

Sensors 2022, 22, 1157. https://doi.org/10.3390/s22031157 www.mdpi.com/journal/sensors

Article

Modeling and Verification of Asynchronous Systems Using
Timed Integrated Model of Distributed Systems
Wiktor B. Daszczuk

Institute of Computer Science, Warsaw University of Technology, Nowowiejska str. 15/19,
00-665 Warsaw, Poland; wbd@ii.pw.edu.pl; Tel.: +48-22-234-78-12

Abstract: In modern computer systems, distributed systems play an increasingly important role,
and modeling and verification are crucial in their development. The specificity of many systems
requires taking this into account in real time, as time dependencies significantly affect the system’s
behavior, when achieving the goals of its processes or with adverse phenomena such as deadlocks.
The natural features of distributed systems include the asynchrony of actions and communication,
the autonomy of nodes, and the locality of behavior, i.e., independence from any global or non-local
features. Most modeling formalisms are derived from parallel centralized systems, in which the
behavior of components depends on the global state or the simultaneous achievement of certain
states by components. This approach is unrealistic for distributed systems. This article presents the
formalism of a timed integrated model of distributed systems that supports all of the mentioned
features. The formalism is based on the relation between the states of the distributed nodes and the
messages of distributed computations, called agents. This relation creates system actions. A specifi-
cation in this formalism can be translated into timed automata, the most popular formalism for
specifying and verifying timed parallel systems. The translation rules ensure that the semantics of
T-IMDS and timed automata are consistent, allowing use of the Uppaal validator for system verifi-
cation. The development of general formulas for checking the deadlock freedom and termination
efficiency allows for automated verification, without learning temporal logics and time-dependent
formulas. An important and rare feature is the finding of partial deadlocks, because in a distributed
system a common situation occurs in which some nodes/processes are deadlocked, while others
work. Examples of checking timed distributed systems are included.

Keywords: timed distributed systems; distributed system timed specification; deadlock detection;
distributed termination; model checking; timed automata

1. Introduction
The formalism of the distributed systems specification was developed at the Institute

of Computer Science, Warsaw University of Technology. The formalism, called timed in-
tegrated model of distributed system (T-IMDS, based on the earlier timeless IMDS [1,2])
has a set of general features that distinguish it from other formalisms:
• timed specification and verification: distributed systems are asynchronous in nature, and

time dependencies may substantially change their observed features; as in the Rus-
sian fairy tale: the crane offered the heron a marriage; the heron initially refused, but
later changed her mind and offered to charm the crane when he took offense ...; as a
result, they see each other often, but each of them is proud and refuses when the
latter is ready to propose; the tale has no end, because its characters act exactly in
counter-phase, they do not synchronize in any way; in particular, some deadlocks
can disappear due to time dependencies, while others can arise.

Citation: Daszczuk, W.B. Modeling

and Verification of Asynchronous

Systems Using Timed Integrated

Model of Distributed Systems.

Sensors 2022, 22, 1157.

https://doi.org/10.3390/s22031157

Academic Editor: Pasquale Daponte

Received: 26 December 2021

Accepted: 31 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Sensors 2022, 22, 1157 2 of 38

• communication duality: expressing the distributed system in terms of nodes with their
states and agents with their messages, emphasizing communication duality in dis-
tributed systems: message passing versus resource sharing; the system specification
can be switched between two system views: node view and agent view, yet with both
in a uniform structure;

• locality: the node’s action is executed based on the current situation of the node (with-
out any association with other nodes); no event outside the node (except for messages
sent to it) can affect the behavior of the node;

• autonomy: each decision regarding the execution of the actions of the node (including
the choice between many possible actions) is taken autonomously; the only way to
influence the behavior of a node is to send a message to it (the message may enable
an action that was previously disabled); no order is established in the set of pending
messages, such as a stack or queue, the node autonomously decides which message
will initiate the next action;

• asynchrony: the synchronization of nodes with agents is hidden inside processes (in
actions belonging to processes); therefore, processes are perceived as asynchronous
from the outside; also the communication channels are asynchronous: the message is
sent irrespective of the local situation of the target node, in particular, whether it is
waiting for this message or performing completely different operations;

• automated verification: expressing essential features of the distributed system’s behav-
ior using general temporal formulas [2], not related to the internal structure of the
system being verified.
A large selection of timed specification and verification techniques are offered; some

are mentioned in Section 2. This is why we extended our IMDS formalism to cover real-
time dependencies.

Locality and autonomy are obvious features of distributed systems. Asynchrony is
very much needed between cooperating distributed nodes, because synchronous behav-
ior requires some knowledge of the global state, which is difficult to obtain in a distributed
system (or which cannot be obtained at all). Imagine a distributed component, for example
a Büchi automaton [3] or Zielonka’s automaton [4]. If such an automaton is to communi-
cate with another, both of them must follow a common transition. Obviously, such behav-
ior is impossible: how would the automaton learn that they have both reached matching
states or enabled matching transition? This principle breaks asynchrony (two automata
cannot synchronize on states or transitions), locality (non-local/global information of the
state of the other component is needed), and autonomy (the decision about the component
behavior must depend only on its history and its preferences, rather than on the state of
other components). Therefore, synchronous actions or other forms of direct synchroniza-
tion are unrealistic in the description of distributed system behavior. Please note that such
models are wrongly called distributed in numerous articles (e.g., [4]).

Communication duality is often emphasized as a theoretical feature of distributed
systems, for example, in comparing client-server and remote procedure call (RPC) models,
but rarely do both aspects occur in a uniform environment. In [5], they are both described,
but as separate and opposite models. We argue that those models can simply be different
points of view of a single, uniform system. The image of the modeled system depends on
the manner of action grouping, rather than being a substantial property of the system
itself.

Finally, identifying partial (sometimes called local) deadlocks and checking the dis-
tributed termination with model checking techniques [6] requires the designer to have
some knowledge of temporal logic, since features should be expressed in terms of the el-
ements of the particular system under verification [7,8]. The reason for this is that the
deadlock is often identified as a global state, with no outgoing transitions [9]. Alterna-
tively, a temporal formula that guarantees that the system is stuck in a deadlocked state
is applied [10]. In both solutions, only a total deadlock can be identified. Other techniques
are used for partial deadlock identification, but typically in systems having a required

Sensors 2022, 22, 1157 3 of 38

structure [11,12] (for example, looping systems). However, a situation in which some pro-
cesses are deadlocked while other processes work is usual in distributed systems and
should be found in systems of arbitrary shape.

The contribution of this article is the introduction of the timed integrated model of
distributed systems (T-IMDS), which overcomes all the above-mentioned limitations in
the specification and verification of distributed systems.
1. The specification is real-time aware, which is not novel between formalisms, but is

an important step in IMDS evolution.
2. It is based on a relation between two pairs of a distributed node state and the distrib-

uted computation (called an agent) message. The input pair only triggers a system
action and produces a new pair that simply waits for its occasion (the consecutive
actions of the node and the agent need not even be enabled at this moment). This
counters the requirements for synchrony and non-locality of actions. The description
models asynchronous actions, in which nothing depends on the synchronous deliv-
ery of any items needed to fire the actions. Distributed components make their au-
tonomous moves based only on their local elements, and they do not depend on any
global or non-local features of the distributed system.

3. Communication duality (client–server versus RPC) is incorporated in the model; the
views are only the decompositions or cuts of the system, the given view is achieved
by a specific grouping of the actions; however, the set of actions remains the same.

4. Identification of partial deadlocks and the partial distributed termination, as well as
total–general temporal formulas are defined for this purpose, related to the features
of the formalism, rather than to the features of the given verified system. The devel-
oped verification algorithms (which are beyond the scope of this article) allow both
timeless and timed verification. The compatibility with Uppaal timed automata al-
lows for verification under the external verifier Uppaal [13,14].
The Dedan verification environment (deadlock analyzer) was developed based on

IMDS. It offers:
• interface to the specifications of the distributed system, text or graphic,
• a simple built-in temporal verifier (based on the TempoRG verifier [15]) for checking

models of small and medium systems,
• simulator,
• export to external verifiers: Spin [16] for LTL verification, NuSMV [17] for LTL/CTL

verification, Uppaal for CTL/TCTL verification.
The behavior of a distributed system may be time-dependent, as system changes may

take some time. As a result, the dependence between periods associated with individual
system changes can influence deadlock situations. Timed Petri nets and timed automata
(TA) are two of the most popular formalisms for expressing the behavior of time-limited
systems (TA) [18–20]. While automata-based models, as well as IMDS, can be transformed
to Petri nets [21], they are not so attractive in our opinion, because it is not easy to extract
the processes from the specification. We use Petri nets for the structural analysis of a ver-
ified system and some kinds of model checking [22]. The temporal logic timed CTL
(TCTL) is associated with TA [18,23]. Two types of transition: progress transitions and
time transitions are introduced to describe system changes and the flow of time:
• Progress transition (or: transition): If the Boolean expression on the automaton’s tran-

sition is true, the progress transition (or transition) is executed. This expression is
composed of integers and clock values. TA actions are symbols associated with tran-
sitions (not to be confused with IMDS actions, we will use the term symbol for TA
actions). When two or more automata have the same action symbol, the transitions
are synchronous. The transitions are otherwise executed in an interleaving way [24].

• Timed transition can be executed if all of the automata in the set have time invariants
(relationships between clock values and integers) in their current locations. All the
clocks are simultaneously shifted by the same value (not exceeding any invariant).

Sensors 2022, 22, 1157 4 of 38

This article is organized as follows: Section 2 covers related work on timed varication
formalisms, especially timed automata. Section 3 deals the basic timeless formalism: the
integrated model of distributed systems, and verification rules in IMDS, which are the
basis of extension to timed systems. Section 4 covers the Uppaal timed automata model,
the target formalism to which timed IMDS is converted. The timed version of IMDS is
described in Section 5. The formal translation of T-IMDS to UTA is presented in Section 6.
Section 7 gives two examples of distributed timed systems and their verification in the
Dedan/Uppaal environment. The work is concluded in Section 8. The Appendix A con-
tains the proof of equivalence between the semantics of T-IMDS and its implementation
in UTA.

2. Related Work: Timed Automata and Other Timed Formalisms
Since system changes may take time, the dependencies between durations associated

with specific changes may play a role in deadlock situations. Timed Petri nets and timed
automata [19,20,25,26] are two of the most prominent formalisms for expressing the be-
havior of time-limited systems. Other real-time modeling techniques include hybrid au-
tomata [27] and timed CSP [28]. For discrete time modeling, among others, DTG (dura-
tional transition graphs [29]) and EMLAN [30] are used.

Real-time CTL (RTCTL, having time constraints attributed to temporal operators [31]
[32]), quantitative CTL (QCTL, with unit-delay transitions [33]), timed CTL (TCTL, con-
nected with timed automata [18]) and bounded real-time model checking [34] were also
developed. Discrete-time model checking example formalisms include clocked CTL
(CCTL, based on time intervals in discrete-time systems [35]) and discrete-time CTL
(DTCTL for embedded systems [30]).

Timed automata (TA [18]) are related to Büchi automata [3], but with the addition of
time constraints. Automata execute their transitions separately (in an interleaving manner
[36]), except for transitions on shared symbols, which synchronize the automata. A set of
real-time clocks is used to achieve time limitations. The clocks are variables, with values
ranging in ℝ≥0, multiples of a basic unit of time (a unit in short). A clock value is a real
number, yet we can watch it while its values are integers or between integers. For exam-
ple, with two clocks, x and y, we can examine the system in a circumstance where x is 2
and y is between 0 and 1. Similarly visible is the relationship between clocks (as x < y or x
< y + 1). Time limitations, which determine the values of clocks at which specific transi-
tions may be fired (for example, x ≥ 1), are attributed to the transitions of timed automata.
Time invariants can also be enforced on automata states (called locations in TA). The time
invariant expresses, in terms of clock values, how long an automaton may stay in a given
location, such as y < 3. On transition, the clocks may be reset.

The TA transitions are instantaneous; the clocks advance while the automata remain
in their locations. As a result, there are two sorts of advancement in TA: executing progress
transitions and passing of time, referred to as timed transitions. The articles [18,23] give a
complete overview of timed automata and their semantics.

Compound progress transitions and compound timed transitions are used to define the
semantics of a set of timed automata:
• If a Boolean expression on a progress transition (or simply: transition, also termed

action transition [37]) outgoing from a current location of a timed automaton TA is
fulfilled, the transition can be executed. This expression is made up of integer con-
stants and clocks. A difference is only allowed when two clocks are utilized in the
expression. If more than one transition (in the same automaton or different automata)
can be executed in a set of TA, the choice is nondeterministic. Transitions are denoted
by symbols known as actions (do not confuse with IMDS actions, we use the term
symbol for TA action). When two or more automata have the same action symbol, the
transitions are executed synchronously. Otherwise, the transitions interleave.

Sensors 2022, 22, 1157 5 of 38

• The timed transition can be executed if all of the automata in the set have their time
invariants fulfilled in their current locations. The execution is based on synchro-
nously advancing all clocks (by the same, real value >0). The smallest difference be-
tween the maximum value of a clock used in an invariant and the present value used
in this invariant is the maximum value to which the clocks can be advanced. If the
invariants x < 2 and y ≤ 3 are present, and the current clock values are x = 1.5 and y =
2.6, the highest value is 0.4, which advances x to 1.9 and y to 3.
The option is nondeterministic if both a progress and a timed transition are enabled.

It is important to note that there may be an endless number of timed transitions if a timed
transition is possible. If a timed transition of 1 unit is achievable, perhaps a transition of
0.9 units makes no difference. As a result, timed regions (equivalence classes) are intro-
duced to the formalism, with integer limits. The greatest integer relative to the clock is the
maximum value used. Given integer parts of all clocks and an equal sign of the fractional
part of clock differences (0 is treated as a distinct, third sign), a region, such as ⎣x⎦ = 1, ⎣y⎦
= 2, (x − ⎣x⎦) − (y − ⎣y⎦) > 0, is obtained. This rule generates a set of clock regions. Above
their maximum values, the relations between the clocks are not examined.

Since infinitely many time transitions between a pair or regions are possible, a region
succession graph is created.

2.1. Timed Automaton-Syntax
Here, we give the definition of timed automata, a base of Uppaal extension. A timed

automaton TA is a tuple (L, l0, Z, Q, E, Jl) where:
• L = {l0, l1, …} is a finite set of locations,
• l0 ∈ L is an initial location,
• Z = {c0, c1, …} is the set of clocks,
• Q denotes a set of labels (interpreted as actions on transitions, do not confuse with

IMDS actions),
• every location l ∈ L is mapped by Jl(l) to a set of valuations of clocks in Z, over a

Cartesian product of ℝஹ଴௓ , for example, Jl(l) = {c1-c2 > 2},
• E ⊆ L × Q × Jll × 2Z × L—set of transitions: e = (l, q, Jll(l,l′), r, l′) ∈ E

Jll is a set of functions for pairs l,l′ ∈ L, every transition (l,l′), is mapped by Jll(l,l′) to a
set of valuations of clocks in Z over a Cartesian product of ℝஹ଴௓ , just as Jl(l) for a
location l,

r ∈ 2Z indicates a subset of clocks in Z that are reset on transition.

2.2. Timed Automaton-Semantics
The semantics of a TA is:
Let (L, l0, Z, Q, E, Jl) be an TA.
The semantics is defined as an LTS—labeled transition system ⟨Vertices, vertex0, ⟩,

where:
• Vertices ⊆ L × ℝஹ଴௓ is the set of LTS vertices for the automaton TA (because the term

state is reserved for IMDS node states, we use the term vertex instead),
• vertex0 = (l0, u0) ∈ Vertices is the initial vertex, u0 maps all clocks c ∈ Z to 0.
•  = t ∪ p is the transition relation such that:

(l, u) t (l, u + d) if ∀d′: 0 ≤ d′ ≤ d  u + d′ ∈ Jl(l) – timed transition,
(l, u) p (l′, u′) if there exists e = (l, q, Jll(l,l′), r, l’) ∈ E

Such that u ∈ Jll(l,l′); u’ = [r  0]u – progress transition;
where
for d′ ∈ ℝஹ଴௓ , u + d′ maps each clock c in Z to the value u(c) + d′,
[r  0]u, r ⊂ Z, denotes the clock valuation, which maps each clock in r to 0 and agrees

with u over Z\r.

Sensors 2022, 22, 1157 6 of 38

2.3. Network of TA
NTA is a network of timed automata over a common set of clocks and labels (actions).

NTA is itself a TA, it is constructed in the following way:
NTA = (L, l0, Z, Q, E, Jl) consists of n TA, TAi = (Li, li0, Zi, Qi, Ei, Jli) with i = 1, …, n. The

individual elements of NTA are:
• A set of locations is a Cartesian product L = L1 × … × Ln, l ∈ L is a location vector l = (l1,

…, ln), li ∈ Li.
• l0 ∈ L is an initial location vector l0 = (l10, …, ln0), li0 ∈ Li.
• Z is a common set of clocks—a union of sets of clocks Z = Z1 ∪ … ∪ Zn.
• Q is a common set of labels—symbols on transitions Q = Q1 ∪ … ∪ Qn.
• Location invariant functions are composed into a common function over location vec-

tors Jl(l) = Jl1(l1) ∧ … ∧ Jln(ln).

2.4. The Semantics of the Network of TA
Let TAi = (L, l0, Z, Q, E, Jl).
Let l0 = (l10, … , ln0) be the initial location vector.
l[li/li′] denotes the location vector where li’ replaces the ith element li of L.
The semantics of a network on n TA is defined as an LTS ⟨Vertices, vertex0, ⟩, where:

• Vertices = (L1 × … × Ln) × ℝஹ଴௓ is the set of global LTS vertices,
• vertex0 = (l0; u0) ∈Vertices is the initial vertex, u0 maps all clocks c ∈ Z to 0,
•  = t ∪ p is the transition relation defined by:

- (l, u) t (l, u + d) if ∀d′ 0 ≤ d′ ≤ d  u + d′ ∈ Jl(l)—timed transition,
- if there exists a symbol q ∈ Q, for which there exist transitions ei, ej, … in TAi,

TAj, … (at least one, but if more, then in distinct automata):
ei = (l1i, q, Jlli(l1i,l2i), ri, l2i) ∈ Ei, ej = (l1j, q, Jllj(l1j,l2j), rj, l2j) ∈ Ej, …
then there exists the transition e = (l1, q, Jll(l1,l2), r, l2) ∈ p such that
u ∈ Jll(l[l1i/l2i, l1j/l2j, …]), u′ = [ri ∪ rj ∪ … 0]u—progress transition,
Comment: There is a synchronization transition if more than one transition in
distinct TA have the same q label on their transitions.

2.5. The Uppaal Extesion to TA
Transitions are executed simultaneously by the original TA if they are triggered by

shared symbols (which enable transitions). A common symbol can synchronize more than
two automata. However, standard TA are useless, because they do not apply urgent chan-
nels (a timed transition can be executed while a progress transition is enabled) and the do
not use variables; thus, no value can be passed between automata that explode the autom-
ata layout. Therefore, we give the definition of Uppal timed automata (UTA [13]) in Sec-
tion 4.

Communication channels replace the common symbols that trigger transitions in Up-
paal timed automata. Sending and receiving a signal synchronously via channels is ac-
complished by utilizing a shared channel symbol and two characters indicating sending
and receiving, ! and ?, respectively, as in chan! and chan? As it specifies the communication
direction, this method better reflects distributed systems. Broadcast communication en-
tails multiple automata receiving a signal given by one automaton.

The channel can be labeled urgent, in which case transitions are enabled, with com-
mon channel symbols enabling these transitions: chan! and chan?, taking precedence over
time flow in locations, preventing communication over an urgent channel from being de-
layed. However, in IMDS, using such a technique eliminates communication asynchrony.
As a result, asynchronous communication requires the introduction of asynchronous
channels.

Sensors 2022, 22, 1157 7 of 38

3. Integrated Model of Distributed Systems (IMDS)
The most straightforward description of IMDS is as follows: there are distributed

nodes in the system, which are characterized by their current states and agents conducting
distributed calculations, the progress of which is determined by their current messages di-
rected to individual nodes. If the message matches the node state, an action is fired (invoked)
that consumes the message and state and provides the node’s next state and the agent’s
next message. Therefore, actions are the relationship between pairs (message, state), input
and output ones; that is all. However, a more detailed definition should be introduced to
define processes in the system and verify the system.

An IMDS system [2] consists of a set of nodes, each represented by its current state
as a pair: (node, value). Each node offers services that distinguish different calls to the
same node. The set of agents represents distributed computing. In the context of agents,
messages are created that invoke node services. The message is a triple: (agent, node, ser-
vice). States and messages are, together, called elements. They change their roles as process
carriers and means of communication in dual views of distributed systems.

The action refers to how the service is carried out (on the node designated by the
message). The action switches the node’s current state to the next one and sends the next
agent message. This new message might be sent to the same or a different node. Distrib-
uted computation is carried out as a series of actions that alter the states of the nodes
involved. A relation mapping the state and message to the next state and message can be
viewed as an action (performed by an agent on a node). The current condition of the node
may or may not allow the service to be run (if the status and message match or not). The
appropriate action is prepared if the service can be performed. Pending messages are those
that are waiting at a node. At the same node, many actions might be prepared. The action
to be performed (to be fired) is chosen non-deterministically.

A single action is always performed on a specific node, and the actions of different
nodes are performed using interleaving [24]. The choice of nodes that will perform the next
action is non-deterministic.

The agent terminates in this scenario, because a special action does not deliver the next
message. As a result, the number of agents may decrease during distributed computing.
It is assumed that the system starts with all nodes’ initial states and all agents’ initial mes-
sages.

The configuration is a ‘snapshot’ of the system; it is a set of states (one state for each
node) and messages (maximum one state for each agent, except for terminated agents).
The initial configuration contains the states of all nodes and messages of all agents. The
input configuration of the action includes its input state and input message. The output con-
figuration of the action contains the initial state and the initial message (or only the initial
state for the agent-terminating action).

IMDS semantics is defined by the Labeled Transition System (LTS [38,39]), in which
nodes are configurations and transitions are actions (creating a relation of configuration
succession, deduced from actions). The LTS contains all executions of the modeled system.

Sequences of actions (in the system) are called processes. The sequence of actions per-
formed by the same node is called the node process, and the sequence of actions that per-
forms messages of the same agent is called the agent process. Due to the possible non-de-
terminism of the set of actions (more than one action can be defined for a given pair (mes-
sage, state)), the process is actually a graph.

Each system (the entire computation) can be decomposed into node processes (which
make up the node view) or agent processes (which make up the agent view).

Deadlock and termination are expressed in terms of states, messages, and actions [2].
First, consider a node process. The following situations may occur:
• the current state matches some pending messages in the node—at least one action is

ready to be executed; the node process is running;

Sensors 2022, 22, 1157 8 of 38

• the current state does not match any pending messages in the node (or no messages
are pending on the node)—a matching message may arrive in the node in the future;
the node process is waiting;

• no messages are pending in the node, and none will appear in the future; the node
process is idle;

• there are pending messages in the node, but the present state does not match any of
them, and there may not be any matching messages in the node in the future; the
node process has reached a deadlock.
Consider an agent process, which can reach the following cases:

• the agent’s message is pending in the node and matches the current state of this
node—the action is ready to fire; the agent runs;

• the agent’s message is pending in the node and does not match the current state of
this node, but a matching state may occur in the future; the agent is waiting;

• the agent’s message is pending in the node, and neither the current state of this node
nor such a condition may occur in the future; the agent is deadlocked;

• the agent process has terminated, since no agent’s messages are pending in any node.

3.1. Basic IMDS Definition
The IMDS model is based on two sets and a binary relation on the Cartesian product

of these two sets. The sets are
• P = {p1, p2, …, pNp}—finite set of states (of nodes)
• M = {m1, m2, …, mNm}—finite set of messages (of agents)

while the action relation Λ is a binary relation on M × P:
• Λ ⊂ (M × P) × (M × P)—set of actions

For the elements of Λ we use the prefix notation λ = ((m,p), (m′,p′)) ∈ Λ The idea of
the IMDS action is presented graphically in Figure 1. The elements of the action, in this
and consecutive figures, are given as small blue circles with numbers. There are the refer-
ences to those elements in the text, for example (1).

Figure 1. Action in IMDS: relation in (M × P) × (M × P).

The agent’s message invokes an action on the node (the calculation step in a distrib-
uted environment) that can be performed in specific states of the node. Performing the

Sensors 2022, 22, 1157 9 of 38

action ‘consumes’ the message and state, and creates the next node state and the next
agent message.

In the action λ = ((m,p), (m′,p′)) we say that:
• the pair (m,p) match (1,31);
• (m,p) is the input pair, (m′,p′) is the output pair (2,32);
• the state p is current, the message m is pending;
• p′ is the next state, m′ is the next message.

The definition must be supplemented by the initial sets of states and messages:
• Pini ⊂ P – set of initial states
• Mini ⊂ M – states of initial messages.

It should be noted that IMDS is not an automata-based model, although it can be
represented as a collection of automata, in various ways; the paper [40] formally presents
the conversion of IMDS to node automata or to agent automata. In the present article, we
use some graphical notation informally, with node states as vertices and actions as transi-
tions, because such notation is natural and makes it easier to express certain features of
the IMDS. However, it should be remembered that such automata are only one of the
possible interpretations; there are also others, such as the agent automata mentioned
above, as well as pairs of synchronous automata (custodians and messengers [41]), or the
non-automata interpretation as Petri nets shown in [21]. There is also an imperative lan-
guage Rybu, compatible with IMDS, used by the student to verify their synchronization
solutions [42]. Now, we are working on an even higher level language for web service
composition. Please note that IMDS is only a set of actions over the quadruple Cartesian
product (M × P) × (M × P). For programming purposes, these actions can be grouped on
nodes, agents, or otherwise, which does not change the essence of the definition of for-
malism itself.

3.2. IMDS System Behavior
The behavior of the IMDS system is represented by labeled transition systems (LTS

[38,39]), i.e., a rooted labeled directed graph.
LTS vertices are configurations that are sets of current states and pending messages.

The root is the initial configuration, consisting of agents’ initial messages and nodes’ initial
states. States and messages together are called items. LTS transitions are defined by actions,
transforming their input configurations into output configurations.
• H = P ∪ M—set of items
• Tini = Pini ∪ Mini—initial configuration
• T ⊆ H—configuration
• ∀λ∈Λ λ = ((m,p),(m’,p’)) Tinp(λ) ⊃ {m,p}, Tout(λ) = Tinp(λ)\{m,p} ∪ {m′,p′}—obtaining Tout(λ)

from Tinp(λ) for an action (31,1)→(32,2)
• LTS = ⟨N,N0,W⟩, where

N is a set of vertices (configurations {T0, T1, ...}, Tini = T0);
N0 = Tini is the root;
W is the set of directed labeled transitions, W ⊆ N × Λ × N,

W = {(Tinp(λ),λi,Tout(λ) | λi ∈ Λ, i = 1, … , ord(Λ)}.
The interleaving semantics of the system is assumed [43], i.e., exactly one action is

executed at a time.

3.3. IMDS Processes
Processes are defined in the IMDS as action sequences. Intermediate elements link

the actions in the sequence. If the intermediate elements are the states of a given node,
then this is the process of that node, and the messages serve as a means of communication
between processes. Conversely, if the messages of a given agent combine the actions of a

Sensors 2022, 22, 1157 10 of 38

process, then this is the process of this agent, and the states of the nodes are used to com-
municate processes. To do this, certain attributes must be assigned to the elements. There-
fore, the elements are not atomic, as in the previous chapter. We redefine elements as tu-
ples in four basic sets: nodes, agents, values, and services.

The formal definition of IMDS for the purpose of processes extraction is as follows:
• S = {s1, s2, ..., sNs}—finite set of nodes
• A = {a1, a2, ..., sNa}—finite set of agents
• V = {v1, v2, ..., vNv}—finite set of values
• R = {r1, r2, ..., rNr}—finite set of services

The nodes’ states are defined as pairs (node, value): p = (s,v), s ∈ S, v ∈ V, and the
messages as triples (agent, node, service): m = (a,s,r), a ∈ S, s ∈ S, r ∈ R. In such a formulation,
a message is an invocation of a node’s service by an agent. An action is an execution of a
service on a node in the context of an agent.
• P ⊂ S × V—set of states,
• M ⊂ A × S × R—set of messages,
• H = P ∪ M—set of items,
• Initial sets Pini and Mini, set of items H, configurations T and Tini are defined over P

and M, as before.
In order to terminate the agent, we add a new type of action, having a pair (message,

state) on the input, but only a singleton (state) on the output. The definition of the action
relation in terms of agents, nodes, values, and services is as follows:
• Λ ⊂ (M × P) × (M × P) ∪ (M × P) × (P) | (m,p)Λ(m′,p′) ∨ (m,p)Λ(p′),

m = (a,s,r) ∈ M, p = (s1,v1) ∈ P, m′ = (a2,s2,r2) ∈ M, p’ = (s3,v3) ∈ P, s1 = s, s3 = s, a2 = a
Thus, Λ is not strictly a relation, because it contains both quadruples and triples.
We define functions of m and p, appointing their node and agent: for m = (a,s,r), Ms(m)

= s, Ma (m) =a, for p = (s,v), Ps(p) = s.
The previous definitions of T, Tinp, Tout, and LTS hold. The initial configuration con-

tains exactly one state for every node and exactly one message for every agent: initial
states of every node and initial message for every agent. For Tini, ∀m1,m2 ∈ Tini, m1 ≠ m2:
Ma(m1) ≠ Ma(m2); ∀p1,p2 ∈ Tini, p1 ≠ p2: Ps(p1) ≠ Ps(p2).

The definitions of node and agent processes are as follow:
• B(s) = {λ ∈ Λ | λ = (((a,s,r),(s,v)), ((a,s’,r’),(s,v’))) ∨ λ = (((a,s,r),(s,v)), ((s,v’))), s’ ∈ S, a ∈

A, v,v’ ∈ V, r,r’ ∈ R}—node process of the node s ∈ S,
• C(a) = {λ ∈ Λ | λ = (((a,s,r),(s,v)), ((a,s’,r’),(s,v’))) ∨ λ = (((a,s,r),(s,v)), ((s,v’))), s,s’ ∈ S,

v,v’ ∈ V, r,r’ ∈ R}—agent process of the agent a ∈ A,
The system views are

• B = {B(s1),B(s2),…,B(sNs) | si ∈ S}—the node view (decomposition of the system to node
processes),

• C = {C(a1),C(a2),…,C(aNa) | ai ∈ A}—the agent view (decomposition of the system to
agent processes).

3.4. Automated Deadlock and Termination Identification in IMDS
For model checking, atomic Boolean formulas must be assigned to any configuration

in the LTS:
• Ds—true in all configurations, where at least one message is pending at the node s,
• Es—true in all configurations, where at least one action is prepared at the node s.
• Da—true in all configurations, where a message of the agent a is pending,
• Ea—true in all configurations, where the action is prepared with a message of the

agent a,
• Fa—true in all configurations, where a terminating action (with a message of the agent

a on input) is prepared.

Sensors 2022, 22, 1157 11 of 38

Model checking formulas—CTL version [6]:
• communication deadlock in node s: EF AG(Ds ∧¬Es)—a configuration is reachable in

which a message is pending at the node s, but from this configuration on, no action
will be prepared on node s;

• node s idle: AF AG(¬Ds)—there is a configuration after which no message will arrive
at s;

• resource deadlock in the agent a: EF AG(Da ∧¬Ea)—a configuration is reachable in
which a message of the agent a is pending but from this configuration on, the message
will not match any state;

• termination of agent a: AF(Fa)—a terminating action of agent a is inevitable.
It should be noted that the above deadlock detection formulas are defined for indi-

vidual processes (nodes or agents). They allow the finding of partial deadlocks (also referred
to as local deadlocks in the literature) concerning a limited number of processes, not just
total deadlocks (also known as global deadlocks). The total node deadlock can be found
in IMDS by means of the formula EF AG(∀s ∈ S: Ds∧¬Es), and the total agent deadlock by
means of the equivalent formula over agents. Typical static deadlock detection methods
only detect total deadlock [2]. There are methods for detecting partial deadlocks, but at
the cost of limiting the allowed process shape or explicitly specifying a deadlock using
model-specific formulas. Finding a partial deadlock using general formulas is an original
achievement in IMDS.

The above IMDS definition supports all of the features of the distributed system:
• communication duality: Any system can be broken down into node processes that com-

municate via messages (the output state of the action is the carrier of the node pro-
cess, while the output message is the means of communication) or agent processes
communicating through the states of the nodes (the output message is the carrier
agent process, while the output state is the means of communication);

• locality: Each action on a node is dependent on the node’s current state, and one of a
set of pending messages on that node; no incident from outside (except messages
received by the node) can affect the behavior of the node;

• autonomy: each node independently decides which of the defined actions can be per-
formed in the current situation; in other words, the nodes decide for themselves if,
and when, the messages are accepted and what actions they will cause;

• asynchrony: the node receives a message when it is ready for it; otherwise the message
is pending; there are no synchronous operations in the model, such as simultaneous
transitions on shared symbols in Büchi automata [3] or timed automata [18], and no
joint operations of nodes or agents; synchronous sending and receiving operations in
CSP [44], Occam [45], or Uppaal Timed Automata [14], synchronous operations on
the complementary input and output ports in CCS [44]; node and agent autonomy is
implemented using asynchronous operations: sending a message to a node or setting
a new node state for subsequent agent operations are the only ways to influence the
behavior of nodes and agents;

• asynchronous channels: communication between nodes is one-way (communication in
the opposite direction has its separate channel) and may appear synchronous because
the message appears on the receiving node immediately after it is sent; however,
asynchrony is modeled by the possibility of deferring the message’s acceptance; the
message can wait a long time, even forever, before being accepted;

• automated verification: the four above-mentioned temporal formulas are used to locate
communication deadlocks in the processes of individual nodes, idleness of nodes,
deadlocks over resources in agent processes, and agent termination, regardless of the
structure of the verified system; therefore, they form the basis of the design of the
automatic Dedan verifier, which can be used without knowledge of time logic and
model checking.

Sensors 2022, 22, 1157 12 of 38

We will present the translation of timed IMDS to timed automata for two reasons.
First, TA is the most commonly used formalism on concurrent systems; thus, the transla-
tion of T-IMDS to TA gives a formal definition of its semantics. Second, the Dedan model
checker is based on explicit state space representation, allowing for verification of small
and medium systems. Large systems, in which more than ten nodes with complicated
structures are contained, are exported from Dedan to Uppaal model checker for their ver-
ification.

4. Timed IMDS (T-IMDS)
In the timed version of IMDS, all of the mentioned functions are preserved: the dual-

ity of communication, locality, autonomy, asynchrony, and automated verification. In ad-
dition, time restrictions, which can last over time, are imposed on elements of the distrib-
uted system:
• time durations of actions (fixed or range),
• time delays of inter-node channels (fixed or range).

This collection of time constraints is smaller than the possibilities offered by TA; for
example, time invariants of locations implementing staying in states, and differences of
clock values are not included in T-IMDS. However, the selected time-related functions are
best addressed to modeling distributed systems: differences in clock values (between dis-
tributed nodes) assume some knowledge about the global state. Limiting the time spent
in locations implementing node states cannot be mixed with operations on urgent chan-
nels that are needed for the implementation of asynchronous channels (see later in this
chapter); this is a limitation of the UTA syntax.

The behavior of a distributed system is determined by its LTS. All possible sequences
of actions are included in the LTS. Time constraints are intended to exclude certain behav-
iors, due to violations of time restrictions imposed on actions and channels. Such a modi-
fication of the system behavior may, for example, prevent a deadlock (exclude the se-
quence leading to a deadlock) or cause a deadlock (for example, a process that is intended
to meet a given condition may become stuck prematurely due to time constraints).

4.1. Syntax
The syntax of timeless IMDS is simply a set of actions of the form

(((a,s,r),(s,v)),((a,s′,r′),(s,v′))), plus agent-terminating actions (((a,s,r),(s,v)),((s,v′))), denoted
{a.s.r, s.v} -> {a.s’.r’, s.v’} and {a.s.r, s.v} -> {s.v’}. To simplify the description, in the descrip-
tion of timed formalism we will omit the agent terminating actions. An additional syntax
is used to define types of nodes and agents, their parameterization, declaration of node
and agent variables, and their initialization.

In notation, the dispersion of the duration of the action, in the form of a range with a
lower and upper bound, is inserted between the input and output items of the action, for
example a duration range (z1,z2) for an action λ has the form: λ = ((minp,pinp),(m,p)) =
(((a,s,r),(s,v)),(z1,z2)((a,sout,rout),(s,vout))). A range can have open or closed bounds: (z1,z2),
<z1,z2), (z1,z2>, <z1,z2>. The notation of ranges is taken from T-IMDS, where round paren-
theses denote open bounds and angle brackets denote closed bounds. The timed action
has the form {a.s.r, s.v} -> (z1,z2){a.s’.r’, s.v’} in T-IMDS source format, and angle brackets
can be applied for closed bounds.

Channel delays are defined as ranges in channels {...} phrase, for all channels: (d1,d2),
for all channels leading to a given node s, or all elements of a vector s[…] of nodes: –
>s(d1,d2), or between individual nodes: s1–>s2(d1,d2). In addition, individual elements of
node vectors can be used: –>s[2](d1,d2), s1[1]–>s2[3](d1,d2).

An example of a system consisting of two distributed semaphores and two nodes
using those semaphores, specified in T-IMDS in the input form of the Dedan verifier, is
presented Listing 1 (the nodes are called servers in the IMDS language).

Sensors 2022, 22, 1157 13 of 38

Listing 1.

 1.system two_semaphores;
 2. server: sem(agents a1,a2;servers sa1,sa2),
 3. services {wait, signal},
 4. states {up, down},
 5. actions {
 6. {a1.sem.wait, sem.up} → (2,3>{a1.sa1.ok_wait, sem.down}
 7. {a1.sem.signal, sem.down} → (2,3>{a1.sa1.ok_signal, sem.up}
 8. {a2.sem.wait, sem.up} → (2,3>{a2.sa2.ok_wait, sem.down}
 9. {a2.sem.signal, sem.down} → (2,3>{a2.sa2.ok_signal, sem.up}
10. };
11. server: proc(agents Ag;servers sem[2]),
12. services {start, ok_w, ok_s},
13. states {initial, first, second, end},
14. actions {
15. {Ag.proc.start, proc.initial} -> <0>{Ag.sem[1].wait, proc.first},
16. {Ag.proc.ok_w, proc.first} -> <0>{Ag.sem[2].wait, proc.second},
17. {Ag.proc.ok_w, proc.second} -> <0>{Ag.sem[1].signal, proc.first},
18. {Ag.proc.ok_s, proc.first} -> <0>{Ag.sem[2].signal, proc.second},
19. {Ag.proc.ok_s, proc.second} -> <0>{proc.end},
20. };
21. servers semaphore[2]:sem,process[2]:proc;
22. agents Ag[2];
23. channels {<0>};
24. init -> {
25. process[1](Ag[1],semaphore[1,2]).initial,
26. process[2](Ag[2],semaphore[2,1]).initial,
27. <j=1..2> semaphore[j](Ag[1..2],process[1..2]).up,
28. <j=1..2> Ag[j].process[j].start,
29. }.

This is the specification in the node view. It is simply a collection of actions on par-
ticular nodes. A set of node type specifications defines a system (enclosed by server ...};—
lines 2–10, 11–20), node and agent instance (variable) declarations (agents ..., servers ...—
lines 21,22), and an initial configuration phrase (init → lines 24–29). A node type heading
contains a set of formal parameters, such as the agents and nodes employed in the node
type’s activities. Formal parameters, such as Ag[2] and sem[2], can be vectors (line 11). A
set of services (lines 3,12), a set of states (lines 4,13), and a set of actions are allocated to
each node (lines 6–9, 15–19). An action λ = (((a,s,r),(s,v)), ((a,sout,rout),(s,vout))) has the form
{a.s.r, s.v} → (x,y){a.sout.rout, s.vout}. The time bounds (x,y) limit the action duration.
Services and states can be vectors (not in this example, see the source code of AVGS sys-
tem in Sect. 7.2). Repeaters may precede actions in a node type definition for its compact-
ness (for example, in an AVGS system Sect 7.2, 2 repeaters are used for some actions).
Vectors can be used to arrange node and agent instances (lines 21,22). The channels phrase
(line 23) specifies channel delays, in this example, the channels have no delay. The delays
can be assigned to each channel individually. Actual parameters are bound to formal pa-
rameters in the initialization part (line 24). The nodes’ initial states and the agents’ initial
messages are also assigned.

4.2. Semantics
The execution of the action is divided into three phases for states and four phases for

messages, as shown in Figure 2. The complete environment of the action λ, with the ac-
tions delivering the input items minp and pinp, is presented in Figure 3. Of course, more than
one action can deliver an input item of the action. Due to non-determinism, the action can
deliver its output items, m and p, to multiple consecutive actions. The phases of the action
are as follows:

Sensors 2022, 22, 1157 14 of 38

• The current input state pinp (1) and pending input message minp (31) match; therefore,
they can invoke the action λ = ((minp,pinp),(m,p)): (31,1)→(32d,2c). If multiple actions
are enabled in a node, the choice is nondeterministic. The first phase (31,1)→(32a,2a)
is a reception of the message minp and invocation of the action.

• Time duration of the action begins, which lasts between tλ min(λ) and tλ max(λ). Counting
the time duration is the second phase (32a,2a)→(32b,2b).

• When the time duration ends, the new pair of (m,p) is generated (32b,2b)→(32c,2c).
From this moment, the state p is available for invoking the next action in the node.
The message m is sent to the target node, and it must be propagated to become acces-
sible.

• The last phase is message delivery, in which the channel delay between tch min(ch) and
tch max(ch) is counted (32c)→(32d). After the delay, the message m becomes available
for invocation of the next agent action, in the target node with its current state.

3

1 2c

2a 2b

31 32d 32c

32a 32b

Figure 2. Progress transitions (thin arrows) and timed transitions (thick arrows) in a T-IMDS action
occurring in node s and agent a. Elements taking part in the action are surrounded by solid edges,
an element of the previous action is surrounded by dashed edges. Every action consists in four steps:
message receiving (acceptance and invoking the action), action in progress (time duration), new
items generation (message and state), and message delivery (channel time delay).

Sensors 2022, 22, 1157 15 of 38

Figure 3. Illustration of the action λ = ((minp,pinp),(m,p)) with its input elements: message minp with
derivatives and state pinp with derivatives. The message minp is delivered by the action λx and the
state pinp by the action λy. The input items of the action λ, λx, and λy, are also presented with their
derivatives. The next action in agent a is λz.

The semantics of T-IMDS (timed LTS) is:
1. For every action λ = ((minp,pinp),(m,p)) (3), the range bounds of action duration tλ min(λ)

and tλ max(λ) are defined.
2. The set of channels CH of the form ch = (a,sinps) are defined: ∀λ = ((minp,pinp),(m,p)): ∃

ch: ch = (Ma(minp),Ms(minp)Ms(m)). Totally K channels, indexed 1, …, K. The channel
transmitting the output message of the action λ is denoted chλ.

3. For every ch, the range bounds of channel delay tch min(ch), tch max(ch) are defined.
4. Delay time is defined for a channel between given nodes; therefore, for all agents

sending messages along the channel, the range of delay is equal: ∀a1,a2: ∀ch1 = (a1,
sinps), ch2 = (a2, sinps): tch min(ch1) = tch min(ch2) ∧ tch max(ch1) = tch max(ch2); however, this
does not influence the shape of the LTS.

5. A timed configuration consists of messages, states, their derivatives, node time val-
ues cts, and channel time values ctch: Tt = (T = {mtai, ptsj | i = 1, …, Na, j = 1, …, Ns, mtai
∈ Mt, ptsi ∈ Pt}, cts1, …, ctsNs, ctch1, …, ctchK), where Na is the number of agents and Ns is
the number of nodes. T is called a set of items.

6. The set of states p (1,2b) and derivatives pλt (2a), pλ (2b)e: Pt = {pi, piλjt, piλje | I = 1, …,
card(P), j = 1, …, card(λ), λj=((minp,pinp),(m,pi)) ∈ Λ, piλjt = (pi,λj), piλje = (pi,λj)}

Sensors 2022, 22, 1157 16 of 38

7. The set of messages m (31,32d) and derivatives mλt (32a), mλe (32b), mchλ (32c): Mt = {mi,
miλjt, miλje, michλj | i = 1, …, card(M), j = 1, …, card(Λ), k = 1, …, K, λj = ((minp,pinp),(mi,p))
∈ Λ, miλjt = (mi,λj), miλje = (mi,λj), michλj= (mi,chλj,λj) }.

8. For λ = ((minp,pinp),(m,p)) we define that Ps(pλt) = Ps(pλe) = Ps(p), Ms(mλt) = Ms(mλe)
=Ms(mchλ) = Ms(m), Ma(mλt) = Ma(mλe) = Ma(mchλ) = Ma(m).

9. Each pλt has two attributes: tλ min(pλt) and tλ max(pλt).
10. Each mchλ has two attributes: tch min(mchλ) = tch min(chλ) and tch max(mchλ) = tch max(chλ).
11. The root vertex in the LTS is the initial timed configuration is T0t = (T0 = {m0a1, …, m0aNa,

p0s1,…,p0sNs | m0ai∈M0, p0si ∈ P0}, 0,…,0, 0,…,0).
The vertices in the LTS can contain three types of pair and a singleton causing the

progress transitions (0-time transitions):
12. (minp,pinp) (31,1) is the input pair of an action λ,
13. (minpλt,pλt) (32a,2a) for a transition ending the time duration of the action λ,
14. (mλe,pλe) (32b,2b) for generation of the output pair (m,p) of the action λ,
15. (mchλ) (32c) for a transition ending the time delay of the message m generated in the

action λ.
In addition, we have a pair and a singleton causing the timed transitions:

16. (minpλt,pλt) (32a,2a) for a timed transition modeling sub-periods of time in the action
duration of the action λ,

17. (mchλ) (32c) for a timed transition modeling sub-periods of time in the time delay of
the message m generated in the action λ;
In execution of the action λ, the following pairs occur in some configurations in the

LTS: (minp,pinp), (minpλt,pλt), (mλe,pλe), (mchλ,p). Finally, m is not related to p or any derivative
of p, because it takes some time for m to become operational, after channel delay. How-
ever, it can occur in a pair with p if the node does not begin execution of any action during
the message m passing through the channel.

The transitions in the LTS are
18. reception/invocation transition (31,2)→(32a,2a)—for Tt: (∃{minp,pinp} ⊂ T: ∃λ ∈ Λ: λ =

((minp,pinp),(m,p)))  T’t = (T\{minp,pinp} ∪ {minpλt,pλt}, previous cts1,…,ctsNs except cPs(p inp)

:= 0, previous ctch1,…,ctchK);
19. generation/send transition (of a new m and p) (32b,2b)→(32c,2c)—for Tt: (∃{mλe,pλe} ⊂

T: λ = ((minp,pinp),(m,p)))  T’t = (T\{mλe,pλe} ∪ {mchλ,p}, previous cts1, ..., ctsNs, previous
ctch1, …, ctchK except cchλ:= 0);

20. two transitions—action duration timed transition (32b,2b)→(32b,2b) and duration
end timeless transition (32b,2b)→(32c,2c)—for Tt:
¬(∃ {minp,pinp} ⊂ T: ∃λ ∈ Λ: λ = ((minp,pinp),(m,p))) ∧ //no action to invoke
¬(∃ {mλe,pλe} ⊂ T: λ = ((minp,pinp),(m,p))) ∧ // no message to generate
(∃ {minpλt,pλt} ⊂ T) | s=Ps(pλt)  (tλ min(λ) < cts < tλ max(λ)  T’t = (T\{minpλt,pλt} ∪ {mλe,pλe},
previous cts1,…,ctsNs except cs := 0, previous ctch1,…,ctchK), //action duration ended
(cts<tλ max(λ)  T″t = (T, csi := previous ctsi + δ, i = 1..Ns, cchj := previous ctchj + δ, j = 1..K));

21. two transitions—channel delay timed transition (32c)→(32c) and delay end timeless
transition (32c)→(32d)—for Tt:
¬(∃ {minp,pinp} ⊂ T: ∃λ ∈ Λ: λ = ((minp,pinp),(m,p))) ∧ //no action to start
¬(∃ {mλe,pλe} ⊂ T: λ = ((minp,pinp),(m,p))) ∧ // no message to generate
(∃ mchλ∈T)  (tch min(chλ) < ctch < tch max(chλ)  T’t = (T\{mchλ} ∪ {m}, previous cts1,…,ctsNs,
previous ctch1,…,ctchK except cchλ := 0)), //channel delay ended
(ctch < tch max(mchλ)  T″t = (T, csi:= previous ctsi + δ, i = 1..Ns, cchj := previous ctchj + δ, j =
1..K)).

22. If multiple transitions come out of an LTS vertex, the choice is nondeterministic.
However, if both reception/generation transition and duration/delay end transition
are possible in the current configuration, the latter is not included into LTS.

Sensors 2022, 22, 1157 17 of 38

23. The general limit for δ in the parallel timed transitions is that for all ctsi in Tt, λ1 =
((m1inp,p1inp),(m1,p1)), Ps(p1inp) = si, pλ1t ∈ T, and all ctchλ2 in Tt, λ2 = ((m2inp,p2inp),(m2,p2)),
mchλ2 ∈T, δ < min(tλ max(pλ1t)–ctsi, tch max(chλ2)–ctchλ2). In every inequality tmin < ct, ct < tmax,
the relation should be replaced by ≤ if the corresponding range bound is closed. If all
tλ max(pλ1t) and all tch max(mchλ2) in Tt are for closed upper bounds of time ranges, then
the relation in the inequality < for δ should be replaced by ≤.
The latter condition says that we must not exceed the upper bound of any remaining

action duration/channel delay.

5. Uppaal Timed Automata
5.1. The Syntax of Uppaal TA

A collection of timed automata and real-valued clocks are commonly used to define
parallel systems. We expand the concept to include variables that can enable transitions
and be allocated to transitions to conform with Uppaal TA.

An Uppaal timed automaton UTA is a tuple (L, l0, Z, CH, Q, E, Jl, O, Ō0) where
• L= {l0, l1, …} is a finite set of locations,
• l0 ∈ L is an initial location,
• Z = {c0, c1, …} is the set of clocks,
• CH is a set of symbols called channels,
• Q denotes a set of labels (interpreted as actions on transitions, do not confuse with

IMDS actions), they represent send and receive operations on a channel: ch!, ch?, ch ∈
CH; outside the automaton, internal labels are ignored and replaced by τ,

• every location l ∈ L is mapped by Jl(l) to a set of valuations of clocks in Z, over a
Cartesian product of ℝஹ଴௓ , for example, Jl(l) = {c1-c2 > 2};
Restriction. As in verification tools, e.g., Uppaal [14], we limit location invariants to
downwards closed constraints of the form: x ≤ n or x < n where n is a natural number,

• O = {o1, o2, …} finite set of variables, for which we define:
Vi = {vi1, vi2, …}—finite, integral set of values of variable oi ∈ O,
PV = V1 × V2 × … × Vord(O)—a Cartesian product of values of variables o1, o2, …, oord(O) ∈

O,
Ō = (v1, v2,…, vord(O)); vi ∈Vi; Ō∈PV—vector of values of variables in O,

• Ō0 = (v10, v20, …, vord(O)0)—initial vector of values of variables in O,
• E ⊆ L × Q × Jll × 2Z × 2PV × F × L—set of transitions: e = (l, q, Jll(l,l′), r, b, f, l′) ∈ E

Jll is a set of functions for pairs l,l’∈L, every transition (l,l’) is mapped by Jll(l,l′) to a
set of valuations of clocks in Z over a Cartesian product of ℝஹ଴௓ , just as Jl(l) for a
location l,

r ∈ 2Z indicates a subset of clocks in Z that are reset on transition,
b ∈ 2PV—set of vectors of variable values enabling a transition;

Comment: typically b is presented as equalities and inequalities between varia-
bles in O and constants, connected by Boolean operators, for example (o1 < 3) ∧
(o2 ≥ 6),

F is a set of functions on variables in O, f ∈ F, f: PV → PV—unction assigning new
values to the variables in O; f/i restricts this function to the value of variable oi.
Comment: In Uppaal TA, the function is given as a set of assignments oi = ex-
pression over variables in O and integer constants (all other variables are left
unchanged).

Sensors 2022, 22, 1157 18 of 38

5.2. The Semantics of UTA
The Semantics of a UTA is:
Let (L, l0, Z, CH, Q, E, Jl, O, Ō0) be an UTA.
The semantics is defined as an LTS—Labeled Transition System ⟨Vertices, vertex0, ⟩,

where:
• Vertices ⊆ L × PV × ℝஹ଴௓ is the set of LTS vertices for the automaton UTA (because the

term state is reserved for IMDS node states, we use the term vertex instead),
• vertex0 = (l0, Ō0, u0) ∈ Vertices is the initial vertex, u0 maps all clocks c ∈ Z to 0.
•  = t ∪ p is the transition relation such that:

(l, Ō, u) t (l, Ō, u+d) if ∀d’: 0 ≤ d′ ≤ d  u + d′ ∈ Jl(l)—timed transition,
(l, Ō, u) p (l′, Ō′, u′) if there exists e = (l, q, Jll(l,l′), r, b, f, l′) ∈ E

such that u ∈ Jll(l,l′); u′ = [r  0]u and Ō ∈ b and Ō′ = F(Ō)—progress transition;
where
for d’ ∈ ℝஹ଴௓ , u + d′ maps each clock c in Z to the value u(c) + d′,
[r  0]u, r ⊂ Z, denotes the clock valuation, which maps each clock in r to 0 and agrees

with u over Z\r.

5.3. Network of UTA
NUTA is a network of Uppaal timed automata over a common set of clocks and labels

(actions), a common set of variables, and a common initial vector of their values. NUTA is
itself a UTA, it is constructed in the following way:

NUTA = (L, l0, Z, CH, Q, E, Jl, O, Ō0) consists of n UTA, UTAi = (Li, li0, Zi, CHi, Qi, Ei, Jli,
Oi, Ōi0) with i = 1, …, n. The individual elements of NUTA are:
• A set of locations is a Cartesian product L = L1 × … × Ln, l∈L is a location vector l = (l1,

…, ln), li ∈ Li.
• l0 ∈ L is an initial location vector l0 = (l10, …, ln0), li0 ∈ Li.
• Z is a common set of clocks—a union of sets of clocks Z = Z1 ∪ … ∪ Zn.
• CH is a common set of channels—a union of sets of channels CH = CH1 ∪ … ∪ CHn, it

can be ignored because the labels in Q disappear in the construction of NUTA.
• Q is a common set of labels—symbols on transitions: the labels on channels (ch!, ch?)

disappear on the construction on NUTA (they are replaced by τ) according to the
semantic rules given below.

• Location invariant functions are composed into a common function over location vec-
tors Jl(l) = Jl1(l1) ∧ … ∧ Jln(ln).

• O is a common set of variables (union of sets of variables O1 ∪ … ∪ On), Ō—vector of
their values, PV—the Cartesian product of sets of values of all variables in O, Ō0—a
common vector of their initial values.
The NUTA graph is constructed in such a way that transitions between the com-

pound locations of NUTA (starting from initial compound location l0) are chosen as com-
mon timed transitions, interleaved progress transitions having labels, and common pro-
gress transitions of pairs of UTA with matching ch! and ch? labels, interleaved with the
transitions of all other UTA. Additionally, the set of transitions in NUTA can be restricted
by conjunctions of time invariants Jl in timed transitions, and by conjunctions of functions
Jlli and intersections of bi. Last, all those rules met by the semantics of NUTA are expressed
as the LTS of a set UTA below.

5.4. The Semantics of the Network of UTA
Let UTAi = (L, l0, Z, CH, Q, E, Jl, O, Ō0).
Let l0 = (l10, …, ln0) be the initial location vector.
l[li/li′] denotes the location vector where li′ replaces the ith element li of L.
The semantics of a network on n UTA is defined as an LTS ⟨Vertices, vertex0, ⟩,

where:

Sensors 2022, 22, 1157 19 of 38

1. Vertices = (L1 × …× Ln) × PV × ℝஹ଴௓ is the set of global LTS vertices,
2. vertex0 = (l0; Ō0; u0) ∈ Vertices is the initial vertex, u0 maps all clocks c ∈ Z to 0,
3.  = t ∪ p ∪ !? is the transition relation defined by:

3a. (l, Ō, u) t (l, Ō, u + d) if ∀d′ 0 ≤ d’ ≤ d  u + d′ ∈ Jl(l)—timed transition,
3b. (l, Ō, u) p (l[li/li′], Ō′, u′);

if there exists (li, τ; Jlli(li,li′), ri, bi, fi, li′) ∈ Ei such that u ∈ Jlli(l[li/li′]); u′ = [ri  0]u
and Ō ∈ bi and Ō′ = fi(Ō)—progress transition,

3c. (l, Ō, u) !? (l[lj/lj′, li/li′], Ō′, u′) if there exist two transitions
(li, ch?, Jlli(li,li′), ri, bi, fi, li′) ∈ Ei and (lj, ch!, Jllj(lj,lj′), rj, bj, fj, lj′) ∈ Ej such that
u ∈ Jll(l[lj/lj′, li/li′]), u′ = [ri ∪ rj  0]u and Ō ∈ bi and Ō ∈ bj—synchronization tran-
sition (a special kind of progress transition), new values of variables in O are
calculated:

 for every ok ∈ O, fi(ok) = vk and fj(ok) = vk′ or fj(ok) = vk and fi(ok) = vk′
Comment: At least one of the functions fi, fj must be an identity function for
a given variable that returns the same value as its argument (it is disre-
garded); the other must be in effect (it gives the variable’s new value). This
criterion prohibits incoherent assignments to the same variable in the au-
tomata UTAj and UTAk; it is met by the construction in the translation of T-
IMDS to UTA, as an assignment is applied in only one of the pair’s autom-
ata;

4. If both t and !? are possible from given vertex (l; Ō; u), then t is not inserted into
LTS,

5. If both p and !? are possible from given vertex (l; Ō; u), then p is not inserted into
LTS;
Comment: In this way, Uppaal urgent channels are achieved; only such channels are
applied in the translation of T-IMDS to UTA,

6. If two transitions are possible, the choice is non-deterministic (however, both are in-
serted into LTS because it defines all possible behaviors).

6. Translation of T-IMDS to Timed Automata
6.1. Example

To explain the translation rules, let us concentrate on the actions of the sem node from
the example in Section 5.1, with actions duration (2,3>). It implements wait and signal ser-
vices. Two agents, a1 and a2, use the semaphore. Each agent comes from its private node:
sa1 for a1, and sa2 for a2. The time constraints are given in Listing 2.

Listing 2.

 5. actions {
 6. {a1.sem.wait, sem.up} → (2,3>{a1.sa1.ok_wait, sem.down} //λ1
 7. {a1.sem.signal, sem.down} → (2,3>{a1.sa1.ok_signal, sem.up} //λ2
 8. {a2.sem.wait, sem.up} → (2,3>{a2.sa2.ok_wait, sem.down} //λ3
 9. {a2.sem.signal, sem.down} → (2,3>{a2.sa2.ok_signal, sem.up} //λ4
10. }

For every node s, an Uppaal timed automaton s is declared. In fact, an UTA type is
defined just as a node type can be defined in T-IMDS, but this is a syntactic manipulation
for the programmer’s convenience. The UTA variable is equipped with its own clock cs
and a set of locations and derivatives, in the example csem, up, upλ2t, upλ2e, upλ4t, upλ4e, down,
downλ1t, downλ1e, downλ3t, downλ3e. For storing the service name invoked by messages, vari-
ables a1_sem and a2_sem are applied for the agents in sem. For nodes sa1 and sa2, variables
a1_sa1 and a2_sa2 are applied. The set of values for a1_sem and a2_sem variables is {none,
sem_wait, sem_signal}, for a1_sa1 {none, sa1_ok_wait, sa1_ok_signal}, and a2_sa2 {none,
sa2_ok_wait, sa2_ok_signal}. The node clocks are csem, csa1, and csa2.

Sensors 2022, 22, 1157 20 of 38

The initial state is chosen outside the node type, in the init section, to allow different
instances to have different initial states; up or down in our example. Assume that the node
sem has the initial state up. The set of UTA locations and transitions for automaton sem is
as follows (for comparison in Boolean expressions over variables we use a double equals
operator, which follows the Uppaal rule; for assignment and clock reset, we use equals
character preceded by a colon (:=) to clearly distinguish it from comparison and to agree
with Uppaal):
• (31,1) location down: initial location—no, time invariant—no (4),

− (31,1)→(32a,2a) transition: next location—upλ2t, condition—a1_sem==sem_sig-
nal, assignments—no, time constraint—no, clock reset—csem:=0, channel syn-
chronization: ch_a1_sem? (4)→(8)→(5)

− (31,1)→(32a,2a) transition: next location—upλ4t, condition—a2_sem==sem_sig-
nal, assignments—no, time constraint—no, clock reset—csem:=0, channel syn-
chronization: ch_a2_sem? (4)→(8)→(5)

• (32a,2a) location upλ2t: initial location—no, time invariant—csem ≤ 3 (5),
− (32a,2a)→(32b,2b) transition: next location—upλ2e, condition—no, assign-

ments—a1_sem:=none, a1_sa1:=sa1_ok_up, time constraint—2 < csem ≤ 3, clock
reset—csem:=0, channel synchronization—no (5)→(9)→(6)

• (32b,2b) location upλ2e: initial location—no, time invariant—no (6),
− (32b,2b)→(32c,2c) transition: next location—up; condition—no, assignments—

no, time constraint—no, clock reset—csem:=0, channel synchronization:
ch_a1_sem_sa1! (6)→(10)→(7)

• (32a,2a) location upλ4t: initial location—no, time invariant—csem ≤ 3 (5),
− (32a,2a)→(32b,2b) transition: next location—upλ4e, condition—no, assign-

ments—a2_sem:=none, a2_sa2:=sa2_ok_up, time constraint—2 < csem ≤ 3, clock
reset—csem:=0, channel synchronization—no (5)→(9)→(6)

• (32b,2b) location upλ4e: initial location—no, time invariant—no,
(32b,2b)→(32c,2c) transition: next location—up; condition—no, assignments—no,

time constraint—no, clock reset—csem:=0, channel synchronization:
ch_a2_sem_sa2! (6)→(10)→(7)

• (2c) location up: initial location—no, time invariant—no (7),
• …etc.

6.2. Translation Rules
Since the channels leading from different nodes to the node s are combined together,

we use the notation (a,s) for the channel passing messages of the agent a to the node s.
The rules for translation of λ = ((minp,pinp),(m,p)), minp = (a,s,r), m = (a,sout,rout) are depicted in
Figure 4, and message m transfer along the channel ch = (a,sout) from T-IMDS to UTA in
Figure 5. Three channel versions are shown: (a) the basic form, (b) the 0-time channel
without delay, and (c) the channel receiving messages of the agent coming from various
nodes with different delays. Please do not mistake the wait location of a channel with the
wait service offered by semaphores in the example. We numbered all the elements of T-
IMDS and its UTA implementation to be referred to in the following translation rules:
1. sever s  timed node automaton s with clock cs (reset on every transition, used to

count actions duration),
2. state p of automaton s (1,2c) and derivatives (pλt, pλe) (2a,2b)  locations p, pλt, pλe in

timed node automaton s (4,5,6,7),
3. message m (32,32d) and derivatives (mλt, mλe, mchλ) (32a,32b,32c)  pairs of message

variable a_s values and locations of automaton s and automaton ch, details below,
4. agent a → set of variables (for every node visited by the agent) {a_s1, a_s2, …} (8),
5. channel ch  automaton ch (Figure 3) with clock cch (reset on every transition, used to

count channel delay),

Sensors 2022, 22, 1157 21 of 38

6. message minp pending at the node s (1)  a_s == s_r (8), all other a_sx == none, sx ≠ s,
channel ch in location send (11,18,24), variable a_s has a set of values {none, s_r, s_r1,
s_r2, …} (8) (services r, r1, r2 distinguish between messages sent to the node s by the
agent a),

7. derivative item pλt for action λ (duration running) (2a)  location pλt (5),
8. derivative item pλe for action λ (duration ended) (2b)  location pλe (6),
9. message minp (stable message minp) (32)  pair (send,a_s==s_r); (8) location send in chan-

nel (a,s) (11,18,24),
10. derivative item minpλt for action λ  pair (pλt, a_s == s_r) (5,8,14/19/29); note that

a_sout==none,
11. derivative item mλe for action λ  pair (pλe, a_sout == sout_rout) (6,9); note that a_s == none,
12. derivative item mchλ for action λ  location wait of the channel ch automaton

(15/20/25/26); note than a_s == none, a_sout == sout_rout (9),
13. configuration T  set of locations of node automata representing node states and de-

rivatives and values of pairs (location of a node automaton sx/channel automaton chz,
value of ay_sx) representing messages and derivatives,

14. actual value of action duration in node s/channel ch delay in Tt—the value of the clock
cs/clock cch (9/27/28),

15. duration range lower bound tλ min(λ)  lower bound of time constraint of the transition
pλt→pλe: tλ min(λ) < cs (9),

16. duration range upper bound tλ max(λ)  upper bound of time constraint of the transition
pλt→pλe: cs < tλ max(λ) (9) and of time invariant of location pλt: cs < tλ max(λ) (5),

17. delay range lower bound tch min(ch)  lower bound of time constraint of the transition
wait→send of the channel automaton, tch min(ch) < cch (16/27/28),

18. delay range upper bound tch max(ch)  upper bound of time constraint of the transition
wait→send of the channel automaton, cch < tch max(ch) (16/27/28) and of time invariant of
wait location: cch < tλ max(ch) (13/21/22),

19. action λ (3), (31,1)→(32a,2a)→(32b,2c)→(32c,2c), (32c)→(32d)  sequence: message
and state(minp,pinp)-receive transition(minp,pinp)→(minpλt,pλt)-duration location(pλt)-timed
transitions(action duration in pλt)-end of duration transition(minpλt,pλt)→(mλe,pλe)-end
of duration location(pλe)-send transition(mλe,pλe)→(mchλ,p), (11/18/24,4) → (14/19/29,8)
→ (12/17/23,5) → (9) → (12/17/23,6) → (15/20/25/26,10) → (13/18/21/22,7),

20. receive transition (minp,pinp)→(minpλt,pλt) (31,1)→(32a,2a)  channel automaton chas =
(a,s) in location send, node s automaton in location pinp, urgent channel synchroni-
zation (ch_a_s! on (minp,pinp)→(minpλt,pλt), ch_a_s? on send→idle), condition a_s == s_r
fulfilled, on transition cs is reset to 0, (11/18/24,4) → (14/19/29,8) → (12/17/23,5),

21. end of action duration transition (minpλt,pλt)→(mλe,pλe) (32a,2a)→(32b,2b)  node s au-
tomaton in location pλt, clock cs value tλ min(λ) < cs < tλ max(λ), on transition a_s :=none,
a_sout == sout_rout, cs is reset to 0, (12/17/23,5) → (9) → (12/17/23,6),

22. generation of next m,p and send transition (mλe,pλe)→(p,mchλ) (32b,2b)→(32c,2c)  node s
automaton in location pλe, channel ch automaton in location idle, urgent channel syn-
chronization (ch_a_s_sout! on (mλe,pλe)→(p,mchλ), ch_a_s_sout? on idle→wait), (12/17/23,6)
→ (15/20/25/26,10) → (13/18/21/22,7),

23. advancing duration of an action (32b,2b)→(32b,2b) or channel delay (32c)→(32d) 
timed transitions—within time invariants of all locations with time invariant—to a
next time region, limited by outgoing transitions time range upper bounds, tλ max for
action durations in pλt locations (5–9), and tch max for channel delays in wait locations
(13–16/21–27/22–28),

24. asynchronous channel between nodes ch (32c)→(32d)  an asynchronous channel is
compound of two synchronous urgent channels (Figure 5); asynchronous channel is
inactive in the idle location (12/17/23); the signal that the message is ready is obtained
from the sending automaton via input urgent channel ch_a_sout: urgent channel syn-
chronization (ch_a_sout!, ch_a_sout?) (15/20/25/26); then, the time delay is counted in the
wait location (13/21/22); it lasts between tch min and tch max, as the transition ending the

Sensors 2022, 22, 1157 22 of 38

channel delay is followed for clock values cch tch min(ch) < cch < tch max(ch) (16/27/28); fi-
nally, the signal sending the message to the target automaton via output urgent chan-
nel ch_a_s_sout is issued: urgent channel synchronization (ch_a_s_sout!, ch_a_s_sout?)
(14/19/27/28); if the receiving s automaton is not ready to accept the message—the
synchronization on ch_a_s is deferred: a message is pending (11/18/24); an own local
clock cch is used to count the time delay of an asynchronous channel (13–16/21-–27/22–
28).

Figure 4. (a) action of IMDS with time durations between z1 and z2 (b) translation to Uppaal TA.
For Uppaal TA: underlined font in location—time invariant of location, regular font in location—
location name, regular font in transition label—time constraints of transition, italic font—update ex-
ecuted on transition, bold font—Boolean condition enabling transition or synchronization.

Sensors 2022, 22, 1157 23 of 38

Figure 5. Implementation of communication between nodes in the context of the agent a (asynchro-
nous channel): (a) basic asynchronous channel for messages directed to the node s; (b) the channel
for sending messages from the node s to itself, or other 0-time channels; (c) passing messages from
multiple nodes (two in this case) to the node s.

Note that, by construction, exactly one variable a_sx has a value other than none, be-
cause, initially, exactly one variable of the agent a has a value representing the service in
initial message of a, and setting a value ≠none to a variable a_sy of target automaton sy
resets the value of a_sx to none (9). Moreover, only the channel to the node sx appointed
by the initial message of the agent a (a,sx) is in the send location (11/18/24), all other
channels of the agent a are in their idle locations (12/17/23).

6.3. Translation of the Example
Having the translation rules, which define the semantics of T-IMDS by construction,

let us show how the fragment of the sem node (in the example presented in Section 5.1) is
translated to UTA. We choose the two transitions, threaded by the input and output states,
and we show the messages incoming to and outgoing from the node. Let us assume a
channel delay (1,2) between sem and sa1 in both directions. The time constraints are given
in Listing 3.

Sensors 2022, 22, 1157 24 of 38

Listing 3.

 6. {a1.sem.wait, sem.up} → (2,3>{a1.sa1.ok_wait, sem.down} //λ1
 7. {a1.sem.signal, sem.down} → (2,3>{a1.sa1.ok_signal, sem.up} //λ2
23. channels {(1,2)};

The image of the two actions is presented in Figure 6, and the UTA implementation
in Figure 7.

Figure 6. The image of two actions λ1 = {a1.sem.wait, sem.up} → (2,3>{a1.sa1.ok_wait, sem.down}
and λ2 = {a1.sem.signal, sem.down} → (2,3>{a1.sa1.ok_signal, sem.up}.

Sensors 2022, 22, 1157 25 of 38

Figure 7. The UTA implementation of the two actions presented in Figure 6, and channels delay
(1,2), (a) the implementation of the transitions in node automaton sem, (b) the implementation of
the asynchronous channel transferring messages to the node sem, (c) the implementation of the
asynchronous channel transferring messages to the node sa1.

6.4. Equivalence between T-IMDS and UTA
We argue that the LTS of the T-IMDS system is exactly the same as the LTS of the set

of UTA implementing the system. The proof is rather extensive because numerous ele-
ments and cases must be analyzed; therefore, we give the proof in the Appendix A. Here
we present some equivalences between the T-IMDS system and UTA implementation us-
ing the rules presented in Section 6.2. We use references to the enumeration numbers in
Sections 4.2 (T-IMDS semantics), 5.4 (UTA semantics), and 6.2 (translation rules).
• The configuration Tt (states and derivatives, messages and derivatives, the current

time region determining abstraction class of node clocks and channel clocks) entirely
defines the situation in T-IMDS. In UTA, locations of node and channel automata,
values of variables (there are only a_s variables), and current time region define the
situation (we do not use the term ‘state’ for unambiguity) (4.2.5, 5.4.1, 6.2.2, 6.2.9,
6.2.10, 6.2.11, 6.2.12). Finally, every set of items in Tt corresponds to a separate set of

Sensors 2022, 22, 1157 26 of 38

UTA locations and variable values. Every reachable set of locations and variable val-
ues maps to a set of T-IMDS items. Moreover, the region succession graph agrees
with advancing the time according to minimum and maximum time bounds (of ac-
tion duration and channel delay) (4.2.5, 5.4.3a, 6.2.14).

• The same concerns the initial configuration of T-IMDS and the initial situation in
UTA (4.2.11, 5.4.2).

• Every one of the T-IMDS transitions (minp,pinp)→(minpλt,pλt)→(mλe,pλe)→(mchλ,p) de-
pends only on items enumerated in pairs, independently of any other item present
in Tt (4.2.18–4.2.21, 6.2.20–6.2.22). Only the transition mchλ→m does not depend on the
state of the message issuing node (it can be p or some other item if the next action is
invoked) (4.2.21, 6.2.23). In UTA, corresponding transitions depend only on the cur-
rent location and values of variables representing pending messages. The variables
are local to the pairs of messages sending and messages receiving automata, and only
the sending automaton can change the variable value (4.2.20, 6.2.21). The automaton
collaborates with channel automata, and by construction, the input channel is in the
synchronizing location send (synchronous channel put (!) on a transition outgoing
from send location) if minp is pending (4.2.18, 6.2.20). The output channel is in the idle
location (with synchronous channel get (?) on a transition outgoing from idle) while
the action producing the output message is in progress (4.2.21, 6.2.24).

• Timed transitions in T-IMDS are concurrent for every clock (node clocks and channel
clocks) (4.2.20, 4.2.21, 6.2.23). The same is true for UTA (4.4.3a).

• Timed transition in T-IMDS is possible if no progress transition is enabled
(minp,pinp)→(minpλt,pλt), (mλe,pλe)→(mchλ,p) (4.2.20, 4.2.21). The same concerns duration
ending and delay ending transitions (minpλt,pλt)→(mλe,pλe), mλe→m (4.2.20, 4.2.21). In
UTA, all channels are urgent, whose effect is the same: precedence of progress tran-
sitions (they correspond to T-IMDS progress transitions) over timed transitions, and
over transitions outgoing from time-counting locations (corresponding to duration
ending and delay ending transitions) (5.4.4, 6.4.23).

• In both models, the nondeterministic choice is performed if multiple transitions are
enabled (4.2.22, 5.4.6).

7. Examples
7.1. Simple Example—Two Semaphores

Let us consider two agents, starting from their own nodes, using two semaphores,
each one on a separate node. The agents use the semaphores crosswise, i.e., agent a1 calls
wait on the first, then on the second semaphore, and agent a2 calls wait on the second, then
on the first semaphore. The T-IMDS code is presented in Section 4.1. A deadlock is evident
because the semaphores are used crosswise (lines 25,26).

In the timed experiment, we assigned the duration ranges <0> to the actions in sem
type, and (0,1) to the actions in proc type. The time constraints are given in Listing 4.

Listing 4.

6. {a1.sem.wait, sem.up} -> <0>{a1.sa1.ok_wait, sem.down}
…
15. {Ag.proc.start, proc.initial} -> (0,1){Ag.sem[1].wait, proc.first},
…

The channels have 0 delay.
The deadlock appears for the timed system, as before. Figure 8 presents an example

of the system trace. It is a sequence diagram of the node operation, with global time values
on the right (yellow). Other timeless verification examples can be found in [46,47].

Sensors 2022, 22, 1157 27 of 38

Figure 8. A counterexample showing a deadlock in the timed verification of two semaphores.

If we lengthen the duration of the actions in proc[1] node (the action preceded by an
index ?1), as below, the deadlock disappears, because the agent A[2] manages to perform
wait operations on both semaphores before the agent A[1] can perform its first wait oper-
ation. The time constraint is given in Listing 5.

Listing 5.

15.?1{Ag.proc.start, proc.initial} -> (8,9) {Ag.sem[1].wait, proc.first}

Figure 9 shows a final part of the witness of both agents inevitable termination.

Sensors 2022, 22, 1157 28 of 38

Figure 9. A witness showing a termination of both agents in timed two semaphores.

7.2. Practical Example: Automated Vehicle Guidance System
7.2.1. Timeless Verification

An automatic vehicle guidance system (AVGS) is an example of a distributed system
for verification. The timeless version of the system and its verification is described by
Czejdo et al. [48]. The system, depicted in Figure 6, is made up of road markers and park-
ing lots that communicate to guide autonomous moving platforms (AMPs) from Lot_E1
to Lot_E2, and vice versa. In Marker_M, an apparent conflict can be resolved by utilizing
Lot_M in a staggered arrangement. The controllers of lots and markers are represented by
six nodes (Figure 10), with a protocol for requesting and granting the road segments main-
tained by the controllers (Figure 11). Of course, if controller_2’s road segment is occupied,
the ok message may be delayed. MarkerM has a more sophisticated approach, because it
allows for overtaking. The system is described from the perspective of communicating
controllers in the node view. The AVGS code is shown in IMDS source notation in the
node view. Node names are shortened to L_E[2], L_M, M_E[2] and M_M. The source code
is given in Listing 6.

Sensors 2022, 22, 1157 29 of 38

Figure 10. Scheme of road segments (with their markers) and parking lots in an automated vehicle
guidance system AVGS.

Figure 11. The protocol of road segment controller cooperation.

Sensors 2022, 22, 1157 30 of 38

Listing 6.

 1.system AVGS;

 2.server: M_E(agents AMP[2];servers M_M,L_E),
 3.services {tryM[2],tryL,okM[2],okL,takeM,takeL},
 4. //M - going from M_M, L - going from L_E,
 5. //try - test access, ok - accept, take - enter
 6.states {empty,reservedM,reservedL,occupied},
 7.actions {
 8.<i=1..2> {AMP[i].M_E.tryL, M_E.empty} ->
<0>{AMP[i].L_E.ok, M_E.reservedL},
 9.<i=1..2> {AMP[i].M_E.takeL, M_E.reservedL} ->
 <0>{AMP[i].M_M.tryE[i], M_E.occupied},
10.<i=1..2><j=1..2>{AMP[i].M_E.okM[j], M_E.occupied} ->
 (1,10){AMP[i].M_M.takeE[j], M_.empty},

11.<i=1..2><j=1..2>{AMP[i].M_E.tryM[j], M_E.empty} ->
 <0>{AMP[i].M_M.okE[j], M_E.reservedM},
12.<i=1..2><j=1..2>{AMP[i].M_E.tryM[j], M_E.reservedL} ->
 <0>{AMP[i].M_M.notE[j], M_E.reservedM},
13.<i=1..2><j=1..2>{AMP[i].M_E.tryM[j], M_E.occupied} ->
 <0>{AMP[i].M_M.notE[j], M_E.occupied},
14.<i=1..2> {AMP[i].M_E.takeM, M_E.reservedM} ->
<0>{AMP[i].L_E.try, M_E.occupied},
15.<i=1..2> {AMP[i].M_E.okL, M_E.occupied} ->
(1,10){AMP[i].L_E.take, M_E.empty},
16.};

17.server: M_M(agents AMP[2];servers M_[2],L_M),
18.services {tryE[2],tryL[2],okE[2],notE[2],okL[2],takeE[2],takeL[2],switch[2]},
19.states {empty,reservedE[2],reservedL[2],occupied},
20.actions {
21.//going to M_E1 or M_E2
22.<i=1..2><j=1..2>{AMP[i].M_M.tryE[j], M_M.empty} ->
 <0>{AMP[i].M_E[j].okM[j], M_M.reservedE[j]},
23.<i=1..2><j=1..2>{AMP[i].M_M.takeE[j], M_M.reservedE[j]} ->
 <0>{AMP[i].M_M.switch[3-j], M_M.occupied},
24.<i=1..2><j=1..2>{AMP[i].M_M.switch[j], M_M.occupied} ->
 <0>{AMP[i].M_E[j].tryM[j], M_M.occupied},
25.<i=1..2><j=1..2>{AMP[i].M_M.okE[j], M_M.occupied} ->
 (1,10){AMP[i].M_E[j].takeM, M_M.empty},

26.//on a way to M_E1 or M_E2 may go to L_E if M_Ei is occupied
27.<i=1..2><j=1..2>{AMP[i].M_M.notE[j], M_M.occupied} ->
 <0>{AMP[i].lotM.try[j], M_M.occupied},
28.<i=1..2><j=1..2>{AMP[i].M_M.okL[j], M_M.occupied} ->
 (1,10){AMP[i].L_M.take[j], M_M.empty},

29.// from M_M - going to M_E1 or M_E2
30.<i=1..2><j=1..2>{AMP[i].M_M.tryL[j], M_M.empty} ->
 <0>{AMP[i].L_M.ok[j], M_M.reservedL[j]},
31.<i=1..2><j=1..2>{AMP[i].M_M.takeL[j], M_M.reservedL[j]} ->
 <0>{AMP[i].M_E[j].tryM[j], M_M.occupied},

Sensors 2022, 22, 1157 31 of 38

32.<i=1..2><j=1..2>{AMP[i].M_M.okE[j], M_M.occupied} ->
 (1,10){AMP[i].M_E[j].takeM, M_M.empty},
33.};

34.server: L_E(agents AMP[2];servers M_E),
35.services {start,try,ok,take},
36.states {empty,reserved,occupied},
37.actions {
38.<i=1..2> {AMP[i].L_E.try, L_E.empty} ->
<0>{AMP[i].M_E.okL, L_E.reserved},
39.<i=1..2> {AMP[i].L_E.take, lotE.reserved} ->
<0>{L_E.occupied},

40.<i=1..2> {AMP[i].L_E.start, L_E.occupied} ->
<0>{AMP[i].M_E.tryL, L_E.occupied},
41.<i=1..2> {AMP[i].L_E.ok, L_E.occupied} ->
(1,10){AMP[i].M_E.takeL, M_E.empty},
42.};

43.server: L_M(agents AMP[2];servers M_M),
44.services {try[2],ok[2],take[2]},
45.states {empty,reserved[2],occupied[2]},
46.actions {
47.<i=1..N><j=1..2>{AMP[i].L_M.try[j], L_M.empty} ->
 <0>{AMP[i].M_M.okL[j], L_M.reserved[j]},
48.<i=1..N><j=1..2>{AMP[i].L_M.take[j], L_M.reserved[j]} ->
 <0>{AMP[i].M_M.tryL[j], L_M.occupied[j]},
49.<i=1..2><j=1..2>{AMP[i].L_M.ok[j], L_M.occupied[j]} ->
 (1,10){AMP[i].M_M.takeL[j], L_M.empty},
50.};

51.servers M_E[2],M_M,L_E[2],L_M;
52.agents AMP[2];

53.channels {(1,10)};

54.init -> {
55.<j=1..2> M_E[j](AMP[1..2],M_M,lotE[j]).empty,
56. M_M(AMP[1..2],M_E[1,2],L_M).empty,
57.<j=1..2> lotE[j](AMP[1..2],M_E[j]).occupied,
58. L_M(AMP[1..2],M_M).empty,
59.<j=1..2> AMP[j].L_E[j].start,
60.}.

The agent view of the system shows it from the point of view of AMP vehicles. The
difference is generally in the grouping actions of individual agents rather than of nodes.

The Dedan program (Supplementary Materials) performs the temporal verification.
Overtaking in Marker_M is successful, but there is a possibility of deadlock when an AMP
occupies Marker_E1, and the other AMP tries to drive from Lot_E1 to Marker_E1. A coun-
terexample, showing the deadlock in the node view, representing the cooperation of seg-
ment controllers, is presented in Figure 12. The counterexample is represented by a chart
that resembles a sequence diagram. The upper part shows the initial states of all nodes on
a pink background and the sequences of states and messages that lead to an erroneous
situation in a given process (agent names on a green background occur in the agent view).

Sensors 2022, 22, 1157 32 of 38

The heading shows the names of the nodes on a pink background (agent names on a green
background occur in the agent view). A state identifier is displayed with a light blue back-
ground. The agent responsible for entering the specified state is depicted on a dark blue
background. When sending a message, the agent identifier is displayed on a light yellow
background; while receiving a message, the service name is displayed on a yellow back-
ground. The last section displays the final deadlock configuration, including node states
and pending messages.

Figure 12. Communication structure in a trace of the timeless AMP’s behavior, leading to a dead-
lock.

In the timelines of individual nodes, messages from the various agents interleave.
The counterexample can be displayed in the agent view, in which timelines of individual

Sensors 2022, 22, 1157 33 of 38

agents are shown. This form of counterexample, showing the behavior of individual
AMPs, is presented in [48].

7.2.2. Timed Verification
The time of message passing and the time of road segment occupation are undefined

in the timeless system. T-IMDS allows observing the behavior with a specified duration
of actions and communication delays. Time constraints applied in the T-IMDS variant are:
• Time of movement between segments (issuing the take message) is between 1 and 10.
• The channel delay is assumed (1,10).

Setting constraints (1,10) yields the ‘nearly no restrictions’ paradigm, which is com-
parable to a timeless system.

Such time limits being imposed on the AVGS system result in the deadlock presented
in Figure 12, as in the timeless system. However, the shorter time constraints (4,5) for tak-
ing a segment and (0,1) for channel delay model the simultaneous movement of the two
AMPs, which begin practically synchronously from Lot_E1 and Lot_E2. In this case, the
deadlock is broken: the AMPs use Lot_M to evade in Marker_M, but no evasive necessity
occurs in Marker_E1 and Marker_E2 (time constraints do not allow the AMPs to come into
a conflict in edge markers). We present the final fragment of the witness of the modified
system, with shortened time constraints, in Figure 13.

Figure 13. The final fragment of the witness of the corrected AVGS timed system.

8. Conclusions
This article presents the IMDS formalism and the Dedan verification environment.

They support the modeling of systems using asynchronous communication of autono-
mous elements, which is natural in distributed environments. The node view and the
agent view of the verified system can be observed, which highlight different aspects of

Sensors 2022, 22, 1157 34 of 38

distributed system behavior. The node view refers to the client–server model of distrib-
uted systems. In contrast, the agent view is similar to the remote procedure call model [5]
(however, it is generally unnecessary for the agent process to return to the calling node in
IMDS). Deadlocks can be found in both views, showing counterexamples and witnesses
from the perspective of communicating nodes or agents traveling between the nodes and
changing the nodes’ states.

Universal temporal formulas, unrelated to the structure of a given system, allow find-
ing deadlocks without any knowledge of temporal logic and model checking. The location
of deadlocks and distributed termination checking is performed in ‘push the button’ style.

The conversion of IMDS systems to timed automata allows the possibility of verifi-
cation with real-time constraints. This is suitable for real distributed systems, where com-
munication protocols and time-dependent behavior (such as streaming, monitoring,
games) require taking time into account. Both communication delays and the time dura-
tion of nodes’ and agents’ actions can be modeled.

Verification of an existing system with the actual values of time constraints can de-
termine if a deadlock is possible. The deadlock reveals, for example, a traffic jam. On the
other hand, the threshold values of time constraints (lower and upper bounds) that cause
a deadlock can be identified in a series of experiments.

Important cases include embedded systems controlling mechanical or chemical
equipment, in which the system behavior depends on the time of real-world phenomena
and activities. An example of such a system is presented in this article, in which time de-
lays in controllers’ communication and the time duration of AMPs moving through road
segments are modeled. IMDS and Dedan may be used for the ‘rapid prototyping’ of dis-
tributed controllers, in which sub-controllers coordinate their behavior by simple proto-
cols; following the internet of things (IoT [49]) paradigm. We have recently started a pro-
ject of train management, where the balise placement is planned (track equipment), and
we estimated the maximum velocity at which the driver is safe in order to notice and
acknowledge the messages coming from the balises. All elements of the system (the train,
balises, and driver) act asynchronously, with their own timing constraints. Verification
can be carried out for various values of time constraints.

The model is not free from limitations. The most important limitation is that distrib-
uted computations are performed by the agents, and messages are the carriers of agents.
This prohibits communication in broadcast style. Multicast communication can be
achieved using a set of ‘sleeping’ agents, which come into operation for multicasting. We
used this technique in the verification of BPMN (business process model and notation
[50]) processes [51].

The Dedan is based on explicit state–space representation, allowing for the verifica-
tion of small and medium systems. Large systems are exported from Dedan to Uppaal for
their verification, and the semantics of both representations are equal.

The Dedan environment has been effectively employed in the Warsaw University of
Technology’s Institute of Computer Science’s operating systems laboratory. The students
verify their synchronization solutions during classes.

Supplementary Materials: The Dedan program is available online at http://staff.ii.pw.edu.pl/de-
dan/files/DedAn.zip (accessed on 30 January 2022). Examples of the IMDS systems in the source
code are available at http://staff.ii.pw.edu.pl/dedan/files/examples.zip (accessed on 30 January
2022).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Sensors 2022, 22, 1157 35 of 38

Appendix A. Proof of Equivalence between T-IMDS and UTA Implementation
We use references to the enumeration numbers in Sections 4.2 (T-IMDS Semantics),

5.4 (UTA Semantics), and 6.2 (Translation Rules).
1. The initial T-IMDS configuration Tt0 includes the states of all nodes (4.2.11). The ini-

tial compound location of the set of all UTA node automata contains all initial loca-
tions, and every initial location p0 = (s,v0) corresponds to the initial state of the imple-
mented node s. Consequently, initial states of all nodes are implemented.

2. The initial T-IMDS configuration Tt0 includes the messages of all agents (4.2.11). The
initial compound location of the set of all UTA channel automata contains the idle
locations, except one channel automaton for every agent, whose initial location is
send.

3. The initial T-IMDS configuration Tt0 includes the messages of all agents (4.2.11). The
UTA variables storing the called services of the agents, directed to individual node
automata, are equal to none, except one variable for every agent, whose initial name
appoints the initial node of the agent and the value corresponds to the service con-
tained in the initial message (6.2.6). This feature, along with the previous point, en-
sures that each agent has its initial message directed to the node of its origin. Thus,
initial messages of all agents are implemented.

4. All UTA channel automata, except those holding initial agent messages are in idle
location (6.2.24), and the transition outgoing from this location has the channel re-
ceive operation ch_a_s1_s2? enabled, so all those channels are ready to accept mes-
sages for their transfer.

5. In every UTA channel automaton implementing T-IMDS channel (a,s), that is in
send location, the UTA channel send operation ch(a,s)_a_s! is enabled on the transition
outgoing from the send location (6.2.24).

6. All the time values in Tt0 are 0 (4.2.11). UTA clock values: the value of every UTA cs
implementing cts is initially 0, the value of every UTA cch implementing ctch is initially
0 (5.4.2).

7. If there is a matching pair (minp,pinp) then the action λ = ((minp,pinp),(m,p)) triggered by
the pair (minp,pinp) can be executed, i.e., a progress transition replaces pinp with pλt, and
minp with minpλt (4.2.18). Likewise, in UTA, minp denotes that the variable a_s == s_r and
channel send operation ch(a,s)_a_s! in channel (a,s) automaton is enabled (6.2.9).
Matching (minp,pinp) denotes that channel receive operation ch(a,→s)_a_s? in node s au-
tomaton is enabled (6.2.20). There are simultaneous transitions executed from send to
idle in channel (a,s) automaton and from pinp to pλt in node s automaton. The value
of the variable a_s remains s_r (6.2.20). The location pλt implements the pλt derivative
of the state p (5.2.7) and the pair (pλt,a_s == s_r) implements minpλt (6.2.10); therefore,
the transition replaces (minp,pinp) with (minpλt,pλt). As the channel (a,s) automaton lo-
cation becomes idle and channel send operation ch(a,s)_a_s! is no longer enabled, the
minp message disappears (6.2.9). Instead, the channel automaton in its idle location has
the channel receive operations ch(a,s)_a_si_s? enabled, which means that the channel
is ready to accept the next message to transfer (6.2.24).

8. If a pair (mλe,pλe) exists in T-IMDS configuration Tt, then the progress transition can
be executed that replaces mλe with mchλ and pλe with p (6.2.22). The state derivative pλe
is implemented in UTA as the location pλe (6.2.8) and the mλe is implemented as the
pair (pλe, a_s==s_r) (6.2.11). The transition in UTA is enabled by the channel send op-
eration ch(a,sout)_a_si_s!, where the output message of the action λ is m=(a,sout,rout)
(6.2.24). As all the channels for agent a are ready to accept a message (they are in idle
location so their channel receive operations ch(a,sout)_a_s_sj! are enabled), the channel
automaton transferring messages to the node sout is among them. Thus, the transition
implementing replacement of (mλe,pλe) with (mchλ,p) can be executed (6.2.22). Once ex-
ecuted, the location p implementing the output state p (6.2.2) is reached and the im-
plementation of the message m is inserted into a channel, i.e., the pair (p,a_sout ==

Sensors 2022, 22, 1157 36 of 38

sout_rout) occurs (the variable sout is set on the duration end transition 6.2.21). The chan-
nel automaton left the idle location and reached the wait location in which a channel
delay is counted (6.2.24). If the delay is 0, the channel automaton reaches the send
location immediately (location wait does not appear in the channel automaton).

9. If there are more than one T-IMDS progress transitions enabled (previous points 8
and 9), one of them is chosen in a non-deterministic way (4.2.22). The same rule ap-
plies to non-deterministic choice between the corresponding progress transitions in
UTA (5.4.6).

10. If a pair (minpλt,pλt) exists in T-IMDS configuration Tt, then either the timed transition
is followed that advances all the time values (of nodes and channels) at least by the
value of a least lower time constraint minus the time already spent in the derivative
pλt/mchλ (all action durations and all channel delays), at most by the value of a greatest
upper time constraint, leaving the pair (minpλt,pλt) unchanged (6.2.23); or the progress
transition can be executed that replaces minpλt with mλe and pλt with pλe, if the node
time value is between the lower and upper time constraint of the action λ (6.2.21). In
UTA, the situation is alike: for all locations with time invariant (there are only pλt and
wait such locations) either a timed transition less than minimum time invariant minus
its clock value (5.4.3a), or the progress transition to pλe is executed (5.4.3b). The pro-
gress transition assigns a_sout == sout_rout (6.2.21); therefore, the pair (pλt,a_sout == sout_rout)
is reached which implements mλe (6.2.11).

11. If a derivative mchλ exists in T-IMDS configuration Tt, then either the timed transition
is followed that advances all the time values (of nodes and channels), at least by the
value of a least lower time constraint minus the time already spent in the derivative
pλt/mchλ (all action durations and all channel delays), at most by the value of a greatest
upper time constraint, leaving the pair (minpλt,pλt) unchanged (6.2.23); or the progress
transition can be executed that replaces mchλ with m, if the node time value is between
the lower and upper time constraint of the channel ch delay (6.2.24). In UTA, the sit-
uation is the same: for all locations with time invariant (there are only pλt and wait
such locations) either a timed transition less than minimum time invariant minus its
clock value (5.4.3a), or the progress transition to pλe is executed (5.4.3b). The progress
transition changes the location of the channel ch automaton from wait to send (6.2.24);
therefore, the implementation of m is reached (send,a_sout == sout_rout) (6.2.9—m is minp
for the next action).

12. In both T-IMDS timed transitions mentioned in points 10 and 11, the UTA timed
transition can be made by the value that leaves the time region the same or advances
the region to its successor, which does not reach the lower bound of any progress
transition (4.2.23, 6.2.23). In such a situation, only the next timed transition must be
executed. A sequence of such timed transition in UTA implements a minimum time
shift in T-IMDS, after which at least one progress transition can be executed.

13. If at least one progress transition is enabled in T-IMDS, it has a priority over any
timed transition (6.2.22). Therefore, it is in UTA, because urgent channels are used on
every progress transition (5.4.4, 5.4.5).

References
1. Daszczuk, W.B. Communication and Resource Deadlock Analysis using IMDS Formalism and Model Checking. Comput. J. 2017,

60, 729–750. https://doi.org/10.1093/comjnl/bxw099.
2. Daszczuk, W.B. Specification and Verification in Integrated Model of Distributed Systems (IMDS). Computers 2018, 7, 65.

https://doi.org/10.3390/computers7040065.
3. Holzmann, G.J. Tutorial: Proving properties of concurrent systems with SPIN. In Proceedings of the 6th International

Conference on Concurrency Theory, CONCUR’95, Philadelphia, PA, USA, 21–24 August 1995; Springer: Berlin/Heidelberg,
Germany, 1995; pp. 453–455. https://doi.org/10.1007/3-540-60218-6_34.

4. Zielonka, W. Notes on finite asynchronous automata. RAIRO-Theor. Inform. Appl. 1987, 21, 99–135.
https://doi.org/10.1051/ita/1987210200991.

5. Jia, W.; Zhou, W. Distributed Network Systems. From Concepts to Implementations; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 15. https://doi.org/10.1007/b102545.

Sensors 2022, 22, 1157 37 of 38

6. Clarke, E.M.; Grumberg, O.; Peled, D.A. Model Checking; MIT Press: Cambridge, MA, USA, 1999.
7. Kern, C.; Greenstreet, M.R. Formal verification in hardware design: a survey. ACM Trans. Des. Autom. Electron. Syst. 1999, 4,

123–193. https://doi.org/10.1145/307988.307989.
8. Inverso, O.; Nguyen, T.L.; Fischer, B.; La Torre, S.; Parlato, G. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-

threaded C-Programs. In Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Lincoln, NE, USA, 9–13 November 2015; IEEE: New York, NY, USA, 2015; pp. 807–812.
https://doi.org/10.1109/ASE.2015.108.

9. Kaveh, N. Using Model Checking to Detect Deadlocks in Distributed Object Systems. In Proceedings of the 2nd International
Workshop on Distributed Objects, Davis, CA, USA, 2–3 November 2000; Emmerich, W., Tai, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 1999; pp. 116–128. https://doi.org/10.1007/3-540-45254-0_11.

10. Arcaini, P.; Gargantini, A.; Riccobene, E. AsmetaSMV: A Model Checker for AsmetaL Models–Tutorial; Report, Università degli
Studi di Milano, Dipartimento di Tecnologie dell'Informazione. 2009. Available online:
https://air.unimi.it/retrieve/handle/2434/69105/96882/Tutorial_AsmetaSMV.pdf (acccessed on 30 January 2022)

11. Yang, Y.; Chen, X.; Gopalakrishnan, G. Inspect: A Runtime Model Checker for Multithreaded C Programs, Report UUCS-08-004;
University of Utah: Salt Lake City, UT, USA, 2008. Available online: http://www.cs.utah.edu/docs/techreports/2008/pdf/UUCS-
08-004.pdf (accessed on 1.02.2022)

12. Podelski, A.; Rybalchenko, A. Software Model Checking of Liveness Properties via Transition Invariants, Research Report MPI–I–2003–
2–00; Max Planck Institut für Informatik: Saarbrücken, Germany, 2003. Available online:
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_1819221 (accessed on 30 January 2022)

13. Behrmann, G.; David, A.; Larsen, K.G.; Pettersson, P.; Yi, W. Developing UPPAAL over 15 years. Softw. Pract. Exp. 2011, 41, 133–
142. https://doi.org/10.1002/spe.1006.

14. Behrmann, G.; David, A.; Larsen, K.G. A Tutorial on Uppaal 4.0; Aalborg University: Aalborg, Denmark, 2006. Available online:
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf (accessed on 30 January 2022).

15. Daszczuk, W.B. Evaluation of temporal formulas based on “Checking By Spheres.” In Proceedings of the Euromicro Symposium
on Digital Systems Design, Warsaw, Poland, 4–6 September 2001; IEEE: New York, NY, USA, 2001; pp. 158–164.
https://doi.org/10.1109/DSD.2001.952267.

16. Holzmann, G.J. The model checker SPIN. IEEE Trans. Softw. Eng. 1997, 23, 279–295. https://doi.org/10.1109/32.588521.
17. Cimatti, A.; Clarke, E.M.; Giunchiglia, F.; Roveri, M. NUSMV: A new symbolic model checker. Int. J. Softw. Tools Technol. Transf.

2000, 2, 410–425. https://doi.org/10.1007/s100090050046.
18. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. https://doi.org/10.1016/0304-

3975(94)90010-8.
19. Bérard, B.; Cassez, F.; Haddad, S.; Lime, D.; Roux, O.H. Comparison of the Expressiveness of Timed Automata and Time Petri

Nets. In Proceedings of the Third International Conference, FORMATS 2005, Uppsala, Sweden, 26–28 September 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 211–225. https://doi.org/10.1007/11603009_17.

20. Popescu, C.; Martinez Lastra, J.L. Formal Methods in Factory Automation. In Factory Automation; Silvestre-Blanes, J., Ed.; InTech:
Rijeka, Croatia, 2010; pp. 463–475. https://doi.org/10.5772/9526.

21. Daszczuk, W.B. Threefold Analysis of Distributed Systems: IMDS, Petri Net and Distributed Automata DA3. In Proceedings of
the 37th IEEE Software Engineering Workshop, Federated Conference on Computer Science and Information Systems,
FEDCSIS’17, Prague, Czech Republic, 3–6 September 2017; IEEE Comput. Soc. Press: New York, NY, USA, 2017; pp. 377–386.
https://doi.org/10.15439/2017F32.

22. Daszczuk, W.B. Siphon-based deadlock detection in Integrated Model of Distributed Systems (IMDS). In Proceedings of the
Federated Conference on Computer Science and Information Systems, 3rd Workshop on Constraint Programming and
Operation Research Applications (CPORA’18), Poznań, Poland, 9–12 September 2018; IEEE: New York, NY, USA, 2018; pp.
425–435. https://doi.org/10.15439/2018F114.

23. Bérard, B. An Introduction to Timed Automata. In Control of Discrete-Event Systems; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 169–187. https://doi.org/10.1007/978-1-4471-4276-8_9.

24. Glabbeek, R.J.; Goltz, U. Equivalences and refinement. In Proceedings of the LITP Spring School on Theoretical Computer
Science La Roche Posay, France, 23–27 April 1990; Springer: Berlin/Heidelberg, Germany, 1990; pp. 309–333.
https://doi.org/10.1007/3-540-53479-2_13.

25. Lime, D.; Roux, O.H. Model Checking of Time Petri Nets Using the State Class Timed Automaton. Discret. Event Dyn. Syst. 2006,
16, 179–205. https://doi.org/10.1007/s10626-006-8133-9.

26. Cassez, F.; Roux, O.H. Structural translation from Time Petri Nets to Timed Automata. J. Syst. Softw. 2006, 79, 1456–1468.
https://doi.org/10.1016/j.jss.2005.12.021.

27. Henzinger, T.A.; Ho, P.-H.; Wong-Toi, H. A user guide to HyTech. In Proceedings of the TACAS 95: International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems, Aarhus, Denmark, 19–20 May 1995; Springer:
Berlin/Heidelberg, Germany, 1995; pp. 41–71. https://doi.org/10.1007/3-540-60630-0_3.

28. André, É; Fribourg, L.; Kühne, U.; Soulat, R. IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling Problems. In
Proceedings of the FM 2012: International Symposium on Formal Methods, Paris, France, 27–31 August 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 33–36. https://doi.org/10.1007/978-3-642-32759-9_6.

Sensors 2022, 22, 1157 38 of 38

29. Laroussinie, F.; Markey, N.; Schnoebelen, P. Efficient timed model checking for discrete-time systems. Theor. Comput. Sci. 2006,
353, 249–271. https://doi.org/10.1016/j.tcs.2005.11.020.

30. Krystosik, A.; Turlej, D. Emlan: A Language for model checking of embedded systems software. IFAC Proc. Vol. 2006, 39, 126–
131. https://doi.org/10.1016/S1474-6670(17)30171-4.

31. Emerson, E.A.; Mok, A.K.; Sistla, A.P.; Srinivasan, J. Quantitative temporal reasoning. Real-Time Syst. 1992, 4, 331–352.
https://doi.org/10.1007/BF00355298.

32. Gluchowski, P. Languages of CTL and RTCTL Calculi in Real-Time Analysis of a System Described by a Fault Tree with Time
Dependencies. In Proceedings of the 2009 Fourth International Conference on Dependability of Computer Systems, DepCoS-
RELCOMEX ’09, Brunów, Poland, 30 June–2 July 2009; IEEE: New York, NY, USA, 2009; pp. 33–41.
https://doi.org/10.1109/DepCoS-RELCOMEX.2009.12.

33. Frossl, J.; Gerlach, J.; Kropf, T. An efficient algorithm for real-time symbolic model checking. In Proceedings of the ED&TC
European Design and Test Conference, Paris, France, 11–14 March 1996; IEEE Computer Society Press: New York, NY, USA,
1996; pp. 15–20. https://doi.org/10.1109/EDTC.1996.494120.

34. Audemard, G.; Cimatti, A.; Kornilowicz, A.; Sebastiani, R. Bounded Model Checking for Timed Systems. In Proceedings of the
FORTE 2002: International Conference on Formal Techniques for Networked and Distributed Systems, Houston, Texas, USA,
11–14 November 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 243–259. https://doi.org/10.1007/3-540-36135-9_16.

35. Ruf, J.; Kropf, T. Symbolic Verification and Analysis of Discrete Timed Systems. Form. Methods Syst. Des. 2003, 23, 67–108.
https://doi.org/10.1023/A:1024437214071.

36. Winskel, G.; Nielsen, M. Models for Concurrency. Handbook of Logic in Computer Science; Oxford University Press: Oxford, UK,
1995; Volume 4.

37. Bowman, H. Time and Action Lock Freedom Properties for Timed Automata. In Proceedings of the 21st International
Conference on Formal Techniques for Networked and Distributed Systems, FORTE 2001, Cheju Island, Korea, 28–31 August
2001; Kluwer Academic Publishers: Boston, MA, USA, 2001; pp. 119–134. https://doi.org/10.1007/0-306-47003-9_8.

38. Keller, R.M. Formal verification of parallel programs. Commun. ACM. 1976, 19, 371–384. https://doi.org/10.1145/360248.360251.
39. Reniers, M.A.; Willemse, T.A.C. Folk Theorems on the Correspondence between State-Based and Event-Based Systems. In

Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
22–28 January 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6543, pp. 494–505. https://doi.org/10.1007/978-3-642-
18381-2_41.

40. Daszczuk, W.B. Graphic modeling in Distributed Autonomous and Asynchronous Automata (DA3). Softw. Syst. Model. 2021, 20,
36. https://doi.org/10.1007/s10270-021-00917-7.

41. Chrobot, S. Modelling communication in distributed systems. In Proceedings of the International Conference on Parallel
Computing in Electrical Engineering PARELEC 2002, Warsaw, Poland, 25 September 2002; IEEE Comput. Soc.: New York, NY,
USA, 2002; pp. 55–60. https://doi.org/10.1109/PCEE.2002.1115200.

42. Daszczuk, W.B.; Bielecki, M.; Michalski, J. Rybu: Imperative-style Preprocessor for Verification of Distributed Systems in the
Dedan Environment. In Proceedings of the KKIO’17–Software Engineering Conference, Rzeszów, Poland, 14–16 September
2017; Polish Information Processing Society: Warshaw, Poland, 2017; pp. 135–150.

43. Penczek, W.; Szreter, M.; Gerth, R.; Kuiper, R. Improving Partial Order Reductions for Universal Branching Time Properties.
Fundam. Inform. 2000, 43, 245–267. https://doi.org/10.3233/FI-2000-43123413.

44. Lanese, I.; Montanari, U. Hoare vs Milner: Comparing Synchronizations in a Graphical Framework With Mobility. Electron.
Notes Theor. Comput. Sci. 2006, 154, 55–72. https://doi.org/10.1016/j.entcs.2005.03.032.

45. May, D. Occam. ACM Sigplan Not. 1983, 18, 69–79. https://doi.org/10.1145/948176.948183.
46. Daszczuk, W.B. Asynchronous Specification of Production Cell Benchmark in Integrated Model of Distributed Systems. In

Proceedings of the 23rd International Symposium on Methodologies for Intelligent Systems, ISMIS 2017, Warsaw, Poland, 26–
29 June 2017; Bembenik, R., Skonieczny, L., Protaziuk, G., Kryszkiewicz, M., and Rybinski, H., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; Volume 40, pp. 115–129. https://doi.org/10.1007/978-3-319-77604-0_9.

47. Daszczuk, W.B. Static and Dynamic Verification of Space Systems Using Asynchronous Observer Agents. Sensors 2021, 21, 4541.
https://doi.org/10.3390/s21134541.

48. Czejdo, B.; Bhattacharya, S.; Baszun, M.; Daszczuk, W.B. Improving Resilience of Autonomous Moving Platforms by real-time
analysis of their Cooperation. Autobusy-TEST 2016, 17, 1294–1301. Available online:
http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-6ab8a90d-13a7-429b-
9ecd33cce2801f6f/c/10_L_CZEJDO_BHATTACHARYA_BASZUN_DASZCZUK.pdf (accessed on 30 January 2022).

49. Lee, G.M.; Crespi, N.; Choi, J.K.; Boussard, M. Internet of Things. In Evolution of Telecommunication Services; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 257–282. https://doi.org/10.1007/978-3-642-41569-2_13.

50. Grosskopf, A.; Decker, G.; Weske, M. The Process: Business Process Modeling Using BPMN; Meghan-Kiffer Press: Tampa, FL, USA,
2018; p. 182, ISBN 9780929652269.

51. Jałowiec, J. Translation of Business Process Model and Notation into Integrated Model of Distributed Systems. Engineer Thesis,
Department of Electronics and Inf. Technology, Warsaw University of Technology, Warsaw, Poland, 2019. Available online:
https://repo.pw.edu.pl/info/bachelor/WUT31de757656da422c87be61e7ede00630/?r=diploma&tab=&lang=pl (accessed on 30
January 2022)

