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IMPROVING RESILIENCE OF AUTONOMOUS MOVING PLATFORMS 

BY REAL-TIME ANALYSIS OF THEIR COOPERATION 

 
Environmental changes, failures, collisions or even terrorist attacks can cause serious malfunctions of the delivery systems.  We have 

presented a novel approach improving resilience of Autonomous Moving Platforms AMPs.  The approach is based on multi-level state 
diagrams describing environmental trigger specifications, movement actions and synchronization primitives. The upper level diagrams 
allowed us to model advanced interactions between autonomous AMPs and detect irregularities such as deadlocks live-locks etc. The 
techniques were presented to verify and analyze combined AMPs’ behaviors using model checking technique. The described system, Dedan 
verifier,  is still under development. In the near future, a graphical form of verified system representation is planned. 

 

INTRODUCTION 

The growing scope of applications of new autonomous mobile 
devices must include the development of the resilient technologies 
to respond properly to environmental changes, failures, collisions or 
even terrorist attacks.  The development of resilient systems of 
cooperating autonomous mobile platforms (AMPs) should have high 
priority since they are being applied in many areas such as:  
personal rapid transit (PRT)[1][2][3], marine seaport transportation 
systems[4], military automated transportation systems, military 
reconnaissance, surveillance and guard systems, and many others.  

For all of these areas, models can be built to significantly 
increase the resilience of the involved systems. More specifically, 
for each application area we considered the following research 
problems:  
1. Individual Autonomous Moving Platforms and fail-safe 

techniques for them. Within this problem we considered 
development of failure detection and failure avoidance 
techniques for individual AMPs. 

2. Resilient cooperation of Autonomous Mobile Platforms. Within 
this research problem we considered building enhanced 
cooperation algorithms. That mainly included developing 
techniques for cooperation, failure detection, and cooperation 
modification. 

3. Resilient cooperation of Autonomous Mobile Platforms with 
changes in an Environment. This research problem required 
building ontology for environment and its changes, and 
development of techniques for change detection and 
cooperation modification. 
 
The research was integrated vertically and horizontally. The 

horizontal integration of research meant that the similar research 
problems for various application areas were analyzed and solutions 
from one application area assisted work in another area. Similarly 
the vertical integration of research was pursued to make sure that 
solution for individual problems provide the proper solutions to the 
whole application area. 

The result of horizontal integration and vertical integration lead 
us to identify common research techniques. These common 
research techniques can be described by the following research 
questions: 

A. How can ontology for the needed resources be designed so 
that the environment changes can be reflected? 

B. How can deterministic state diagrams be used across various 
AMPs and various cooperation algorithms for AMPs? 

C. How critical is simulation for various algorithms of cooperation 
of autonomous moving platforms? 

D. How feasible is real-time verification of correctness of 
cooperation of autonomous moving platforms? 

In this paper we concentrate on the problems of Autonomous 
Mobile Platforms navigation in an outdoor environment [5][6]. We 
assume that the AMP not only responds directly to the environment 
[7][8] but also to actions of other AMPs [9]. State diagrams [10][11] 
have been previously used to describe the AMP behavior [12]. 
Typically, the appropriate software is developed manually based on 
such models.  To accelerate the development process we have 
created a new tool for the design of AMP behavior and verification 
(Dedan). Such a tool can be very useful for the rapid modification of 
AMP reactive behavior. We are working on extending the tool 
functionality to automatically generated AMP behavior in response 
to changing requirements [13]. 

In this paper we describe the techniques to analyze state 
diagrams, and for integration of multiple state diagrams. The state 
diagrams allowed us to model advanced interactions between 
autonomous AMPs and can ensure the correctness of AMP 
interactions. When rapid modifications of AMP behavior are 
required, the rapid checking of AMP interactions is crucial. The 
model checking method for state diagrams can identify problems 
such as deadlocks or live-locks and therefore offer the AMP 
designer a set of ready-to-use algorithms and techniques for the 
rapid system behavior modification.  

The organization of the paper is as follows. In Section 1 we 
describe a sample outdoor environment referred to as 
environmental resources. The state diagrams and environmental 
triggers are described in Section 2. In Section 3, we describe state 
diagrams for cooperating AMPs. In Section 4, we show how state 
diagrams can be analyzed and modified for increased resilience.  

1. ENVIRONMENTAL RESOURCES 

From the point of view of the AMP programmer it is important to 
know the type of an environment the AMPs will move through. In 
general, an environment can be known or unknown. In this paper 
we will concentrate on describing AMP behavior in a known 
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environment. The known environment is typically described by a 
geographic map identifying all landmarks and roads with the 
characteristics anticipated by the AMPs movement. One of the 
simple representations of a topological map can be a graph showing 
all accessible places in the form of nodes designating road (and 
parking) markers and the ways to get to these places in the form of 
graph paths designating existing roads. Each road fragment 
between road markers can have a one lane, two lanes, or multi-lane 
characteristic.  

Any topological map in the form of a graph can be also 
interpreted as a graph of environmental resources. It means that 
each node of the graph can be also interpreted as a resource and 
when the AMP position is associated with this node we can claim 
that the AMP acquired the resource. When the AMP leaves the 
node we say that it releases the resource. The link between two 
nodes can be also interpreted as resource that can be acquired and 
released. Such an interpretation of a topological graph allows us to 
apply known resource allocation algorithms for the description of 
multiple AMP behavior.  

Let us assume, for our case study, the outdoor environment 
includes a road with road fragments defined by three road markers 
leading to three warehouse lots. The corresponding environmental 
resource graph can be constructed as shown in Fig. 1.   

The following nodes corresponding to environmental resources 
can be identified, using letter E for edge resources and M for middle 
resources: (R1) “Warehouse Lot E1”, (R2) “Road Marker E1”, (R3) 
“Road Marker M”, (R4) “Road Marker E2”, (R5) “Warehouse Lot 
E2”, and (R6) “Warehouse Lot M”. The road fragments can be also 
designated explicitly as resources but in this paper we designated 
them implicitly.   
 

R2.Road Marker E1 

R3.Road Marker M 

R4.Road Marker E2 R5.Warehouse Lot E2 

R1.Warehouse Lot E1 

 

R6.Warehouse Lot M 

 

 
Fig. 1 An Environmental Resource Graph with 6 resources 

 

2. STATE DIAGRAMS WITH TRANSITIONS FOR AMP 
NAVIGATION 

The deterministic state diagrams are well described in literature 
[10][11]. Generally, the deterministic state diagram, in addition to 
states, has transitions consisting of triggers that cause the transition 
of the AMP from one state to another, and actions, that are invoked 
during a transition. Triggers are expressed by Boolean conditions 
evaluated continuously to respond to changes in the environment.   

To specify state diagrams we use the notation based on 
Universal Modeling Language (UML) [14] where a state is indicated 
by a box and a transition is indicated by an arrow with a label. The 
first part of the transition label (before the slash) specifies the trigger 
and the part after the slash specifies the action (or message) to be 
invoked during the transition [14]. The syntax of probabilistic 
specifications is described in the literature [15] as an additional third 
component specifying the probability of the entire transition. 

Deterministic state diagrams are well described in literature 
[10][11]. Generally, the deterministic state diagram, in addition to 
states, has transitions consisting of triggers that cause the transition 
of the AMP from one state to another, and actions, that are invoked 
during a transition. Triggers are expressed by Boolean conditions 
evaluated continuously to respond to changes in the environment.   

To specify state diagrams we use the notation based on 
Universal Modeling Language (UML) [14] where a state is indicated 
by a box and a transition is indicated by an arrow with a label. The 
first part of the transition label (before the slash) specifies the trigger 
and the part after the slash specifies the action (or message) to be 
invoked during the transition [14]. 

State diagrams that are explicitly location dependent can be 
convenient to specify AMP behavior for several reasons. Firstly, the 
diagram can be constructed by relatively simple transformation of 
environmental resource diagram.  Second, probabilistic components 
can be added relatively easily. Thirdly, the behavior of cooperating 
AMPs can be described by concurrent state diagrams and all well-
established techniques for concurrent program analysis can be 
used i.e. deadlock detection or deadlock avoidance algorithms.  The 
analysis of concurrency can be done automatically and the AMP 
program can be directly generated from state diagram model.  

Based on environmental graph and corresponding 
environmental triggers we can rapidly specify various location 
dependent state diagrams. For example, let us consider Behavior A 
describing a simple path for movement of AMP1: start from the 
Warehouse Lot E1, then follow the exit leading to the Road Marker 
E1, then continue to follow the road until encountering the road 
marker M, then still continue to follow the road until encountering the 
road marker E2 then enter the Warehouse Lot E2 and stop. 

In order to model such behavior a state diagram model can be 
used. In general the multi-level model can be used but in this paper 
for the simplicity of presentation, we assume two level model. The 
upper level model is obtained by transforming the environmental 
graph i.e. converting non-directional to directional edges and 
providing the necessary triggers, actions and messages.  

More precisely the link between two nodes e.g. “Road 
Marker E1” and “Road Marker M” can be interpreted as follows: if 
the AMP is assigned a resource “Road Marker E1” it should first 
acquire resource “Road Marker M” before releasing resource “Road 
Marker 1” account. 

The state diagram shown in Fig. 2 specifies the AMP1 Behavior 
A in some detail dividing it into sequence of phases: 
− Phase 1. Initially the AMP1 is in the “Warehouse Lot E1” 

state. In this state, if the needed resource is available i.e. road 
to Marker E1, then the transition takes place to the state “Road 
Marker E1”. When the Road marker is reached then the state 
“At Road Marker E1” is also recorded as reached.  

− Phase 2. In this state, if the needed resource is available i.e. 
road towards Marker M, then the transition takes place to the 
state “Moving towards Road Marker M”. When the Road Marker 
M is recognized then the state “At Road Marker M” is reached.  

− Phase 3.  If possible then AMP1 transitions into “At Road 
Marker  E2” to reach “At Road Marker E2” state and then finally  

− Phase 4.  It will get AMP1 into “At Warehouse Lot E2” state. 
Similarly the AMP2 Behavior can be described into several phases 
allowing AMP2 to travel from Warehouse Lot E2 to Warehouse Lot 
E1. 

In order to formally specify such phrases as shown in Fig. 2, we 
need topological identification triggers, topological actions, and 
synchronization messages. Let us describe them in this order. Each 
of these topological constructs can be defined by a lower level 
diagrams. 
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Different topological places i.e. different resources would 
usually generate different values for the AMP’s sensors. The sensor 
signal processing algorithms i.e. algorithms describing a translation 
of AMP sensor signals into a high level signals that can be used to 
directly identify the environment. We will assume that a lower level 
state diagram can describe such algorithm and we will refer to these 
signals to be used by a higher level diagrams as the environmental 
triggers. 

In our previous papers [13], we extensively studied the 
environmental triggers and their application to control the robot 
movements. Various computer vision techniques can be used to 
create such environmental triggers. The Hough transform is widely 
used in computer vision for detecting line segments and regular 
geometric features such as line segments and circles in images. 
More specifically, Progressive Probabilistic Hough Transform [16] 
can be used for detecting naturally occurring lines in images of 
roads[13]. The histogram based difference methods can be used for 
discriminating between road features and for recognition of major 
landmark objects [6]. 

Using Hough transform we can implement the environmental 
triggers to allow the AMP to direct itself to stay within the assigned 
lane. Histogram based difference measurement can be used during 
AMP navigation to solve the significant problem of recognition of 
landmark objects related to the road markers [6]. When the AMP 
moves beside a landmark the appropriate environmental trigger can 
generate True otherwise this condition is False. In general, in this 
paper we will assume an algorithm for self-driving vehicle with an 
ability to move the vehicle along sequence of specified road 
markers and to signal their recognized position.  

To identify properly the solutions to our problems we will 
assume for further discussion the high level environmental 
identification trigger detected(Road Marker X). This trigger reflects 
the ability of AMP sensors and algorithms to recognize the 
landmarks. The assumed high level environmental action 
corresponds to a movement of vehicle from the actual location to 
the provided Road Marker X e.g.,  moveTo(Road Marker X). This 
action can be shown by a lower level diagram and using an 
environmental position marker detected() to determine the 
termination of the action. 

Similarly, we assume the following environment 
synchronization triggers: acquire(RX) and release(RX). The 
acquire(RX) trigger can be also defined by lower level state diagram 
with an environmental message request_to_acquire, then wait for 
available resource. The release(RX) is an environmental 

synchronization trigger generated to inform that the resource is not 
used any more. 

3. INTERACTIONS OF AUTONOMOUS MOVING 
PLATFORMS 

The state diagrams described in the previous section can be 
used to generate code for several interacting AMPs.  In this section 
we discuss the use of state diagrams to describe and ensure the 
proper interactions between autonomous AMPs.  Since in our 
approach we create explicit state diagrams based on environmental 
resource graph, we can take advantage of many theoretical and 
practical solutions in: 

(a) geometrical modeling of AMP movement [5][6][7], 
(b) resource allocation algorithms,  
(c) model checking [16][17][18],  

and apply them for verification of AMP behavior. Most solutions can 
be applied for both static verification of AMP behavior and the 
dynamic verification when the AMP is in the middle of execution of a 
program. The modeling of the AMP movement is typically related 
with spatial path description and can be done for both static and 
dynamic analyses. Resource allocation algorithms for deadlock 
avoidance can be used for dynamic verification to avoid collisions of 
moving AMPs assuming that they can wait in the state “Moving 
towards…” while doing their tasks.  

The model checking provides a most general methodology 
[18][19][20][21][22] that can be used not only for deadlock 
avoidance or detection but also for detection and verification of wide 
variety AMP interaction characteristics.  Typically the model 
checking is based on finite-state methods [20] that can be applied 
directly to our state diagrams and therefore it can be of important 
practical use for verifying AMP behaviors. The model checking 
method can offer the AMP behavior designer a set of ready-to-use 
algorithms and techniques for the analysis of complete system 
properties. 

Conceptually, the approach is as follows. First, out of the 
specifications of the AMPs’ behavior by state diagrams we build a 
possibly large but finite graph containing all possible (reachable) 
system states and all possible transitions among them. This graph 
defines the behavioral model of the set of AMPs. Each path in the 
graph represents an allowable execution or a (part of a) behavior of 
a system. The graph contains all possible executions or behaviors. 
The property list will be used for the graph correctness specification.  

We have to deal with the exponential explosion of the state 
space size similar as others [18][21][22].There are many proposed 
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Fig. 2.  State Diagram to describe Behavior of AMP1 
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and implemented solutions but the exponential growth of state 
space is still a real threat [17]. We included in our research a study 
of multiple forms of reduction of state space, aimed at removing the 
states and transitions which are irrelevant for the evaluation of a 
given formula. We also investigated the usefulness of compositional 
model checking, where some individual parts of a system (of a more 
acceptable size) are subject to an exhaustive state space search 
while the conclusion as to the performance of the whole system is 
reached by combining the results obtained for the individual parts. 

Let us consider again the state diagram for AMP1 behavior as 
specified in Fig. 2. Let us assume that we have two AMPs. AMP1 
behavior is exactly as in Fig. 2. AMP2 behavior is almost identical 
except that it starts from the Warehouse Lot E2 and terminates in 
Warehouse Lot E1. AMPs in general they can interact as in our 
example. The analysis of combined diagram might be necessary. 
There is a need for analytical transformations to investigate how the 
probability of reaching a given state by the first AMP affects the 
reachability of the states by the second AMP.  

4. VERIFICATION IN DEDAN 

For verification of the system presented in Figs. 1,2 and 3 it 
could be described in the Integrated Model of Distributed Systems 
(IMDS) formalism [23]. In this formalism a real distribution of 
elements may be expressed, since the actions of distributed 
elements are based on local states only. The Dedan verification 
environment, which uses IMDS specification, has been implemented 
to find deadlocks in cooperating distributed elements using model 
checking technique [24], Resource deadlocks and communication 
deadlock are searched automatically in Dedan. 

A distributed system is typically described in terms of servers 
exchanging messages. A process in such a system can be defined 
as a sequence of changes of a server states. The states of servers 
are internal to the processes, which communicate by the message 
exchanges (a client-server model [25]). 

Formally, a server state is a pair p=(server, state) and a 
message is a triple m=(agent, server, service). An agent is an 
identifier distinguishing a distributed computation from other 

computations (can we talk about processes later). An action is a 
relation λ between an input pair (m, p) and an output pair (m’, p’). 
A process is a sequence of actions: in the same server (server 
process) or in the same agent (agent process). 

In the described system, we identify servers with static 
elements: the places of the AMPs environment (warehouse lots and 
road markers). Agents are identified with dynamic elements: AMPs 
travelling through the environment. For example, if the agent AMP1 
is in the place Road Marker E1, then it tries to take the Road 
Marker M. To do it safely, first M is taken, and then E1 is released. It 
is done by means of three messages: 
1. The message ‘try’ is sent from the E1 to M. This message may 

wait for acceptance for undefined period of time if M is 
occupied. 

2. If at last the message ‘try’ is accepted in M is accepted (M is 
free at this time), the message ‘ok’ is sent back from M to E1. 
M changes its state from ‘free’ to ‘reserved’ – it cannot be 
taken by other AMP. 

3. Then, E1 is released and M is finally taken by the AMP, E1 
becomes ‘free’ and M becomes ‘occupied’. 
Processes of a concurrent system may fall into a deadlock. 

Dedan finds deadlocks in both views automatically and Presents 
them in readable form. Moreover, it finds partial deadlocks, in which 
not all of the servers are involved. 

Yet, another model is possible: if a process is associated with 
an agent (rather than with a server), it migrates between servers 
and performs calculations in travelling way. It communicates with 
other travelling processes by means of servers’ states. Messages 
are internal to a process. In such a way, a system is described in 
terms of resource sharing instead of message passing. This is 
similar to a Remote Procedure Calling (RPC) model [25] (yet, the 
analogy may be misleading because it is not necessary for a 
process to return to the calling server after an execution of a 
service). 

The crucial fact is that it is the same system, shown in one of 
the two views, depending on connecting actions to form processes. 
If a sequence of actions is connected by server states - it is a server 
view. Server states are the carrier of the process, while messages 
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Fig. 3. State Diagram modified to avoid the deadlock 
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are communication means. If a sequence is connected by 
messages – it is an agent view. 

The deadlock may be observed from the agents’ point of view. 
Dedan finds both kinds of deadlock (in communication and over 
resources) automatically.  

In our example, a possibility of deadlock is obvious if two APMs 
travel, one from Lot E1 to Lot E3 and the other one travels opposite 
way. In the system, this „collision” of two AMPs can be solved in 
various ways. In general the solution can be based on: 
− additional maneuvers maintaining the same route for all 

vehicles, 
− changing the traveling route.  

For our case study, the first possibility can be implemented 
using the Warehouse Lot M as a temporary parking space, where 
one of AMPs may wait for the other one passing M. This can be 
done by using additional message ‘not’ sent by E1/E2 if it is 
occupied by an AMP and the other AMP tries to take it standing at 

M. In such a situation, the message ‘not’ causes the AMP standing 
at M to divert to the Warehouse Lot M and let the AMP standing at 
E1/E2 to take M and drive on to E2/E1. Then, the AMP that stepped 
out of the way, drives from Warehouse Lot M back to M and 
continues its way. The modified diagram can be generated 
automatically as shown in Fig. 3. 

The two-AMPs system is coded in IMDS as follows: 
 

#DEFINE N 2 
 
server: markerE(agents AMP[N];servers markerM,lotE),  
//Edge Road Marker 
services {tryM[2],tryL,okM[2],okL,takeM,takeL}, 
//M - going from RMM, L - going from PLE,  
//try - test ok access, ok - accept, take - enter 
states {free,resM,resL,occ},    
//free - free, res - reserved, occ - occupied 
actions { 
<i=1..N> {AMP[i].markerE.tryL, markerE.free} ->  

{AMP[i].lotE.ok, markerE.resL}, 

 

Fig. 4 Communication structure in a trace of AMPs behavior, leading to the deadlock 
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<i=1..N> {AMP[i].markerE.takeL, markerE.resL} ->  
{AMP[i].markerM.tryE[i], markerE.occ}, 

<i=1..N><j=1..2>{AMP[i].markerE.okM[j], markerE.occ} ->  
{AMP[i].markerM.takeE[j], markerE.free}, 

 
<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.free} ->  

{AMP[i].markerM.okE[j], markerE.resM}, 
<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.resL} ->  

 
{AMP[i].markerM.notE[j], markerE.resM}, 

<i=1..N><j=1..2>{AMP[i].markerE.tryM[j], markerE.occ} -> 
{AMP[i].markerM.notE[j], markerE.occ}, 

<i=1..N> {AMP[i].markerE.takeM, markerE.resM} ->  
{AMP[i].lotE.try, markerE.occ}, 

<i=1..N> {AMP[i].markerE.okL, markerE.occ} ->  
{AMP[i].lotE.take, markerE.free}, 

} 
 
server: markerM(agents AMP[N];servers markerE[2],lotM),   
//Middle Road Marker 
services 
{tryE[2],tryL[2],okE[2],notE[2],okL[2],takeE[2],takeL[2],switch[2]}, 
states {free,resE[2],resL[2],occ}, 
actions { 
//going to ME1 or ME2  
<i=1..N><j=1..2>{AMP[i].markerM.tryE[j], markerM.free} ->  

{AMP[i].markerE[j].okM[j], markerM.resE[j]}, 
<i=1..N><j=1..2>{AMP[i].markerM.takeE[j], markerM.resE[j]} ->  

{AMP[i].markerM.switch[3-j], markerM.occ}, 
<i=1..N><j=1..2>{AMP[i].markerM.switch[j], markerM.occ} ->  

{AMP[i].markerE[j].tryM[j], markerM.occ}, 
<i=1..N><j=1..2>{AMP[i].markerM.okE[j], markerM.occ} ->  

{AMP[i].markerE[j].takeM, markerM.free}, 
 
//on a way to ME1 or ME2 may go to LE if MEi occupied 
<i=1..N><j=1..2>{AMP[i].markerM.notE[j], markerM.occ} ->  

{AMP[i].lotM.try[j], markerM.occ}, 
<i=1..N><j=1..2>{AMP[i].marker2.okL[j], markerM.occ} ->  

{AMP[i].lotM.take[j], markerM.free}, 
 
//going from PL2 - goes to RM1(markerE[1]) or RM3(markerE[2]) 
<i=1..N><j=1..2>{AMP[i].markerM.tryL[j], markerM.free} ->  

{AMP[i].lotM.ok[j], markerM.resL[j]}, 
<i=1..N><j=1..2>{AMP[i].markerM.takeL[j], markerM.resL[j]} ->  

{AMP[i].markerE[j].tryM[j], markerM.occ}, 
<i=1..N><j=1..2>{AMP[i].markerM.okE[j], markerM.occ} ->  

{AMP[i].markerE[j].takeM, markerM.free}, 
} 
 
server: lotE(agents AMP[N];servers markerE),  
//Edge Warehouse Lot 
services {start,try,ok,take}, 
states {free,res,occ},    
actions { 
<i=1..N> {AMP[i].lotE.try, lotE.free} ->  

{AMP[i].markerE.okL, lotE.res}, 

 
 
Fig. 5 Sequence diagram of AMP(AMP1) moving from  Warehouse Lot E1 to  Warehouse Lot E2 and AMP__1(AMP2) moving reverse 
way, leading to the deadlock 
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<i=1..N> {AMP[i].lotE.take, lotE.res} ->  
{lotE.occ}, 

 
<i=1..N> {AMP[i].lotE.start, lotE.occ} ->  

{AMP[i].markerE.tryL, lotE.occ}, 
<i=1..N> {AMP[i].lotE.ok, lotE.occ} ->  

{AMP[i].markerE.takeL, lotE.free}, 
} 
 
server: lotM(agents AMP[N];servers markerM), 
//Middle Warehouse Lot 
services {try[2],ok[2],take[2]}, 
states {free,res[2],occ[2]},    
actions { 
<i=1..N><j=1..2>{AMP[i].lotM.try[j], lotM.free} ->  

{AMP[i].markerM.okL[j], lotM.res[j]}, 
<i=1..N><j=1..2>{AMP[i].lotM.take[j], lotM.res[j]} ->  

{AMP[i].markerM.tryL[j], lotM.occ[j]}, 
<i=1..N><j=1..2>{AMP[i].lotM.ok[j], lotM.occ[j]} ->  

{AMP[i].markerM.takeL[j], lotM.free}, 
} 
 
servers  markerE[2],markerM,lotE[2],lotM; 
agents AMP[N];  
  
init -> {  
 <j=1..2>markerE[j](AMP[1..N],markerM,lotE[j]).free, 
 markerM(AMP[1..N],markerE[1,2],lotM).free, 
 <j=1..2>lotE[j](AMP[1..N],markerE[j]).occ, 
 lotM(AMP[1..N],markerM).free, 
 <j=1..2>AMP[j].lotE[j].start, 
}.     

 
Similar arrangements can be done in a case when an AMP 

occupies E1 and the other AMP tires to drive from Warehouse Lot 
E1 to E1. It this case a deadlock occurs, presented in the server 
view in Fig. 4 and in the agent view in Fig. 5. Both figures are the 
output from Dedan. Note that in the server view, only two servers 
out of six are in deadlock. In the agent view, the agents AMP[1] and 
AMP[2] are renamed to AMP and AMP__1 during automatic 
conversion from the server view. 

CONCLUSIONS 

In this paper, we extended previous studies of cooperating 
autonomous vehicles to include situations when environmental 
changes, failures, collisions or even terrorist attacks can cause a 
malfunctions of the delivery systems.  We have presented a novel 
approach using two-level state diagrams.  The lower level diagrams 
describe computer vision techniques for environmental trigger 
specifications, movement actions and synchronization primitives. 
The upper level diagrams allowed us to model advanced 
interactions between autonomous AMPs.  We addressed the 
problem of ensuring the correctness of AMP interactions. The 
techniques were presented to verify and analyze combined AMPs’ 
behaviors. 

The Dedan verification environment is using model checking 
techniques, for finding communication deadlocks and resource 
deadlocks, partial and total. Moreover, the system may be 
automatically converted from the server view to the agent view, the 
state space of the system may be observed and simulated, and the 
system may be converted to Promela (Spin verifier input form, [18]). 
The described system is still under development. In the near future, 
a graphical form of verified system representation is planned. A new 
concept of distributed automata is under development. More 
advanced forms of verification will be available, using timed 
automata ([26][27], to verify real-time dependencies), and 
probabilistic model checking [28]. One of the most advanced feature 
will be automatic or semi-automatic behavior modification that will 

significantly improve the dynamic resilience of cooperating 
autonomous moving platforms. 
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Poprawa bezpieczeństwa autonomicznych platform 
mobilnych drogą analizy ich współpracy w czasie 

rzeczywistym 

Zmiany w otoczeniu, awarie, kolizje czy nawet ataki 
terrorystyczne mogą spowodować poważne awarie w systemach 
transportowych. W artykule zaprezentowaliśmy nowe podejście do 
poprawy odporności autonomicznych platform mobilnych (AMPs). 
Podejście to opiera się na specyfikacji przy pomocy 
wielopoziomowych diagramach stanów, opisujących wpływ 
otoczenia, podejmowane akcje komunikacyjne i prymitywy 
synchronizacyjne. Schematy na górnym poziomie pozwoliły 
modelować zaawansowane interakcje między autonomicznymi 
pojazdami i wykrywać nieprawidłowości, takie jak zakleszczenia, 
częściowe zakleszczenia itp.  

Zaprezentowano techniki zastosowane w celu weryfikacji i 
analizy łącznego zachowania pojazdów techniką weryfikacji 
modelowej. Opisany system weryfikacyjny Dedan jest wciąż w fazie 
rozwoju. W niedalekiej przyszłości planowana jest graficzna forma 
reprezentacji weryfikowanego systemu. 
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