents, have double borders. Agent identifiers are omitted 

(6.3)

(6.4)
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in message labels (nodes of the automata), because they are 
identical for all messages in the given agent.

The nodes of sever automata (agent messages) shown in 
Fig. 4 are (note that the message has the form (agent, server, 
service)):

MAprod = {(A p r o d ,   b u f ,   p u t ) , 
(A p r o d ,   S p r o d ,   d o S t h ) , 
(Aprod, Sprod, ok_put)},
MAcons = {(A c o n s ,   b u f ,   g e t ) , 
(A c o n s ,   S c o n s ,   d o S t h ) , 
(Acons, Scons, ok_get)}.

As the agents do not terminate in the buffer system, there 
are not terminating nodes. Note that the server state has the 
form (server, value), and the transition has the form (input 
node = (a,s, r), input symbol = (s, v)/output symbol = (s, v’), 
output node = (a, s’, r’)), or (a, s, r)

(s,v)∕(s,v’)

������������⃗ (a, s’, r’) , where 
nodes are messages and symbols are states. The same action 
(((a, s, r), (s, v)), ((a, s’, r’), (s, v’))) as the transition in the 
server automaton ψs has the form (s, v)

(a,s,r)∕(a,s’,r’)

������������������⃗ (s, v’) . The 
sets of transitions ɐAprod and ɐAcons are:

MAprod = {((Aprod,  Sprod,  doSth ), 
(Sprod,  neutral )/(Sprod,  prod ), 
(Aprod, buf, put)),
((Aprod,  buf,  put), (buf,  no_elem)/
(buf, elem), (Aprod, Sprod, ok_put)),
((Aprod, Sprod, ok_put), (Sprod, prod)/
(Sprod, neutral), (Aprod, Sprod,doSth))}
MAcons = {((Acons,  Scons,  doSth ), 
(Scons,  neutral )/(Scons,  cons ), 
(Acons, buf, get)),
((Acons,  buf,  get), (buf,  elem)/(buf, 
no_elem), (Acons, Scons, ok_get)),
( (A c o n s ,   S c o n s ,   o k _ g e t ) , 
(Scons,  cons )/(Scons,  neutral ), 
(Acons, Scons, doSth))}

Below is the global input vector of current states of servers:

Y = [(Sprod ,  value ∈ {neutral,  prod}), 
(buf, value ∈ {no_elem, elem}),
(Scons, value ∈ {neutral, cons})].

The initial content of the global input vector is:

Y0 = [(Sprod, neutral), (buf,  no_elem), 
(Scons, neutral)].

The global vertex space of Ʉ collaboration is the IMDS LTS 
equivalent: global vertices contain the messages of all non-
terminated agents, and the states of all servers in the global 
input vector. The fragment of the global vertex space for the 
buffer system is presented in Fig. 10.

7 � Practical example of DA3: Automatic 
Vehicle Guidance System

The buffer example is tiny, just to present the main ideas. 
Now we introduce the automatic vehicle guidance system 
(AVGS) from [59]. The system consists of road markers and 
warehouse lots, presented in Fig. 11, communicating with 
each other to guide autonomous moving platforms (AMPs) 
from LotE1 to LotE2 or vice versa. The two AMPs might 
collide in section MarkerM, but there is the chance that one 
could wait temporarily in LotM, until the other has passed. 
There are six servers representing the Lots and Markers 
controllers, with a protocol for requesting and granting road 
segments managed by the controllers.

The server view describes the system from the point of 
view of communicating controllers. The code of AVGS in 
IMDS source notation is given below. Only the MarkerM 
controller actions are shown, as other controllers are quite 
simple: request and grant if not occupied.
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The designer defines server (or agent) types rather than 
individual instances, choosing a graphic or text form. Hav-
ing the types defined, individual server/agent variables can 
be declared as type instances. In this example, some servers 
and agents are grouped into vectors (lines 59, 60). Moreover, 
some formal parameters are in the form of vectors (2, 19, 
…). Services and state values can also be vectors (4, 23). For 
a compact definition, repeaters precede the actions (10–17, 
…). The indices of agents, states and services indicate indi-
vidual instances (26–29). The markers E and M names are 
shortened to mE and mM. The server type lotE is shown as 
S-DA3 automaton in Fig. 12. Note the transition from res 
to occ (the label is surrounded by a blue ellipse)—it is the 
agent-terminating transition when AMP has reached its des-
tination. There is no output message in this case.

The server view of the system is automatically converted 
to the agent view by Dedan. In the agent view, actions are 
grouped by agent. During conversion, the type AMP is split 
into two separate types and renamed to separate AMP and 
AMP__1, due to different action sequences on controllers. 

The agent view shows the system from the point of view 
of the AMP vehicles (listing below). Figure 14 presents a 
fragment of the AMP agent type automaton. The view of the 
agent automaton in Dedan, which is the visualization of the 
AMP[1] agent specification in IMDS, is presented in Fig. 15.

This image has been obtained automatically: from the 
graphical specification of server types in the graphical 
design tool, through the binding of specific server and agent 
instances in the IMDS source code, automatic conversion 
from server view to agent view, to display the automata 
in the A-DA3 graphical simulator. The arrangement of the 
nodes in the plane results from an iterative algorithm that 
moves nodes in an invisible mesh if any transition intersects 
the node. We are still working on this algorithm. The user 
can rearrange the nodes to get a clearer view.

A fragment of the AMP automaton is visible; the other 
is named AMP__1. The program tries to find agents that 
have common action sets and combine them into vectors, 
in this case it would be AMP[2], but in this case, it fails 
because the agents pass through the servers in a different 
index order: the instance AMP[1] ascending and the instance 
AMP[2] descending.



Graphic modeling in distributed autonomous and asynchronous automata (DA3)﻿	

1 3

8 � Using DA3 in the Dedan environment

Editing server automata or agent automata, and simulation 
over two versions of automata are four different tools in the 
Dedan integrated verification framework.

We describe a typical procedure during verification: the 
user defines the system graphically, usually in S-DA3, then 
verifies in IMDS: detects deadlocks or missing termination, 
or confirms the inevitable termination of the system, then 
Dedan generates a counterexample (in case of confirmed 
termination called a witness). When the analysis of the coun-
terexample is not easy, because it is either long or difficult to 
analyze due to a large number of servers/agents, the designer 
proceeds to simulate the counterexample. Simulation is pos-
sible in a configuration graph (LTS, see Fig. 16); however, 
the graph is usually huge, and the user sees a configuration 
consisting of the states of all servers and all agents’ mes-
sages, which often obscures the matter. Then it is possible 
to proceed to the distributed automata simulation, where 
the designer can place panels of important automata next 
to each other and observe their progress step by step. The 
S-DA3 view is frequently selected, for example, when verify-
ing IoT sensor systems and data processing nodes, but the 
A-DA3 view is also very useful, for example, when tracking 
the positions of moving parts in Karlsruhe Production Cell 
[58], vehicles running in the AVGS system [59] or special 
agents monitoring satellite equipment [61]. The latter move 
between ground services and individual satellite modules, 
checking the correctness of the sequences of actions.

The above design, verification and simulation scenarios 
are typical for students verifying their solutions to synchro-
nization tasks, and implementing projects of autonomous 
vehicles cooperation or collaborating IoT controllers. The 
Dedan system was used by over 300 students, most often 
defining distributed systems textually, but in many cases also 
graphically in DA3. Usually, at the design stage, the simu-
lation function is used, in which the designer selects one 

automaton from among those containing the enabled actions, 
and makes a nondeterministic choice if more than one action 
is enabled. Typical student solutions consist of 8–16 servers, 
4–6 agents, and the total number of states is typically less 
than 100 to about 400 actions. The number of states in the 
server type varies from 2 (semaphores) to 15, as does the 
number of server services. The number of agent messages 
(derived from the number of agents, the number of servers 
visited, and the number of their services) varies considerably 
from case to case, reaching up to hundreds. Thus, tracking 
agents is not easy, but much easier than analyzing an LTS 
or simulating a counterexample in the LTS over configura-
tions. Compare the LTS fragment of AVGS in Fig. 16 with 
the server automata in Fig. 13 and agent automata in Fig. 15.

After designing the system, verification takes place, the 
important feature of which is automatism, because Dedan 
has built-in general formulas that check total or partial 
deadlock and termination regardless of the structure of the 
specific system. This is important because the use of model 
checking and temporal logics is not easy [62] (especially 
for 2nd year students, but also many engineers avoid for-
mal methods [7]). In about 10% of cases, the systems have 
errors, and the counterexample has from a few to several 
dozen steps. In the first case, these are most often errors in 
the structure of the solution, while the longer ones concern 
faulty synchronization. Then, the graphical simulation of 
the counterexample is most often used, in which the subse-
quent steps are determined by its course until the error or the 
desired situation occurs.

The basic form of specification used in Dedan is IMDS, 
because it enables automatic conversion between the server 
view and the agent view of a system, and conversion to other 
formalisms: Petri net for static analysis and finding dead-
locks using siphons [63], Uppaal input for timed verification 
[64], etc. However, the specification in the form of a rela-
tion between pairs λ = ((message, state), (message’, state’)) 
is exotic for the users. Therefore, two alternative input forms 

Fig. 4   A fragment of the LTS 
for the buffer system
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Fig. 5   Three types of automata, 
showing different scheduling 
semantics for events: a PDA—
most recently received event 
presented to the automaton: 
transition state 2 → state 1 can 
be enabled if the current state is 
state 2, b MDA—least recently 
received event presented to 
the automaton: transition 
state 1 → state 2 can be enabled 
if the current state is state 1, and 
c DA3 (also asynchronous stat-
echarts with input dispatchers 
[14])—all events are presented 
simultaneously: some transition 
is enabled if any of the states is 
current

(a) (b) (c)

Fig. 6   Dedan S-DA3 view of server automata shown in Fig. 2
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are provided: imperative-style language Rybu (not covered 
in this article) and DA3 automata.

In the graphic design, the user creates nodes and tran-
sitions by clicking on a window in desired coordinates. 
It should be emphasized that the automata type is being 
defined, and instances of this type can be declared in the 
system. New nodes are added by right-clicking on the sur-
face (Fig. 17), a new node window appears as in Fig. 18 on 
the left (in this case, the state node, because it is S-DA3). A 
transition is placed in the graph by clicking first on its source 
node, then on its target node, and then the label of this tran-
sition is defined in the right-hand window in Fig. 18. In 
this case, AMP[1].markerE.tryM is the transition input 
symbol and AMP[1].lotE.try[2] is the output symbol. 

The transition leads from markerE.free to markerE.
resM state. The names of other servers/agents that appear 
in these windows are formal parameters of automata types. 
Typical editing operations are available, like moving nodes 
on the surface shown in Fig. 19.

The specified system is verified by searching for dead-
locks or checking distributed termination (Fig. 20 on the 
left). The verification confirms desired features or presents a 
counterexample leading to an incorrect or desired configura-
tion. In such a case, the designer analyzes the system under 
test, observing the counterexample as a sequence diagram in 
the server view (Fig. 20 center) or in agent view (Fig. 20 on 
the right) and inspecting the source code, graphical specifi-
cation, and LTS fragments.

Fig. 7   Dedan A-DA3 view of agent automata shown in Fig. 3

Fig. 8   Nondeterministic S-DA3 
and A-DA3. Nondeterministic 
transitions are bold blue arrows. 
Note that these automata never 
coexist in the same view; they 
are parts of two alternative 
views of the system
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A distributed system can be simulated over the global 
space of configurations (LTS), but it can also be simulated in 

terms of DA3, in the window illustrated in Fig. 6. All autom-
ata in the system are displayed, with input sets shown under 
the automata identifiers. The current states of the automata 
are blue, and all others are red.

The user can select the automaton (Sprod in the exam-
ple, the selected automaton has a white background and blue 
name), then on the left side, a list of transitions outgoing 
from the current state of the selected automaton is displayed 
(enabled are highlighted; it is only one transition leading 
from neutral to prod in this case and it is enabled, with 
accepting of doSth message and issuing of the put mes-
sage to buf). If the user clicks an enabled transition, it is 
“executed,” and the destination automaton of the message 
becomes current (in this case: buf), as shown in Fig. 21.

Figure 22 shows such a situation after selecting Scons 
and executing a transition in it. This sends a message to 

Fig. 9   The fragment of the 
global vertex space of server 
automata; the first row of a 
vertex contains the states of 
the servers, the second row the 
input sets

Fig. 10   The fragment of the 
global graph of agent automata; 
the first row of a vertex contains 
the agent messages, the second 
row the global input vector

Fig. 11   The structure of road segment controllers. The AMPs are in 
their start positions
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the buf automaton: now two messages are pending at this 
automaton. Of course, only one of them can be accepted, 
namely, the one invoking the action {Aprod.buf.put, 
buf.no_elem}—> {Aprod.Sprod.ok_put, buf.
elem}.

The deadlock situation is easy to identify. This is clearly 
shown on the sequence diagram (see Fig. 20 on the right). 
During the simulation, the deadlock is presented in Fig. 23: 

this is a version of the buffer system, in which users switch 
randomly between producer and consumer roles. For exam-
ple, a deadlock occurs when all users choose to read from 
an empty buffer. This situation is shown in the figure: all 
messages are pending at the input of buf, but no action 
is enabled. Of course, it is a total deadlock. In the case of 
a partial deadlock, some automata work, so the deadlock 
should be observed in the comparison of the automata and 

Fig. 12   The server automaton 
of lotE server type. There 
are two instances of this type, 
forming a 2-element vector 
lotE[2] (see the  source 
code, line 59). A blue ellipse 
surrounds the agent-terminating 
transition label. The window 
of the Dedan program showing 
the automaton of the lotE[1] 
instance is shown on the right

Fig. 13   The AVGS shown as S-DA3. The chosen automaton is LotE[1] (light background and blue name), list of all transitions outgoing from 
the current state occ is on the left, with enabled transition highlighted (color figure online)
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sequence diagram. In agent automata, the total deadlock is 
observed when every automaton has its own message, but 
neither automaton is enabled. Partial deadlock affects a sub-
set of automata.

Figure 24 shows several examples of student exercises 
observed as S-DA3 and A-DA3.

9 � Conclusions and further work

The Dedan program supports the engineer in the specifica-
tion of distributed systems and their verification for dead-
locks freeness and distributed termination. If a deadlock 
occurs, or a termination is checked, a sequence diagram of 
messages and states is generated, leading from the initial 
configuration to the deadlock/termination. If the deadlock/

Fig. 14   The agent automaton of 
AMP agent type

Fig. 15   The AVGS shown as A-DA3. Server states—floating panel showing global input vector (of server states)
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termination is not total, the involved servers/agents are 
shown. Distributed automata (in S-DA3 or in A-DA3 version) 
allow for the design of the system in graphical form, and to 
simulate system components and their interaction instead of 
simulating on the full configuration graph (LTS). Figures 6, 
21, 22 show the simulation of the buffer system in Dedan. 
Also, a counterexample can be observed as a sequence of 
transitions in the cooperating DA3 automata. Engineers are 
familiar with the concept of automata (S-DA3 are similar 
to Message Passing Automata [43][44] and asynchronous 
statecharts [14], and A-DA3 are like Timed Automata with 
global variables of Uppaal [5]), which can be naturally used 
in distributed systems design. For example, some models 
of transport cases were modeled. The server view is equiv-
alent to the exchange of messages between road segment 
controllers that automatically lead the vehicles through the 
road segments [59]. In the agent view, it is the observa-
tion of vehicles moving on the road, with interactions to 
other vehicles occupying some segments of the road, via 
their controllers. Possible deadlocks in communication can 

be easily identified, and the verifier shows the behavior of 
vehicles leading to a deadlock as transitions of DA3 autom-
ata. Table 1 compares the features of a distributed system, 
observed in equivalent formalisms: IMDS and DA3.

Several years of Dedan development showed possible 
improvements in using DA3 in both forms:

•	 Translation of graphic BPMN diagrams to IMDS allows 
for verification of them against partial deadlocks and 
checking partial termination (which is rare between 
verifiers). Especially, simulation of counterexamples in 
DA3 with simultaneous observation of the current state 
in source BPMN is winning. ICS students carry out this 
project, but its scope exceeds this article. This successful 
project showed that specification in graphic domain spe-
cific languages (DSL) could be useful, when the designer 
can compare the counterexample in the form of sequence 
diagram with simulation in DA3 and with the current 
state shown in source specification. Currently, DA3 speci-
fications for autonomous vehicles and web-service com-

Fig. 16   Simulation in LTS. The current configuration is green, with 
states and messages shown without server and agent ids to save the 
space. The actions leading to its successors are red arrows, and input 

items of the actions are on the pink background. On the left, the out-
put items of every action are displayed (color figure online)

Fig. 17   The window for defin-
ing the position of nodes on the 
plane (S-DA3 automaton type)
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Fig. 18   Defining the state—the 
node in S-DA3 and action, i.e., 
the transition in both S-DA3 and 
A-DA3

Fig. 19   Moving nodes on a 
plane: click a node and then 
click at its new location. It is 
the same S-DA3 automaton type 
(lotE) as before, only with 
different node positions

Fig. 20   The verification window (left), the sequence diagram of found communication deadlock in server buf (center) and the same situation 
seen in resource deadlock in the agent view of user agents (right)
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Fig. 21   Simulation over S-DA3 after executing the transition in the automaton Sprod, highlighted in Fig.  3: {Aprod.Sprod.doSth, 
Sprod.neutral}—> {Aprod.buf.put, Sprod.prod}. The target automaton of the action is buf, and it becomes the current one

Fig. 22   Simulation over S-DA3 after manually changing the current 
automaton to Scons and executing the transition in the automaton 
Scons. Now the automaton buf is current, and two messages pend-

ing at this automaton are displayed: Aprod.put and Acons.get 
(automaton name in the messages is omitted, because in both cases it 
is buf)

Fig. 23   There is no move: there are two messages in the buf server, 
both do not match the state of this node, and there is no other enabled 
agent in the system. If such an agent existed, it could potentially send 

a message to the buf server that would match the elem0 state and 
cause an action to change that state. It is a graphical interpretation of 
the deadlock in the system



	 W. B. Daszczuk 

1 3

Fig. 24   Several examples of student exercises shown in S-DA3 (left) and A-DA3 (right) views
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position, which are being developed by our students, are 
to be considered as kinds of DSL for these domains. In 
our laboratory, we are working on DSL for the digital 
twin specification for railway signaling. The important 
feature of these projects is a simultaneous observation of 
sequence diagram counterexample, DA3 simulation, and 
the state of source specification.

•	 In the simulation of DA3, some new features are planned, 
like starting the simulation from a configuration pointed 
in the sequence diagram, backtracking the simulation, 
and diverging from counterexample simulation to free 
choice of enabled transitions.

•	 During the simulation, we plan to show in separate win-
dows a few kinds of counterexample tracking simulta-
neously: DA3 concurrently in the two forms, sequence 
diagram and configuration graph (LTS)—Figs. 16, 20, 
21, 23, respectively. A move (or backward move) in one 
of the windows would cause similar moves in the other 
windows. In the case of a DSL specification mentioned 
above, simultaneously, the current state in the source 
graphical specification can be shown.

In addition, some new features in the development of 
IMDS and the Dedan program are planned; some of them 
are subject of student projects:

•	 Non-exhaustive timeless and timed verification, using 
2-vagabonds algorithm and various types of heuristics 
[65]. This could allow for verification of huge systems, 
whose LTS cannot be represented in the computer mem-
ory.

•	 Probabilistic DA3 automata to identify deadlock prob-
ability if the alternative actions in system processes are 
equipped with probabilities.

•	 Language-based input—elaboration of two languages 
for distributed systems specification: one for the server 
view (exploiting locality in servers and message pass-
ing) and the other for the agent view (exploiting traveling 
of agents and resource sharing in a distributed environ-
ment); the initial version of the declarative language-
based preprocessor Rybu for the server view of veri-
fied systems is developed by the students of ICS, WUT 
(Institute of Computer Science, Warsaw University of 
Technology) [9]. Rybu is not covered in this paper, as it 
is based on textual representation.

•	 Agents’ own actions—equipping the agents with their 
own sets of actions, carried in their “backpacks,” param-
eterizing their behavior; this will allow modeling of 
mobile agents (agents carrying their own actions model 
code mobility) and to avoid many server types in speci-
fication, differing slightly.

Table 1   Verification facilities in the three equivalent formalisms

Formalism: IMDS S-DA3 A-DA3

Main features Specification, model checking, simula-
tion

Graphic input, simulation Graphic input, simulation

Notions State Node Element of global input vector, input/out-
put symbol on transitions

Message Element of input set, input/output sym-
bol on transitions

Node

Configuration Global vertex Global vertex
Action Transition Transition
Initial state Initial node Initial element of global input vector
Initial message Initial element of input set Initial node
Initial configuration Initial nodes and initial input sets of all 

automata
Initial nodes and initial global input vector

Labeled Transition System Global vertex space:
all states and input sets in global vertices, 

input and output symbols on transitions

Global vertex space:
all messages and global input vector in 

global vertices, input and output symbols 
on transitions

Features Resource deadlock
Communication deadlock
Partial deadlock
Total deadlock
Partial distributed termination
Total distributed termination
Counterexamples/ witnesses
Configuration space inspection
Simulation over configuration space

Graphic definition of a system (as serv-
ers)

Simulation over individual server 
automata

Counterexample projected onto indi-
vidual server automata

Counterexample-guided simulation

Graphic definition of a system (as agents)
Simulation over individual agent automata
Counterexample projected onto individual 

agent automata
Counterexample-guided simulation
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from definition. For each pair X0i, X0j, i ≠ j, both can-
not contain m appointing the same a—from defini-
tion, as X0i contains m0 for a starting from the server 
si, and ∀ai ∈ A: card(Mi ∩ M0) = 1 (the initial set of 
messages contains exactly one message for every 
agent). Each a has its m0 in some X0i—this from 
which the agents start (X0i are indexed by servers 
and every m0 belong to some Mi).

•	 A-DA3: TɄ = {m01, …,m0k, Y0}, In each pair m0i ≠ m0j, 
both cannot appoint the same a (from definition, as 
∀ai ∈ A: card(Mi ∩ M0) = 1 (the initial set of messages 
contains exactly one message for every agent). No 
m can be tɐ—from definition. Every element of Y0 
appoints different server—from definition.

3.	 Transition in LTS (progress action)

•	 IMDS: (Tinp(λ), λ, Tout(λ)) | λ ∈ Λ, λ = ((m, p), (m’, p’))
•	 S-DA3: From TΨ there exists a progress transition (p, 

m/m’, p’) to T’Ψ corresponding to λ = ((m, p), (m’, 
p’)), in the automaton ψi of the server si appointed 
by p to the state p’, retrieving the message m from 
Xi and inserting a message m’ to Xj appointed by m’.

	   Both messages m, m’ belong to the agent a. If TΨ 
corresponds to Tinp(λ), then according to (6.1) in T’Ψ 

p is replaced by p’ and in the union of all Xi m is 
replaced by m’, and all other states and messages are 
equal in TΨ and T’Ψ, which fulfils the rule of obtain-
ing Tout(λ) from Tinp(λ).

	   For each progress action λ = ((m, p), (m’, p’)) hav-
ing p on input, such a transition (p, m/m’, p’) exists in 
automaton ψi appointed by p, and no other transition 
exists in ψi with the same p, m, m’, p’, so it exactly 
corresponds to the set of progress actions having p 
on input.

	   In each progress transition in ψi, the set of servers 
is preserved (as p and p’ appoint the same server) 
and the set of agents—all except terminated ones—is 
preserved (as m and m’ appoint the same agent).

•	 A-DA3: From TɄ, there exists a progress transition 
(m, p/p’, m’) to T’Ʉ corresponding to λ = (m, p), (m’, 
p’)), in the automaton ɐi of the agent ai appointed by 
m to the message m’, replacing the state p in Y by the 
state p’ of the same server s appointed by states p, p’ 
(in the position of the server s in Y).

	   If TɄ corresponds to Tinp(λ), then according to  
(6.3) in T’Ʉ m is replaced by m’ and p in Y is replaced  
by p’, and all other states and messages are equal in 

The Dedan environment is successfully used in the stu-
dent laboratory in ICS, WUT. Students verify their solu-
tions to synchronization problems. The graphic definition 
of the component automata and simulation over distributed 
automata supports the verification procedure.

Appendix. Equivalence of the formalisms

In this section, we show the equivalence of the IMDS model 
with both automata-based models: S-DA3 and A-DA3. 
Equivalence is based on similar LTS structures, i.e., each 
vertex of LTS—including initial one—should contain the 
same items (states and messages) as the corresponding ver-
tices in other LTS’es. This means that the corresponding 
vertices should contain exactly the same sets of elements, 
but in various forms: a set of items (messages and states) in 
IMDS, automata nodes and elements of input sets of S-DA3, 
nodes and elements of the input vector in A-DA3, except for 
terminating nodes which are absent in IMDS and in S-DA3. 
Furthermore, transitions should connect the respective ver-
tices in all three LTS’es. To show equivalence, the rule of 
obtaining Tout(λ) from Tinp(λ) for the action λ is needed. This 
rule comes directly from the IMDS definition:

1.	 LTS vertex

•	 IMDS: T = { p1, …, pn, m1, …,mx | pi ∈ P, mj ∈ M, 
x ≤ k}, Every p from a different s, every m from a 
different a except for terminated a,

•	 S-DA3: TΨ = ((p1, X1), …,(pn, Xn)), Each p from dif-
ferent s—from definition in TΨ each s participates 
(will be shown later). For each pair Xi, Xj, i ≠ j both 
cannot contain m appointing the same a (will be 
shown later). No X can contain m appointing the ter-
minated a (will be shown later),

•	 A-DA3: TɄ = {m,m’, m’’, …,Y}, Each m appoints dif-
ferent a—from definition in TɄ each a participates, 
except for terminated ones (will be shown later). For 
each pair mi ≠ mj, both cannot appoint the same a 
(will be shown later). No m can appoint the termi-
nated a (will be shown later). Y contains the states 
of all servers—from definition.

2.	 Initial LTS vertex

•	 IMDS: T0 = {p01, …, p0n, m01, …,m0k | p0i ∈ P0, 
m0j ∈ M0},

•	 S-DA3: TΨ0 = ((p01, X01), …, (p0n, X0n)), Each p from 
different s—from definition. Each s participates—

(A.1)
∀
𝜆∈𝛬𝜆 =

(
(m, p),

(
m’, p’

))
Tinp(𝜆) ⊃ {m, p} ⇒ Tout(𝜆) = Tinp(𝜆)�{m, p} ∪

{
m’, p’

}

∀
𝜆∈𝛬𝜆 =

(
(m, p),

(
p�
))
Tinp(𝜆) ⊃ {m, p} ⇒ Tout(𝜆) = Tinp(𝜆)�{m, p} ∪

{
p�
}
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TɄ and T’Ʉ, which fulfils the rule of obtaining Tout(λ) 
from Tinp(λ).

	   For every progress action λ =((m, p), (m’, p’)) hav-
ing m on input such a transition (m, p/p’, m’) exists 
in automaton ɐi appointed by m, and no other than 
for such λ transition exists, so it exactly corresponds 
the set of progress actions having m on input.

	   In every progress transition in ɐi, the set of 
agents—all except terminated ones—is preserved 
(as m and m’ appoint the same agent) and the set of 
servers (as p and p’ appoint the same server).

4.	 Transition in LTS (agent-terminating action, or simply 
terminating action)

•	 IMDS: (Tinp(λ), λ, Tout(λ)) | λ ∈ Λ, λ = ((m, p), (p’))
•	 S-DA3: From TΨ there exists a terminating transition 

(p, m/, p’) to T’Ψ corresponding to λ = ((m, p), (p’)), 
in the automaton ψi of the server si appointed by p, 
to the state p’, retrieving the message m from Xi. The 
message m belongs to an agent a.

	   If TΨ corresponds to Tinp(λ), then according to 
(6.2) in T’Ψ p is replaced by p’ and m is extracted, 
and all other states and messages are equal in TΨ and 
T’Ψ, which fulfils the rule of obtaining Tout(λ) from 
Tinp(λ) (terminating action).

	   For every terminating λ = ((m, p), (p’)) having p 
on input such a transition (p, m/, p’) exists in automa-
ton si appointed by p, and no other than for such λ 
transition exists, so it exactly corresponds the set of 
terminating actions having p on input.

	   In every terminating transition in si, the set of 
servers is preserved (as p and p’ appoint the same 
server) and the set of agents in T’Ψ is smaller by the 
agent appointed by m. Consequently, there is no way 
to reestablish a terminated agent.

•	 A-DA3: From TɄ, there exists an agent a terminat-
ing transition (m, p/p’, tɐ) to T’Ʉ corresponding to 
λ = ((m, p), (p’)), in the automaton ɐi of the agent ai 
appointed by m, to the message m’, replacing the 
message m by tɐi.

	   The state p belongs to a server s. If TɄ corresponds 
to Tinp(λ), then according to (6.4) in T’Ʉ m is replaced 
by tɐi and p is replaced in Y by p’, all other states 
and messages are equal in TɄ and T’Ʉ, which fulfils 
the rule of obtaining Tout(λ) from Tinp(λ) (terminating 
action).

	   For each terminating action λ = ((m, p), (p’)) hav-
ing m on input such a transition (m, p/p’, tɐi) exists in 
automaton ɐi appointed by m, and no other than for 
such λ transition exists, so it exactly corresponds the 
set of terminating actions having m on input.

	   In every terminating transition in ɐi, the set of 
servers is preserved (as p and p’ appoint the same 

server) and the set of agents in T’Ʉ is smaller by the 
agent appointed by m, which is replaced by tɐi. Con-
sequently, there is no way to reestablish a terminated 
agent.

5.	 Semantics of LTS execution,

•	 IMDS: interleaved, nondeterministic,
•	 S-DA3: interleaved, nondeterministic,
•	 A-DA3: interleaved, nondeterministic.
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