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Abstract—The problem of how to adjust speed of vehicles
so that they can arrive at the intersection when the light is
green can be solved by means of Green Light Optimal Speed
Advisory (GLOSA). The existing GLOSA approaches are single-
segment, that is, they consider traffic lights independently by
providing vehicles with the optimal speed for the segment ahead
of the nearest traffic lights. In this article we introduce a new
approach—a multi segment GLOSA—according to which several
lights in sequence on a vehicle’s route are taken into account.
The speed optimisation process is performed using a genetic
algorithm. We assume that a vehicle has access to all traffic
light phase schedules that it will encounter on its route. The
route is composed of segments divided by traffic lights. The
proposed GLOSA provides a driver with speed advisory for each
segment according to selected preferences like minimisation of
total traveling time or fuel consumption. We demonstrate, that in
free-flow conditions such multi-segment GLOSA results in much
better results when compared with single-segment approach.

Keywords—ITS; Traffic lights; GLOSA; Smart City; Optimisa-
tion; Genetic Algorithms.

I. INTRODUCTION

The aim of Intelligent Transportation Systems (ITS) is
to optimise transportation efficiency and improve its safety
through the use of technology. Such systems allow road users
to be better informed and consequently make better trip-
related decisions, leading to reduced travel time, fuel con-
sumption and tailpipe emissions. Emissions of carbon dioxide
(CO2) (more than 99.8% of carbon in the fuel is emitted
as CO2) are linearly related to fuel consumption [1], [2],
therefore, fuel economy improvement reduces the emissions.
Minimising acceleration and braking significantly improves
the economy. Slow-and-go driving pattern is always better
than stop-and-go—about twenty percent more fuel will be
used to accelerate from a full stop than from eight kilometres
per hour [3]. In general, fuel-efficient driving strategy is to
anticipate what is happening ahead, and drive in such a way
so as to avoid stop-and-go movement pattern. Such a pattern
is often caused by traffic lights, which have to distribute green
time amongst the competing traffic flows. Hence, improving
traffic signalisation so that traffic lights are synchronised with
vehicle traffic and vice versa is also key issue from fuel-
efficiency perspective. Conventional traffic light systems use
pre-programmed timing schedules [4]. In areas were traffic
volumes are unpredictable or rapidly changing smoother flows
can be created by means of adaptive traffic lights [5]. Such
lights adjust signal timing parameters in real-time, to adapt
to traffic conditions, hence, they are ideally suited in areas
were traffic volumes are unpredictable or rapidly changing. In

the U.S. only a handful of adaptive systems were installed [6].
The other way around—traffic synchronisation to given timing
schedules—can be achieved thanks to Green Light Optimal
Speed Advisory (GLOSA) systems. Such systems—typically
implemented as roadside message signs placed ahead from the
signal—provide drivers with optimal speed advisory. Drivers
can adjust their speed so that they arrive at the intersection
when the light is green [7]. However, due to the significant
costs and maintenance issues, only a small number of GLOSA
systems was installed worldwide [8]. Countdown timers at
traffic signals is an alternative approach allowing anticipated
driving, however, their efficiency is limited [8].

Significance of the access to traffic light phase schedule
by vehicles has been acknowledged by European and US
transportation authorities [8]. Such information allows vehicles
to calculate speed that will enable them to avoid stop-and-
go driving patterns due to the lights, hence, is crucial for
GLOSA systems. Recently, an infrastructure-less approach to
access the schedules was proposed in [8]. The system called
SignalGuru relies on a collection of windshield-mounted mo-
bile phones, that allow to collaboratively learn the schedules.
In the future this information will be available via Vehicular
Ad Hoc Networks (VANETs) which will communicate with
traffic lights equipped with wireless communications capabil-
ities. Information about traffic light phase will most likely
be included in VANETs-based cooperative traffic information
systems (CTIS). In such systems traffic-related information
is collected individually by vehicles and exchanged between
themselves using wireless networks [9].

In this work we propose a new approach to GLOSA. Unlike
in the literature, where traffic lights are considered indepen-
dently (hereafter referred to as single-segment GLOSA) we
assume that several lights in sequence on a vehicle’s route
are taken into account (hereafter referred to as multi-segment
GLOSA). The route is composed of segments divided by traffic
lights. In the single-segment approach speed advisory is given
for the segment preceding the nearest lights (see Fig. 1a). In the
multi-segment GLOSA the vehicle calculates a set of optimal
speeds (one speed per each segment) before entering the first
segment (see Fig. 1b).

We assume that vehicles have access to all traffic light
schedules. Naturally, the proposed approach works best in
free-flow traffic conditions with pre-timed traffic lights. Such
conditions can be typically found in during off-peak hours or in
restricted traffic lanes (e.g. bus-only lanes or high-occupancy
vehicle lanes). In case of semi-actuated lights the system can
still operate under moderate traffic. However, it might require
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Fig. 1. GLOSA overview. In the single-segment approach (a) a vehicle
calculates the optimal approaching speed to traffic lights placed at the end
of current segment. In the multi-segment approach (b) a vehicle calculates a
set of optimal speeds corresponding to all segments before entering the first
segment.

additional re-calculations.

The main contribution of this article is as follows: (i) we
introduce a novel infrastructure-less multi-segment GLOSA
approach, (ii) we demonstrate how the optimisation problem
of the approach can be solved using a genetic algorithm (GA),
and (iii) we show, that in free-flow traffic conditions multi-
segment GLOSA gives much better results than single-segment
approach.

The paper is structured as follows. The next section dis-
cusses related work in the area. Section III introduces the
multi-segment speed advisory. In particular, optimisation prob-
lem found in the multi-segment approach is given. Section IV
explains how the problem can be solved using a GA. Section V
contains specification of parameters and simulation results. The
final section summarises the main conclusion.

II. BACKGROUND AND RELATED WORK

Vehicle tailpipe emissions and its fuel utilisation are the
single largest human-made source of carbon dioxide, methane
and nitrous oxide [10]. According to [2] idle emission rates are
low compared with acceleration and cruise emission rates—
for instance, the average emissions during acceleration are
ten times grater than during idle for carbon monoxide and
nitric oxide, are five time greater for carbon dioxide and
hydrocarbons. Hence, methods for reducing fuel consumption
and tailpipe emissions should focus on smoothing stop-and-go
driving pattern so that vehicles move with speed as constant
as possible [2], [11]. This can be done by improving traffic
signalisation so that traffic lights are synchronised with vehicle
traffic and vice versa, that is vehicles can adapt by means
of GLOSA systems their speed so that they arrive at the
intersection when the light is green.

Traffic light control is typically in either pre-timed or ac-
tuated mode or some combination of the two [5]. In pre-timed
control cycle length, phase plan, and phase times are predeter-
mined and fixed. Pre-timed approach suites well closely spaced
intersections with consistent traffic volumes and patterns [5].
In actuated control phase time is based on detection data.
Actuation is typically achieved by vehicle detection devices
(e.g. inductive loops) and pedestrian push buttons. However,
signal timing is subject to a set of pre-defined parameters like
maximum green duration, passage time, etc. [12]. Adaptive
traffic lights belong to the latest generation of traffic control.
They adjust signal timing parameters in real-time, to adapt
to real-time traffic conditions, hence, their performance de-
pends on the quality of detection systems [5]. Such systems
can improve performance by five to thirty percent in areas
with unpredictable or rapidly changing traffic volumes [5].
However, in the U.S. only a handful of adaptive systems were
installed [6]. Commercially available adaptive controls include
SCATS, SCOOT, RHODS and OPAC [4].

A. Adaptive traffic lights

Several approaches for optimisation of traffic light schedule
have been proposed in the research literature. Good overview
of existing work can be found in [13], [14]. The proposed
methods are based on swarm intelligence (e.g. [15]), fuzzy
logic ([16]), evolutionary computation ([17]), decision support
systems ([18]), reinforced learning ([19]), and neural networks
([20]).

B. GLOSA

Traditional GLOSA systems implemented as roadside mes-
sage signs placed ahead from the signal are not popular
due to significant costs and maintenance issues [8]. The
next-generation approaches assume integration of Dedicated
Short Range Communications (DSRC) antennas into traffic
lights. DSRC is a two-way short- to- medium-range wireless
communication channel designed for VANETs [21]. The ap-
plication of wireless technology to moving vehicles enables
the creation of VANETs. Two particular transmission modes
present in VANETs are suitable for GLOSA: vehicle-to-vehicle
(V2V)—communication among nearby vehicles and vehicle-
to-infrastructure (V2I)—communication between vehicles and
roadway infrastructure. Several works have already investi-
gated the use of V2V and V2I communication for GLOSA
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Fig. 2. Optimisation problem and solution encoding: calculation of speed advisory for three segments (a), example of solution encoding (b).

(e.g. [7], [22], [23]). Recently, and approach combining
GLOSA and adaptive traffic light control was proposed in [24].
The authors propose electronic toll collection technology to
communicate vehicles with traffic lights. To the best of our
knowledge all GLOSA systems found in the literature advise
speed to the nearest lights. In this work, we argue that multi-
segment advisory (i.e. a set of adjacent lights is considered)
gives better results.

III. MULTI-SEGMENT GLOSA

We assume that traffic lights are pre-timed and traffic
conditions allow vehicles to adapt their speed. In addition,
vehicles have access to traffic light schedules. A simplified
model of fuel consumption is used. The model takes into
account speed differences between segments—fuel efficiency
is maximised if speed is as constant as possible. That is, full
stop at traffic lights and strong acceleration are avoided. The
way the speed advise is implemented in vehicles is beyond
the scope of this article, that is, we assume that each vehicle
uses some system that allows following the advise (e.g. via an
advanced cruise control system).

The problem is defined as follows: given a list of n
segments S = {s1, . . . , sn}, their length li, 1 ≤ i ≤ n,
minimum and maximum speed allowed on the segments
[minSpeedi,maxSpeedi], and traffic signal schedules tsi at
the end of each segment i, defining the status of traffic
light i at time t, tsi(t) = {GREEN,RED}, the goal is
to find the advisory speed for each segment advSpeed =
{advSpeed1, . . . , advSpeedn} such that it will minimise cer-
tain objective f(advSpeed) (e.g. fuel consumption or traveling
time) of a trip that starts with the first segment s1 and finishes
at the end of the last segment sn (see Fig. 2a):

min
∑n

i=1 f(advSpeedi), (1)
s.t. minSpeedi ≤ advSpeedi ≤ maxSpeedi, (2)

tsi(
∑i

j=1 lj ∗ advSpeedj) = GREEN, (3)
∀i ∈ [1, n]. (4)

The advisory for each segment is defined as the average speed
that a vehicle should travel on the segment.

IV. GA FOR MULTI-SEGMENT GLOSA

In this section we start with the motivation for the ap-
plication of evolutionary heuristic method for solving the
optimisation problem related to the proposed multi-segment
GLOSA. Next, we describe the method—a simple GA—used
in this work. Finally, we explain our solution encoding and we
define two fitness functions.

A. Motivation

The computational problem of finding the optimal set of
speeds for our problem requires searching through a huge
number of possibilities for solutions. Let us assume that n is
the number of segments and sr is the speed range (the number
of available speeds). Then, the number of possible solutions
(nps) can be calculated as follows:

nps = srn. (5)

For instance, if the maximum speed is fifty kilometres per
hour, the minimum speed is thirty-five kilometres per hour and
speed gradation is one kilometre per hour, than the number
of possible solutions equals to 224 for the problem with six
segments and 240 for the problem with ten segments. The
search space is thus far too big to be searched exhaustively
in reasonable time.

B. Method

In this work we apply a simple GA which has the following
operators: selection, single point crossover, and mutation. The
algorithm works as follows [25], [26]:

1) A population of candidate solutions to the problem (p n-bit
chromosomes) is randomly generated.

2) Fitness f(s) of each candidate solution s in the population
is calculated (see Sec. IV-D for description of the function).



3) The following steps are repeated until p offspring have been
created:
- A pair of parent chromosomes is selected from the current
population. The probability of selection is an increasing
function of fitness, the same chromosome can be selected
more than once to become a parent.
- With probability pc the pair is crossed over at a single
randomly chosen point to form two offspring. In case when
crossover does not take place, two offspring are copies of
their parents.
- With probability pm two offspring are mutated at each
locus. The resulting chromosomes are placed in the new
population. If p is odd, one new population member can
be discarded at random.

4) The new population replaces the current population.
5) Go to step 2.

C. Solution encoding

In this work we use an integer representation, where each
gene represents speed on a given segment. Hence, the number
of genes equals to the number of road segments of a given
problem instance (see Fig. 2a).

D. Fitness function

Fitness function assigns a score (fitness) to candidate solu-
tions to a given problem. The score depends on how well that
solution solves the problem at hand. In the problem defined in
this paper the objective is to find a set of speeds such as fuel
consumption is minimised. We assume, that this is achieved by
keeping the speed as constant as possible and avoiding coming
to a full stop at traffic lights. The fitness function (hereafter
referred to as F-ECO) is defined as follows:

FECO = v1 +

m∑
i=2

energyLossi, (6)

where v1 is the initial speed (i.e. speed on the first segment),
m is the number of segments, and energyLossi is based on
the speed difference between the two consecutive segments (i
and i+ 1) and the fact whether a vehicle came to a full stop
or not. It is defined as follows: if at the end of segment i a
vehicle makes a full stop before the light turns green again
energyLossi is calculated as follows:

energyLossi = vi+1 (7)

Otherwise

energyLossi =

{
vi+1 − vi if vi+1 > vi
0 if vi+1 <= vi.

For i = m the speed of the next segment vi+1 (not covered
by the solution) is set to vlast parameter (artificial value).

As an example let us consider the two solutions shown
in Fig. 2b. The first solution provides the following advice:
40km/h in segment s1, 60km/h in s2, and 50km/h in s3.
The second solution advices: 60km/h in segment s1, 40km/h
in s2, and 45km/h in s3. The parameter vlast is set to 40. Let
us assume that such a light schedule is given that if a vehicle

TABLE I. SPECIFICATION OF PARAMETERS FOR GA AND
SIMULATIONS.

G
A

Population size (p) 100
Termination condition 700 generations
Number of independent runs 100
Selection binary tournament
Crossover operator one-point, pc=0.9
Mutation operator uniform, pm = 0.01
Elitism 2 individuals

Si
m

ul
at

io
ns

Number of segments 3–15
Speed limit 50km/h or 70 km/h (equal prob.)
Minimum speed 35 km/h if speed limit is 50 km/h
Minimum speed 40 km/h if speed limit is 70 km/h
Segment length 500m
Min. duration of green light 20s
Max. duration of green light 40s
Min. duration of red light 15s
Max. duration of red light 25s
Speed gradation 1km/h
vlast 40km/h
# of roads (k) 1, 100

followed the advice given by the first solution it would stop
at lights placed at the end of the second segment. If a vehicle
followed the advice given by the second solution it would stop
at the end of the third segment. In the first case the value of
FECO would be equal to 110, while in the second one it would
be 105.

For purposes of comparison second fitness function (here-
after referred to as F-TT) evaluating the solution under the
criterion of traveling time was defined:

FTT =

m∑
i=1

(tti + wti), (8)

where tti is traveling time in segment i and wti is waiting
time at traffic lights placed at the end of segment i.

V. COMPUTATIONAL EXPERIMENTS

In this section we report the evaluation of GA-based multi-
segment GLOSA. In particular, we compare our approach with
single-segment GLOSA.

A. GLOSA approaches

In this article we compare following GLOSA approaches:

• Approach FUEL: multi-segment GLOSA, with min-
imisation of fuel consumption as the objective
(method: GA-based optimisation with F-ECO fitness
function).

• Approach TIME: multi-segment GLOSA, with min-
imisation of traveling time as the objective (method:
GA-based optimisation with F-TT fitness function).

• Approach FUEL-IND: single-segment optimisation.

The first two approaches (FUEL/TIME) represent the
multi-segment GLOSA introduced in this article, i.e., they take
into account all segments on a vehicle’s route (see Fig. 1b).



Before entering the first segment of its trip a vehicle uses a
GA to compute speed advisory for all segments of the trip (see
Sec. III). The difference between FUEL and TIME approaches
is in the objectives, that is, according to the former the aim is
to minimise fuel consumption, while according to the latter the
goal is to minimise traveling time. The last approach—FUEL-
IND—is introduced for purposes of comparison between the
multi-segment and single-segment GLOSA. Unlike the first
two approaches, it calculates speed advisory on per-segment
basis, that is, it evaluates the speed for the single segment
immediately after entering the segment (see Fig. 1a). The
advisory for segment i is defined as a minimal speed that
will allow the vehicle to arrive at the end of the segment
when the light is green. Hence, the underlying objective of the
approach—minimisation of fuel consumption—is the same as
in the approach FUEL.

Solutions found with all approaches were evaluated using
F-ECO and F-TT functions. For instance, solutions found with
approach FUEL (driven by F-ECO fitness function) were also
evaluated using F-TT function.

B. Generation of problem instances

A problem instance consists of at least one road composed
of n segments. Each segment is specified by the following
parameters: length, minimum allowed speed, maximum al-
lowed speed (speed limit), and timing of traffic lights placed
at the end of the segment. A road composed on n segments
is randomly generated using parameters specified in the next
section. Size of a problem instance is defined by the number of
road segments that it consists of. In the experiments reported in
this article it ranges from three to fifteen segments. A problem
instance of size s was constructed by generating an additional
segment to a problem of size s − 1, that is, larger problems
were generated by extending smaller ones. For each problem
instance we generated k independent roads (hereafter referred
to as test cases). For example, if size of the problem instance
is six and k is set to one hundred, this means that the problem
instance is composed of one hundred independent roads with
six segments differing in traffic light schedules and distribution
of speed limits.

In the first step we report results of the experiments, where
k was set to one, while in the remaining steps k was set to
one hundred.

C. Evaluation of solutions

Each solution is evaluated under the assumption of traffic
conditions allowing vehicles to change their speed according
to the calculated advisory.

D. Experimental setup

Experimental parameters are specified in Table I. For each
problem instance one hundred independent runs were carried
out. Binary tournament, one-point crossover and uniform mu-
tation were used.

Experimental results are reported in three steps. In the first
step some preliminary results are presented and discussed. In
the second step we compare our multi-segment GLOSA with
single-segment speed advisory. In the final step we further
analyse multi-segment approach.
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E. Step1: preliminary results—k equal to one

Fig. 3 presents the best fitness values (i.e. mean value
calculated over the best fitness values found in all independent
runs of a GA) recorded at every generation for seven randomly
generated problem instances. The smallest instance consists of
five segments, while the largest case is composed of fifteen
segments. The best mean fitness scored in the final generation
ranges from 42.86 (three segments) to 87.15 (fifteen segments).

However, as illustrated in Fig. 4, problem instances of the
same size (i.e. composed of the same number of segments)
vary in terms of difficulty (the number of required GA gener-
ations to find the solution) and in terms of the solutions itself.
The figure compares nine problem instances, each composed
of seven segments.

Depending on the problem instance, the best mean fitness
found in the final generations ranges from 42 to 119. Therefore,
in the remaining experiments one hundred test cases were
generated for each problem size (i.e. k was set to one hundred).
The results were calculated as the mean value over all test cases
of a given problem instance.



TABLE III. NUMERICAL RESULTS FOR PROBLEM INSTANCES COMPOSED OF THREE TO FIFTEEN SEGMENTS. TWO APPROACHES COMPARED: FUEL
(F-ECO FITNESS FUNCTION) AND TIME (F-TT FITNESS FUNCTION).

approach FUEL approach FUEL approach FUEL approach TIME approach TIME
# of segments F-ECO (standard deviation), Q1/Q2/Q3 corresponding F-TT avr. # of generations F-TT corresponding F-ECO

3 48.98 (14.18), 40/43/49.5 126.59 35 105.23 66.32
4 49.89 (14.05), 41/46/50 167.21 70 138.74 70.08
5 50.34 (13.89), 42/46/51.5 207.91 110 173.24 72.17
6 51.07 (14.10), 43/47/52 248.37 153 207.22 74.91
7 51.85 (14.29), 44/47/52 288.17 192 241.71 76.64
8 52.29 (14.27), 44/48/52 328.41 239 276.84 81.16
9 53.24 (14.22), 46/48/53 369.35 262 311.01 83.79

10 54.05 (14.47), 47/50/53 409.85 310 346.07 87.30
11 55.06 (14.42), 47/51/56 449.38 336 380.64 91.34
12 55.69 (14.55), 47/51/57 490.58 404 416.99 91.45
13 56.78 (14.65), 48.5/52/58 531.15 401 453.08 94.01
14 57.77 (12.35), 49/53/59 568.83 415 487.41 99.89
15 59.01 (14.87), 50/55/61 609.15 455 521.40 106.83

TABLE II. MULTI-SEGMENT GLOSA (FUEL) VS. SINGLE-SEGMENT
GLOSA (FUEL-IND): COMPARISON OF PERFORMANCE MEASURED BY

F-ECO AND F-TT FUNCTIONS.

F-ECO F-TT
# of segments FUEL/FUEL-IND FUEL/FUEL-IND

3 48.98/54.88 (+12.00%) 126.59/134.18 (+5.99%)
4 49.89/61.40 (+23.07%) 167.21/178.52 (+6.76%)
5 50.34/66.44 (+31.98%) 207.91/223.10 (+7.30%)
6 51.07/73.01 (+42.96%) 248.37/267.60 (+7.74%)
7 51.85/78.71 (+51.80.%) 288.17/312.02 (+8.27%)
8 52.29/84.15 (+60.93%) 328.41/356.61 (+8.58%)
9 53.24/87.83 (+64.96%) 369.35/402.62 (+9.00%)

10 54.05/92.25 (+70.67%) 409.85/448.73 (+9.48%)
11 55.06/96.83 (+75.86%) 449.38/495.01(+10.15%)
12 55.69/102.72 (+84.44%) 490.58/540.00 (+10.07%)
13 56.78/109.25 (+92.40%) 531.15/584.30 (+10.00%)
14 57.77/114.17 (+97.62%) 568.83/629.06 (+10.58%)
15 59.01/118.84 (+101.38%) 609.15/674.22 (+10.68%)

F. Step 2: multi-segment GLOSA vs. single-segment GLOSA

The comparison between multi-segment GLOSA (repre-
sented by approach FUEL) and single-segment GLOSA (ap-
proach FUEL-IND) is made by evaluating the solutions with
F-ECO and F-TT functions. The results comparing the two
approaches are given in Table II. Both GLOSA were applied
to the same problem instances.

The speed advisory found with the multi-segment GLOSA
method is better when compared with the single-segment
approach, regardless the fitness function used as a performance
measure. Two general observations can be made. Firstly, the
bigger the problem is (i.e. the more segments a road is com-
posed of) the greater differences between the solutions can be
observed. Secondly, the differences are greater if performance
is measured using the F-ECO function. For instance, in a
three-segment problems the switch from multi-segment to one-
segment optimisation degraded performance by 12% according
to F-ECO (increase from 48.98 to 54.88) and by almost 6%
according to F-TT (increase from 126.59 to 134.18). In the
most complex problem instance (fifteen segments) degradation
was around 100% according to F-ECO and around 11%
according to F-TT.

G. Step 3: analysis of multi-segment GLOSA

In the previous step we demonstrated how multi-segment
GLOSA outperforms single-segment speed advisory. In this
section, we further analyse performance of the multi-segment
FUEL approach. The following results of are shown in Ta-
ble III: the average best fitness (F-ECO) with its standard

deviation and quartiles denoted by Q1, Q2 (median) and Q3,
additional performance evaluation of the solutions according
to the F-TT function, and the mean number of generations
after which the best solutions were found. In addition, for
purposes of comparison Table III presents the following results
for the alternative multi-segment TIME approach: the average
best fitness (F-TT) and performance of the solutions according
to the F-ECO function. In both cases (FUEL and TIME) the
average best fitness was calculated as the average value of
the best values found in each problem instance in the final
generation.

In general, when the objective was to minimise the F-
ECO function, the optimisation results range from 48.98 (three
segments) to 59.01 (fifteen segments) (F-ECO fitness values).
The corresponding traveling times (measured by the F-TT
function) ranged from 126.59 seconds (three segments) to
609.15 seconds (fifteen segments). When the objective was
to minimise the F-TT function, traveling times improved
(range 105.23–521.4). Naturally, corresponding performance
measured by F-ECO fitness increased (range 66.32–106.83).

VI. CONCLUSION

Keeping a constant speed as much as possible significantly
improves fuel economy and minimises tailpipe emissions.
However, traffic lights often impose stop-and-go movement
pattern, increasing fuel consumption and vehicle emissions.
Smoother driving in the presence of the lights can be achieved
by means of GLOSA systems. In this article we have intro-
duced a new infrastructure-less multi-segment GLOSA. The
main novelty of the proposal is that unlike the existing single-
segment systems that consider traffic lights independently, our
approach takes into account several lights in sequence on a
vehicle’s route. We have demonstrated how the optimisation
problem in our method can be solved using a GA. Finally,
we have shown, that in free-flow conditions the multi-segment
speed approach gives much better results than single-segment
GLOSA. Consequently, multi-segment speed advisory is the
best solution during off-peak hours or in restricted traffic lanes.
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