
I
Logistyka

6/2016 AUTOBUSY 1

Bogdan Czejdo , Sambit Bhattacharya, Mikołaj Baszun, Wiktor B. Daszczuk

IMPROVING RESILIENCE OF AUTONOMOUS MOVING PLATFORMS

BY REAL-TIME ANALYSIS OF THEIR COOPERATION

Environmental changes, failures, collisions or even terrorist attacks can cause serious malfunctions of the delivery systems. We have

presented a novel approach improving resilience of Autonomous Moving Platforms AMPs. The approach is based on multi-level state
diagrams describing environmental trigger specifications, movement actions and synchronization primitives. The upper level diagrams
allowed us to model advanced interactions between autonomous AMPs and detect irregularities such as deadlocks live-locks etc. The
techniques were presented to verify and analyze combined AMPs’ behaviors using model checking technique. The described system, Dedan
verifier, is still under development. In the near future, a graphical form of verified system representation is planned.

INTRODUCTION

The growing scope of applications of new autonomous mobile
devices must include the development of the resilient technologies
to respond properly to environmental changes, failures, collisions or
even terrorist attacks. The development of resilient systems of
cooperating autonomous mobile platforms (AMPs) should have high
priority since they are being applied in many areas such as:
personal rapid transit (PRT)[1][2][3], marine seaport transportation
systems[4], military automated transportation systems, military
reconnaissance, surveillance and guard systems, and many others.

For all of these areas, models can be built to significantly
increase the resilience of the involved systems. More specifically,
for each application area we considered the following research
problems:
1. Individual Autonomous Moving Platforms and fail-safe

techniques for them. Within this problem we considered
development of failure detection and failure avoidance
techniques for individual AMPs.

2. Resilient cooperation of Autonomous Mobile Platforms. Within
this research problem we considered building enhanced
cooperation algorithms. That mainly included developing
techniques for cooperation, failure detection, and cooperation
modification.

3. Resilient cooperation of Autonomous Mobile Platforms with
changes in an Environment. This research problem required
building ontology for environment and its changes, and
development of techniques for change detection and
cooperation modification.

The research was integrated vertically and horizontally. The

horizontal integration of research meant that the similar research
problems for various application areas were analyzed and solutions
from one application area assisted work in another area. Similarly
the vertical integration of research was pursued to make sure that
solution for individual problems provide the proper solutions to the
whole application area.

The result of horizontal integration and vertical integration lead
us to identify common research techniques. These common
research techniques can be described by the following research
questions:

A. How can ontology for the needed resources be designed so
that the environment changes can be reflected?

B. How can deterministic state diagrams be used across various
AMPs and various cooperation algorithms for AMPs?

C. How critical is simulation for various algorithms of cooperation
of autonomous moving platforms?

D. How feasible is real-time verification of correctness of
cooperation of autonomous moving platforms?

In this paper we concentrate on the problems of Autonomous
Mobile Platforms navigation in an outdoor environment [5][6]. We
assume that the AMP not only responds directly to the environment
[7][8] but also to actions of other AMPs [9]. State diagrams [10][11]
have been previously used to describe the AMP behavior [12].
Typically, the appropriate software is developed manually based on
such models. To accelerate the development process we have
created a new tool for the design of AMP behavior and verification
(Dedan). Such a tool can be very useful for the rapid modification of
AMP reactive behavior. We are working on extending the tool
functionality to automatically generated AMP behavior in response
to changing requirements [13].

In this paper we describe the techniques to analyze state
diagrams, and for integration of multiple state diagrams. The state
diagrams allowed us to model advanced interactions between
autonomous AMPs and can ensure the correctness of AMP
interactions. When rapid modifications of AMP behavior are
required, the rapid checking of AMP interactions is crucial. The
model checking method for state diagrams can identify problems
such as deadlocks or live-locks and therefore offer the AMP
designer a set of ready-to-use algorithms and techniques for the
rapid system behavior modification.

The organization of the paper is as follows. In Section 1 we
describe a sample outdoor environment referred to as
environmental resources. The state diagrams and environmental
triggers are described in Section 2. In Section 3, we describe state
diagrams for cooperating AMPs. In Section 4, we show how state
diagrams can be analyzed and modified for increased resilience.

1. ENVIRONMENTAL RESOURCES

From the point of view of the AMP programmer it is important to
know the type of an environment the AMPs will move through. In
general, an environment can be known or unknown. In this paper
we will concentrate on describing AMP behavior in a known

I
Logistyka

2 AUTOBUSY 6/2016

environment. The known environment is typically described by a
geographic map identifying all landmarks and roads with the
characteristics anticipated by the AMPs movement. One of the
simple representations of a topological map can be a graph showing
all accessible places in the form of nodes designating road (and
parking) markers and the ways to get to these places in the form of
graph paths designating existing roads. Each road fragment
between road markers can have a one lane, two lanes, or multi-lane
characteristic.

Any topological map in the form of a graph can be also
interpreted as a graph of environmental resources. It means that
each node of the graph can be also interpreted as a resource and
when the AMP position is associated with this node we can claim
that the AMP acquired the resource. When the AMP leaves the
node we say that it releases the resource. The link between two
nodes can be also interpreted as resource that can be acquired and
released. Such an interpretation of a topological graph allows us to
apply known resource allocation algorithms for the description of
multiple AMP behavior.

Let us assume, for our case study, the outdoor environment
includes a road with road fragments defined by three road markers
leading to three warehouse lots. The corresponding environmental
resource graph can be constructed as shown in Fig. 1.

The following nodes corresponding to environmental resources
can be identified, using letter E for edge resources and M for middle
resources: (R1) “Warehouse Lot E1”, (R2) “Road Marker E1”, (R3)
“Road Marker M”, (R4) “Road Marker E2”, (R5) “Warehouse Lot
E2”, and (R6) “Warehouse Lot M”. The road fragments can be also
designated explicitly as resources but in this paper we designated
them implicitly.

R2.Road Marker E1

R3.Road Marker M

R4.Road Marker E2 R5.Warehouse Lot E2

R1.Warehouse Lot E1

R6.Warehouse Lot M

Fig. 1 An Environmental Resource Graph with 6 resources

2. STATE DIAGRAMS WITH TRANSITIONS FOR AMP
NAVIGATION

The deterministic state diagrams are well described in literature
[10][11]. Generally, the deterministic state diagram, in addition to
states, has transitions consisting of triggers that cause the transition
of the AMP from one state to another, and actions, that are invoked
during a transition. Triggers are expressed by Boolean conditions
evaluated continuously to respond to changes in the environment.

To specify state diagrams we use the notation based on
Universal Modeling Language (UML) [14] where a state is indicated
by a box and a transition is indicated by an arrow with a label. The
first part of the transition label (before the slash) specifies the trigger
and the part after the slash specifies the action (or message) to be
invoked during the transition [14]. The syntax of probabilistic
specifications is described in the literature [15] as an additional third
component specifying the probability of the entire transition.

Deterministic state diagrams are well described in literature
[10][11]. Generally, the deterministic state diagram, in addition to
states, has transitions consisting of triggers that cause the transition
of the AMP from one state to another, and actions, that are invoked
during a transition. Triggers are expressed by Boolean conditions
evaluated continuously to respond to changes in the environment.

To specify state diagrams we use the notation based on
Universal Modeling Language (UML) [14] where a state is indicated
by a box and a transition is indicated by an arrow with a label. The
first part of the transition label (before the slash) specifies the trigger
and the part after the slash specifies the action (or message) to be
invoked during the transition [14].

State diagrams that are explicitly location dependent can be
convenient to specify AMP behavior for several reasons. Firstly, the
diagram can be constructed by relatively simple transformation of
environmental resource diagram. Second, probabilistic components
can be added relatively easily. Thirdly, the behavior of cooperating
AMPs can be described by concurrent state diagrams and all well-
established techniques for concurrent program analysis can be
used i.e. deadlock detection or deadlock avoidance algorithms. The
analysis of concurrency can be done automatically and the AMP
program can be directly generated from state diagram model.

Based on environmental graph and corresponding
environmental triggers we can rapidly specify various location
dependent state diagrams. For example, let us consider Behavior A
describing a simple path for movement of AMP1: start from the
Warehouse Lot E1, then follow the exit leading to the Road Marker
E1, then continue to follow the road until encountering the road
marker M, then still continue to follow the road until encountering the
road marker E2 then enter the Warehouse Lot E2 and stop.

In order to model such behavior a state diagram model can be
used. In general the multi-level model can be used but in this paper
for the simplicity of presentation, we assume two level model. The
upper level model is obtained by transforming the environmental
graph i.e. converting non-directional to directional edges and
providing the necessary triggers, actions and messages.

More precisely the link between two nodes e.g. “Road
Marker E1” and “Road Marker M” can be interpreted as follows: if
the AMP is assigned a resource “Road Marker E1” it should first
acquire resource “Road Marker M” before releasing resource “Road
Marker 1” account.

The state diagram shown in Fig. 2 specifies the AMP1 Behavior
A in some detail dividing it into sequence of phases:
− Phase 1. Initially the AMP1 is in the “Warehouse Lot E1”

state. In this state, if the needed resource is available i.e. road
to Marker E1, then the transition takes place to the state “Road
Marker E1”. When the Road marker is reached then the state
“At Road Marker E1” is also recorded as reached.

− Phase 2. In this state, if the needed resource is available i.e.
road towards Marker M, then the transition takes place to the
state “Moving towards Road Marker M”. When the Road Marker
M is recognized then the state “At Road Marker M” is reached.

− Phase 3. If possible then AMP1 transitions into “At Road
Marker E2” to reach “At Road Marker E2” state and then finally

− Phase 4. It will get AMP1 into “At Warehouse Lot E2” state.
Similarly the AMP2 Behavior can be described into several phases
allowing AMP2 to travel from Warehouse Lot E2 to Warehouse Lot
E1.

In order to formally specify such phrases as shown in Fig. 2, we
need topological identification triggers, topological actions, and
synchronization messages. Let us describe them in this order. Each
of these topological constructs can be defined by a lower level
diagrams.

I
Logistyka

6/2016 AUTOBUSY 3

Different topological places i.e. different resources would
usually generate different values for the AMP’s sensors. The sensor
signal processing algorithms i.e. algorithms describing a translation
of AMP sensor signals into a high level signals that can be used to
directly identify the environment. We will assume that a lower level
state diagram can describe such algorithm and we will refer to these
signals to be used by a higher level diagrams as the environmental
triggers.

In our previous papers [13], we extensively studied the
environmental triggers and their application to control the robot
movements. Various computer vision techniques can be used to
create such environmental triggers. The Hough transform is widely
used in computer vision for detecting line segments and regular
geometric features such as line segments and circles in images.
More specifically, Progressive Probabilistic Hough Transform [16]
can be used for detecting naturally occurring lines in images of
roads[13]. The histogram based difference methods can be used for
discriminating between road features and for recognition of major
landmark objects [6].

Using Hough transform we can implement the environmental
triggers to allow the AMP to direct itself to stay within the assigned
lane. Histogram based difference measurement can be used during
AMP navigation to solve the significant problem of recognition of
landmark objects related to the road markers [6]. When the AMP
moves beside a landmark the appropriate environmental trigger can
generate True otherwise this condition is False. In general, in this
paper we will assume an algorithm for self-driving vehicle with an
ability to move the vehicle along sequence of specified road
markers and to signal their recognized position.

To identify properly the solutions to our problems we will
assume for further discussion the high level environmental
identification trigger detected(Road Marker X). This trigger reflects
the ability of AMP sensors and algorithms to recognize the
landmarks. The assumed high level environmental action
corresponds to a movement of vehicle from the actual location to
the provided Road Marker X e.g., moveTo(Road Marker X). This
action can be shown by a lower level diagram and using an
environmental position marker detected() to determine the
termination of the action.

Similarly, we assume the following environment
synchronization triggers: acquire(RX) and release(RX). The
acquire(RX) trigger can be also defined by lower level state diagram
with an environmental message request_to_acquire, then wait for
available resource. The release(RX) is an environmental

synchronization trigger generated to inform that the resource is not
used any more.

3. INTERACTIONS OF AUTONOMOUS MOVING
PLATFORMS

The state diagrams described in the previous section can be
used to generate code for several interacting AMPs. In this section
we discuss the use of state diagrams to describe and ensure the
proper interactions between autonomous AMPs. Since in our
approach we create explicit state diagrams based on environmental
resource graph, we can take advantage of many theoretical and
practical solutions in:

(a) geometrical modeling of AMP movement [5][6][7],
(b) resource allocation algorithms,
(c) model checking [16][17][18],

and apply them for verification of AMP behavior. Most solutions can
be applied for both static verification of AMP behavior and the
dynamic verification when the AMP is in the middle of execution of a
program. The modeling of the AMP movement is typically related
with spatial path description and can be done for both static and
dynamic analyses. Resource allocation algorithms for deadlock
avoidance can be used for dynamic verification to avoid collisions of
moving AMPs assuming that they can wait in the state “Moving
towards…” while doing their tasks.

The model checking provides a most general methodology
[18][19][20][21][22] that can be used not only for deadlock
avoidance or detection but also for detection and verification of wide
variety AMP interaction characteristics. Typically the model
checking is based on finite-state methods [20] that can be applied
directly to our state diagrams and therefore it can be of important
practical use for verifying AMP behaviors. The model checking
method can offer the AMP behavior designer a set of ready-to-use
algorithms and techniques for the analysis of complete system
properties.

Conceptually, the approach is as follows. First, out of the
specifications of the AMPs’ behavior by state diagrams we build a
possibly large but finite graph containing all possible (reachable)
system states and all possible transitions among them. This graph
defines the behavioral model of the set of AMPs. Each path in the
graph represents an allowable execution or a (part of a) behavior of
a system. The graph contains all possible executions or behaviors.
The property list will be used for the graph correctness specification.

We have to deal with the exponential explosion of the state
space size similar as others [18][21][22].There are many proposed

acquire(R4)/

moveTo(Road Marker E2)

& release(R3)

At

Road Marker E1

At

Road Marker M

acquire(R3)/

moveTo(Road Marker M)

& release(R2)

At

Warehouse Lot E1

At

Road Marker E2

At

Warehouse Lot E2

acquire(R2)/

moveTo(Road Marker E1)

& release(R1)

acquire(R5)/

moveTo(Warehouse Lot E2)

& release(R4)

Fig. 2. State Diagram to describe Behavior of AMP1

I
Logistyka

4 AUTOBUSY 6/2016

and implemented solutions but the exponential growth of state
space is still a real threat [17]. We included in our research a study
of multiple forms of reduction of state space, aimed at removing the
states and transitions which are irrelevant for the evaluation of a
given formula. We also investigated the usefulness of compositional
model checking, where some individual parts of a system (of a more
acceptable size) are subject to an exhaustive state space search
while the conclusion as to the performance of the whole system is
reached by combining the results obtained for the individual parts.

Let us consider again the state diagram for AMP1 behavior as
specified in Fig. 2. Let us assume that we have two AMPs. AMP1
behavior is exactly as in Fig. 2. AMP2 behavior is almost identical
except that it starts from the Warehouse Lot E2 and terminates in
Warehouse Lot E1. AMPs in general they can interact as in our
example. The analysis of combined diagram might be necessary.
There is a need for analytical transformations to investigate how the
probability of reaching a given state by the first AMP affects the
reachability of the states by the second AMP.

4. VERIFICATION IN DEDAN

For verification of the system presented in Figs. 1,2 and 3 it
could be described in the Integrated Model of Distributed Systems
(IMDS) formalism [23]. In this formalism a real distribution of
elements may be expressed, since the actions of distributed
elements are based on local states only. The Dedan verification
environment, which uses IMDS specification, has been implemented
to find deadlocks in cooperating distributed elements using model
checking technique [24], Resource deadlocks and communication
deadlock are searched automatically in Dedan.

A distributed system is typically described in terms of servers
exchanging messages. A process in such a system can be defined
as a sequence of changes of a server states. The states of servers
are internal to the processes, which communicate by the message
exchanges (a client-server model [25]).

Formally, a server state is a pair p=(server, state) and a
message is a triple m=(agent, server, service). An agent is an
identifier distinguishing a distributed computation from other

computations (can we talk about processes later). An action is a
relation λ between an input pair (m, p) and an output pair (m’, p’).
A process is a sequence of actions: in the same server (server
process) or in the same agent (agent process).

In the described system, we identify servers with static
elements: the places of the AMPs environment (warehouse lots and
road markers). Agents are identified with dynamic elements: AMPs
travelling through the environment. For example, if the agent AMP1
is in the place Road Marker E1, then it tries to take the Road
Marker M. To do it safely, first M is taken, and then E1 is released. It
is done by means of three messages:
1. The message ‘try’ is sent from the E1 to M. This message may

wait for acceptance for undefined period of time if M is
occupied.

2. If at last the message ‘try’ is accepted in M is accepted (M is
free at this time), the message ‘ok’ is sent back from M to E1.
M changes its state from ‘free’ to ‘reserved’ – it cannot be
taken by other AMP.

3. Then, E1 is released and M is finally taken by the AMP, E1
becomes ‘free’ and M becomes ‘occupied’.
Processes of a concurrent system may fall into a deadlock.

Dedan finds deadlocks in both views automatically and Presents
them in readable form. Moreover, it finds partial deadlocks, in which
not all of the servers are involved.

Yet, another model is possible: if a process is associated with
an agent (rather than with a server), it migrates between servers
and performs calculations in travelling way. It communicates with
other travelling processes by means of servers’ states. Messages
are internal to a process. In such a way, a system is described in
terms of resource sharing instead of message passing. This is
similar to a Remote Procedure Calling (RPC) model [25] (yet, the
analogy may be misleading because it is not necessary for a
process to return to the calling server after an execution of a
service).

The crucial fact is that it is the same system, shown in one of
the two views, depending on connecting actions to form processes.
If a sequence of actions is connected by server states - it is a server
view. Server states are the carrier of the process, while messages

acquire(R4)/

moveTo(Road Marker E2)

& release(R3)

At

Road Marker E1

At

Road Marker M

acquire(R3)/

moveTo(Road Marker M)

& release(R2)

At

Warehouse Lot E1

At

Road Marker E2

At

Warehouse Lot E2

acquire(R2)/

moveTo(Road Marker E1)

& release(R1)

acquire(R5)/

moveTo(Warehouse Lot E2)

& release(R4)

At

Warehouse Lot M

~acquire(R4) & acquire(R6)/

moveTo(Warehouse Lot M)

& release(R3)

acquire(R3)/

moveTo(Road Marker M)

& release(R6)

Fig. 3. State Diagram modified to avoid the deadlock

I
Logistyka

6/2016 AUTOBUSY 5

are communication means. If a sequence is connected by
messages – it is an agent view.

The deadlock may be observed from the agents’ point of view.
Dedan finds both kinds of deadlock (in communication and over
resources) automatically.

In our example, a possibility of deadlock is obvious if two APMs
travel, one from Lot E1 to Lot E3 and the other one travels opposite
way. In the system, this „collision” of two AMPs can be solved in
various ways. In general the solution can be based on:
− additional maneuvers maintaining the same route for all

vehicles,
− changing the traveling route.

For our case study, the first possibility can be implemented
using the Warehouse Lot M as a temporary parking space, where
one of AMPs may wait for the other one passing M. This can be
done by using additional message ‘not’ sent by E1/E2 if it is
occupied by an AMP and the other AMP tries to take it standing at

M. In such a situation, the message ‘not’ causes the AMP standing
at M to divert to the Warehouse Lot M and let the AMP standing at
E1/E2 to take M and drive on to E2/E1. Then, the AMP that stepped
out of the way, drives from Warehouse Lot M back to M and
continues its way. The modified diagram can be generated
automatically as shown in Fig. 3.

The two-AMPs system is coded in IMDS as follows:

#DEFINE N 2

server: markerE(agents AMP[N];servers markerM,lotE),
//Edge Road Marker
services {tryM[2],tryL,okM[2],okL,takeM,takeL},
//M - going from RMM, L - going from PLE,
//try - test ok access, ok - accept, take - enter
states {free,resM,resL,occ},
//free - free, res - reserved, occ - occupied
actions {
<i=1..N> {AMP[i].markerE.tryL, markerE.free} ->

{AMP[i].lotE.ok, markerE.resL},

Fig. 4 Communication structure in a trace of AMPs behavior, leading to the deadlock

I
Logistyka

6 AUTOBUSY 6/2016

<i=1..N> {AMP[i].markerE.takeL, markerE.resL} ->
{AMP[i].markerM.tryE[i], markerE.occ},

<i=1..N><j=1..2>{AMP[i].markerE.okM[j], markerE.occ} ->
{AMP[i].markerM.takeE[j], markerE.free},

<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.free} ->

{AMP[i].markerM.okE[j], markerE.resM},
<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.resL} ->

{AMP[i].markerM.notE[j], markerE.resM},

<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.occ} ->
{AMP[i].markerM.notE[j], markerE.occ},

<i=1..N> {AMP[i].markerE.takeM, markerE.resM} ->
{AMP[i].lotE.try, markerE.occ},

<i=1..N> {AMP[i].markerE.okL, markerE.occ} ->
{AMP[i].lotE.take, markerE.free},

}

server: markerM(agents AMP[N];servers markerE[2],lotM),
//Middle Road Marker
services
{tryE[2],tryL[2],okE[2],notE[2],okL[2],takeE[2],takeL[2],switch[2]},
states {free,resE[2],resL[2],occ},
actions {
//going to ME1 or ME2
<i=1..N><j=1..2>{AMP[i].markerM.tryE[j], markerM.free} ->

{AMP[i].markerE[j].okM[j], markerM.resE[j]},
<i=1..N><j=1..2>{AMP[i].markerM.takeE[j], markerM.resE[j]} ->

{AMP[i].markerM.switch[3-j], markerM.occ},
<i=1..N><j=1..2>{AMP[i].markerM.switch[j], markerM.occ} ->

{AMP[i].markerE[j].tryM[j], markerM.occ},
<i=1..N><j=1..2>{AMP[i].markerM.okE[j], markerM.occ} ->

{AMP[i].markerE[j].takeM, markerM.free},

//on a way to ME1 or ME2 may go to LE if MEi occupied
<i=1..N><j=1..2>{AMP[i].markerM.notE[j], markerM.occ} ->

{AMP[i].lotM.try[j], markerM.occ},
<i=1..N><j=1..2>{AMP[i].marker2.okL[j], markerM.occ} ->

{AMP[i].lotM.take[j], markerM.free},

//going from PL2 - goes to RM1(markerE[1]) or RM3(markerE[2])
<i=1..N><j=1..2>{AMP[i].markerM.tryL[j], markerM.free} ->

{AMP[i].lotM.ok[j], markerM.resL[j]},
<i=1..N><j=1..2>{AMP[i].markerM.takeL[j], markerM.resL[j]} ->

{AMP[i].markerE[j].tryM[j], markerM.occ},
<i=1..N><j=1..2>{AMP[i].markerM.okE[j], markerM.occ} ->

{AMP[i].markerE[j].takeM, markerM.free},
}

server: lotE(agents AMP[N];servers markerE),
//Edge Warehouse Lot
services {start,try,ok,take},
states {free,res,occ},
actions {
<i=1..N> {AMP[i].lotE.try, lotE.free} ->

{AMP[i].markerE.okL, lotE.res},

Fig. 5 Sequence diagram of AMP(AMP1) moving from Warehouse Lot E1 to Warehouse Lot E2 and AMP__1(AMP2) moving reverse
way, leading to the deadlock

I
Logistyka

6/2016 AUTOBUSY 7

<i=1..N> {AMP[i].lotE.take, lotE.res} ->
{lotE.occ},

<i=1..N> {AMP[i].lotE.start, lotE.occ} ->

{AMP[i].markerE.tryL, lotE.occ},
<i=1..N> {AMP[i].lotE.ok, lotE.occ} ->

{AMP[i].markerE.takeL, lotE.free},
}

server: lotM(agents AMP[N];servers markerM),
//Middle Warehouse Lot
services {try[2],ok[2],take[2]},
states {free,res[2],occ[2]},
actions {
<i=1..N><j=1..2>{AMP[i].lotM.try[j], lotM.free} ->

{AMP[i].markerM.okL[j], lotM.res[j]},
<i=1..N><j=1..2>{AMP[i].lotM.take[j], lotM.res[j]} ->

{AMP[i].markerM.tryL[j], lotM.occ[j]},
<i=1..N><j=1..2>{AMP[i].lotM.ok[j], lotM.occ[j]} ->

{AMP[i].markerM.takeL[j], lotM.free},
}

servers markerE[2],markerM,lotE[2],lotM;
agents AMP[N];

init -> {
 <j=1..2>markerE[j](AMP[1..N],markerM,lotE[j]).free,
 markerM(AMP[1..N],markerE[1,2],lotM).free,
 <j=1..2>lotE[j](AMP[1..N],markerE[j]).occ,
 lotM(AMP[1..N],markerM).free,
 <j=1..2>AMP[j].lotE[j].start,
}.

Similar arrangements can be done in a case when an AMP

occupies E1 and the other AMP tires to drive from Warehouse Lot
E1 to E1. It this case a deadlock occurs, presented in the server
view in Fig. 4 and in the agent view in Fig. 5. Both figures are the
output from Dedan. Note that in the server view, only two servers
out of six are in deadlock. In the agent view, the agents AMP[1] and
AMP[2] are renamed to AMP and AMP__1 during automatic
conversion from the server view.

CONCLUSIONS

In this paper, we extended previous studies of cooperating
autonomous vehicles to include situations when environmental
changes, failures, collisions or even terrorist attacks can cause a
malfunctions of the delivery systems. We have presented a novel
approach using two-level state diagrams. The lower level diagrams
describe computer vision techniques for environmental trigger
specifications, movement actions and synchronization primitives.
The upper level diagrams allowed us to model advanced
interactions between autonomous AMPs. We addressed the
problem of ensuring the correctness of AMP interactions. The
techniques were presented to verify and analyze combined AMPs’
behaviors.

The Dedan verification environment is using model checking
techniques, for finding communication deadlocks and resource
deadlocks, partial and total. Moreover, the system may be
automatically converted from the server view to the agent view, the
state space of the system may be observed and simulated, and the
system may be converted to Promela (Spin verifier input form, [18]).
The described system is still under development. In the near future,
a graphical form of verified system representation is planned. A new
concept of distributed automata is under development. More
advanced forms of verification will be available, using timed
automata ([26][27], to verify real-time dependencies), and
probabilistic model checking [28]. One of the most advanced feature
will be automatic or semi-automatic behavior modification that will

significantly improve the dynamic resilience of cooperating
autonomous moving platforms.

ACKNOWLEDGMENT

This research was supported by the Belk Foundation in the
case of Bogdan Czejdo and Sambit Bhattacharya.

BIBLIOGRAPHY

1. Irving J. Fundamentals of Personal Rapid Transit. Lexington,
MA: Lexington Books, 1978, ISBN is 0-669-02520-8.

2. Johnson RE, Walter HT, Wild WA. Analysis and Simulation of
Automated Vehicle Stations. In: Gary DA, Girrard WL,
Kornhauser AL (eds.). Personal Rapid Transit III. Minneapolis:
University of Minnesota, 1976, 269–281.

3. Choromański W, Daszczuk W, Grabski W, Dyduch J,
Maciejewski M, Brach P. Personal Rapid Transit (PRT)
Computer Network Simulation and Analysis of Flow Capacity.
Automated People Movers and Transit Systems 2013.
Reston, VA: American Society of Civil Engineers, 2013, 296–
312.

4. Visser J, Konings R, Wiegmans BW, Pielage B-JA. A New
Hinterland Transport Concept for the Port of Rotterdam:
Organisational and/or Technological Challenges?
Transportation Research Forum, 48th Annual Forum, Boston
University. Fargo, ND: Transportation Research Forum, 2007.

5. Murphy R. Introduction to AI Robotics. MIT Press, 2000, ISBN
0-262-13383-0.

6. Desouza GN, Kak AC. Vision for mobile robot navigation: a
survey. IEEE Trans Pattern Anal Mach Intell 2002;24:237–
267.

7. Blank D. Robots make computer science personal. Commun
ACM 2006;49:25-27, DOI: 10.1145/1183236.1183254.

8. Kumar D. Learning Computing with AMPs (Python). Institute for
Personal AMPs in Education, 2007.

9. Meng Y. Multi-Robot Searching using Game-Theory Based
Approach. Int J Adv Robot Syst 2008;5:341–350.

10. Harel D. On visual formalisms. Commun ACM 1988;31:514–
530, DOI: 10.1145/42411.42414.

11. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W.
Object-Oriented Modeling and Design. New Jersey, NJ:
Prentice Hall, 1990, ISBN 0-13-629841-9.

12. Czejdo BD, Bhattacharya S. Programming Robots with State
Diagrams. J Comput Sci Coll 2009;24:19–26.

13. Bhattacharya S, Czejdo BD, Mobley S. An Integrated Computer
Vision and Infrared Sensor Based Approach to Autonomous
Robot Navigation in an Indoor Environment. 7th International
Conference on Computing, Communications and Control
Technologies. 2009, 42–47.

14. Galamhos C, Matas J, Kittler J. Progressive probabilistic Hough
transform for line detection. Proceedings. 1999 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (Cat. No PR00149). New York, NY: IEEE
Comput. Soc, 1999, 554–560, DOI: 10.1109/CVPR.1999.
786993.

15. Czejdo B, Bhattacharya S, Czejdo J. Use of Probabilistic State
Diagrams for Robot Navigation in an Indoor Environment.
Proceedings of the Annual International Conference on
Advances in Distributed and Parallel Computing ADPC 2010
ADPC 2010. Global Science and Technology Forum, 2010,
A97–A102, DOI: 10.5176/978-981-08-7656-2ATAI2010-63.

16. McMillan KL. Symbolic Model Checking. Norwell, MA: Kluwer
Academic Publishers, 1993, ISBN 0792393805.

I
Logistyka

8 AUTOBUSY 6/2016

17. Berard B, Bidoit M, Finkel A, Laroussinie F, Petit A, Petrucci L,
P. S. Systems and Software Verification. Model-Checking
Techniques and Tools. Berlin Heidelberg: Springer-Verlag,
2001, ISBN 978-3-662-04558-9.

18. Holzmann GJ. The model checker SPIN. IEEE Trans Softw Eng
1997;23:279–295, DOI: 10.1109/32.588521.

19. Peled DA. Software Reliability Methods. Berlin Heidelberg:
Springer, 2001, ISBN 978-1-4419-2876-4.

20. Clarke EM, Wing JM. Formal methods: state of the art and
future directions. ACM Comput Surv 1996;28:626–643.

21. Bryant RE. Binary decision diagrams and beyond: enabling
technologies for formal verification. Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD).
New York, NY: IEEE Comput. Soc. Press, 1995, 236–243,
DOI: 10.1109/ICCAD.1995.480018.

22. Daszczuk WB. Verification of Temporal Properties in Concurrent
Systems. PhD Thesis, Warsaw University of Technology,
Institute of Computer Science, 2003, DOI:
10.13140/RG.2.1.2779.6565.

23. Chrobot S, Daszczuk WB. Communication Dualism in
Distributed Systems with Petri Net Interpretation. Theor Appl
Informatics 2006;4:261–278.

24. Daszczuk WB. Deadlock and Termination Detection Using
IMDS Formalism and Model Checking, Version 2, ICS WUT
Technical Report No.2/2008. Warsaw, Poland, 2008.

25. Jia W, Zhou W. Distributed Network Systems. From Concepts to
Implementations. New York: Springer, 2005, ISBN 0-387-
23839-5.

26. Alur R, Dill DL. A theory of timed automata. Theor Comput Sci
1994;126:183–235, DOI: 10.1016/0304-3975(94)90010-8.

27. Daszczuk WB. Real Time Model Checking Using Timed
Concurrent State Machines. Int J Comput Sci Appl 2006;4:1–
12.

28. Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification
of Probabilistic Real-Time Systems. 2011, 585–591, DOI:
10.1007/978-3-642-22110-1_47.

Poprawa bezpieczeństwa autonomicznych platform
mobilnych drogą analizy ich współpracy w czasie

rzeczywistym

Zmiany w otoczeniu, awarie, kolizje czy nawet ataki
terrorystyczne mogą spowodować poważne awarie w systemach
transportowych. W artykule zaprezentowaliśmy nowe podejście do
poprawy odporności autonomicznych platform mobilnych (AMPs).
Podejście to opiera się na specyfikacji przy pomocy
wielopoziomowych diagramach stanów, opisujących wpływ
otoczenia, podejmowane akcje komunikacyjne i prymitywy
synchronizacyjne. Schematy na górnym poziomie pozwoliły
modelować zaawansowane interakcje między autonomicznymi
pojazdami i wykrywać nieprawidłowości, takie jak zakleszczenia,
częściowe zakleszczenia itp.

Zaprezentowano techniki zastosowane w celu weryfikacji i
analizy łącznego zachowania pojazdów techniką weryfikacji
modelowej. Opisany system weryfikacyjny Dedan jest wciąż w fazie
rozwoju. W niedalekiej przyszłości planowana jest graficzna forma
reprezentacji weryfikowanego systemu.

Authors:
Bogdan Czejdo, PhD - Department of Mathematics and

Computer Science, Fayetteville State University, Fayetteville, NC
28301, USA, bczejdo@uncfsu.edu

Sambit Bhattacharya, PhD - Department of Mathematics and
Computer Science, Fayetteville State University, Fayetteville, NC
28301, USA, sbhattac@uncfsu.edu

Mikołaj Baszun, PhD - Warsaw University of Technology,
Department of Electronics and Information Technology,
mbaszun@elka.pw.edu.pl

Wiktor B. Daszczuk, PhD – Warsaw University of Technology,
Department of Electronics and Information Technology,
wbd@ii.pw.edu.pl

