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Abstract— Modern malware uses advanced techniques to hide
from static and dynamic analysis tools. To achieve stealthiness
when attacking a mobile device, an effective approach is the
use of a covert channel built by two colluding applications to
exchange data locally. Since this process is tightly coupled with
the used hiding method, its detection is a challenging task, also
worsened by the very low transmission rates. As a consequence, it
is important to investigate how to reveal the presence of malicious
software using general indicators, such as the energy consumed
by the device. In this perspective, this paper aims to spot malware
covertly exchanging data using two detection methods based on
artificial intelligence tools, such as neural networks and decision
trees. To verify their effectiveness, seven covert channels have
been implemented and tested over a measurement framework
using Android devices. Experimental results show the feasibility
and effectiveness of the proposed approach to detect the hidden
data exchange between colluding applications.

Index Terms— Energy-based malware detection, covert
channels, colluding applications, neural networks, decision
trees.

I. INTRODUCTION

MODERN MALWARE uses advanced techniques to
defeat static analysis tools or live detection systems.

Even if designing a malware is nowadays considered quite
common [1], the most advanced programmers try to hide
malicious behaviors by using different techniques, such as
the repackaging of legitimate applications or the obfusca-
tion/ciphering of code. Besides, by automating such mech-
anisms, a single attacker can add malicious code to several
applications that may be sent to alternative markets. As a
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consequence, classical signature-based methods have limited
results [2].

One of the most advanced mechanisms used by malware
to exfiltrate information or to bypass the security frameworks
of mobile devices relies upon information-hiding techniques
to exchange data between different processes. Especially,
as in the case of smartphones, a local covert channel can be
used to setup a communication path between two colluding
applications to extract personal information [3], [4]. As it has
been observed in [5], mobile devices are particularly prone
to hidden-communication attacks due to their variety of hard-
ware resources, as they incorporate cameras, GPS, WLAN,
Bluetooth, cellular networks, and many sensors. Moreover,
malware developers turned a significant portion of their atten-
tion to mobile devices, leading to an increase of 1800% in
mobile malware over the past two years [6]. Thus, there is an
urge for research efforts to design original countermeasures
and enable early prevention. Unfortunately, this is very difficult
since the detection strictly depends on the type of covert
channel. For instance, exploiting electromagnetic signals to
covertly transmit data is very different from manipulating the
statistics of the available RAM to embed secrets [5]. Addi-
tionally, covert channels typically achieve limited bandwidths,
thus increasing the complexity of finding out whether a hidden
exchange is ongoing.

In this perspective, a promising approach aims at exploit-
ing general information to detect covert channels. A recent
debate has emerged about the possibility of using the power
consumption as an indicator to identify malicious activities.
Despite [7] claims that malware cannot be detected by high-
level applications measuring energy consumption of processes,
other works demonstrate that proper power measurements can
reveal some threats [8]–[10].

In this paper, we show the feasibility of using measure-
ments of the energy consumed by a device to detect malware
exploiting a covert channel. To this aim, we have implemented
five popular covert channels available in the literature targeting
the Android platform [4], [11], together with two new ones.
Further, we have developed an experimental setup to quantify
the energy consumption of the software components running
on a mobile device. In more details, we have used measure-
ments provided by the high-level model of PowerTutor [8]
together with values available in the /sys portion of the file
system [10], [12].
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To perform the detection, we have developed an approach
based on two well-known artificial intelligence tools, i.e.,
neural networks [13] and decision trees [14]. They are able
to learn from a set of past collected energy measurements
whether hidden communication is present to reveal threats
at runtime. Specifically, two detection methods have been
developed, each one using both neural networks and decision
trees. The first approach requires the solution of a regression
problem to predict the future behavior of energy consumption.
A hidden communication is spotted if the difference between
the actual and predicted consumption exceeds a certain thresh-
old. The second method is based on a classification problem,
and provides information on hidden communications by using
a set of features characterizing the energy behavior of the
device. The considered artificial intelligence tools have been
already used to reveal malicious code [15], [16] or to prevent
the execution of hazardous software on Android devices [17].
However, no previous works using energy consumption to spot
information-hiding-capable malware exist in the literature.

To summarize, the main contributions of this paper are:
(i) showcase the feasibility of using energy footprints for
the detection of malware implementing information-hiding
techniques, (ii) the creation of an ad-hoc testbed and a hybrid
measurement method to characterize seven covert channels,
including two new implementations, and (iii) the development
of two “intelligent” frameworks to perform the detection with
low computational requirements.

The rest of this paper is structured as follows. Section II
reviews the literature dealing with the detection of malware by
using energy measurements. Section III details the reference
scenario and the considered covert channels, while Section IV
describes the methodology used for the measurements of
power consumption. Section V introduces the two detection
methods based on neural networks and decision trees, and
Section VI discusses experimental results. Finally, Section VII
concludes the paper.

II. RELATED WORKS

Anomaly detection using energy footprints has been par-
tially investigated in the literature, primarily for malware and
network attacks. However, at best of the authors’ knowledge,
it has never been applied to covert channels.

In general, energy-based anomaly detection methods are
grouped according to how measurements are performed.
In more details, we have the following approaches.

1) System-Based [7], [18]–[20]: an energy footprint is
created by considering the whole consumption of the
device or some specific sets of applications and/or
hardware parts. The obtained data represents the “clean
system” that serves as a baseline for malware discovery.

2) Application-Based [21]: similarly to the previous case,
an energy footprint is created for a well-defined pool
of applications (e.g., games), and each one is measured
separately. The collected traces are then compared at
runtime against the data obtained with a single-process
granularity.

3) User-Based [22]–[24]: an energy footprint is created by
analyzing the typical behavior of users and the related

power consumption. This also includes, for instance,
the applications and device features that are active, as
well as their timing statistics.

4) Attack-Based [9], [10], [25]–[27]: measurements are
done while real attacks or malicious malware are target-
ing a controlled environment. The acquired traces form
a database of energy signatures used for the detection.

It is worth noting that methods belonging to the first three
groups can potentially deal with unknown threats, while the
last one only allows to recognize attacks for which signatures
are available.

Concerning system-based methods, Jacoby and Davis [19]
demonstrated how to reveal network attacks by using a
battery-based Intrusion Detection System (IDS) analyzing
the power consumption and the utilization levels of some
critical hardware/software components like the CPU. Later,
Nash et al. [20] proposed to estimate the energy footprint of a
desktop computer by using a multiple linear regression model
considering the CPU load, read/write accesses to the storage
unit, and network transmissions. To evaluate the presence of
malicious activities, the measured parameters are combined
with performance data counters available in the operating
system, and the results are compared with different thresholds.
Such approach was proven to be effective, but its main
drawback is the complexity to compute proper numerical
values for the needed thresholds. Liu et al. [18] proposed
the VirusMeter tool for Symbian smartphones that computes
the energy profile for the whole “clean” system. The user
is alerted by using a heuristic to compare the actual energy
consumption with a reference value. Lastly, Hoffman et al. [7]
performed comprehensive experiments with both artificial and
real-world malware using observation windows of different
lengths. They created energy footprints in a controlled setting
for the IEEE 802.11 and 3G hardware of a smartphone, and
the resulting power consumption was treated as a baseline for
detection. Even if such an approach is effective, the main
contribution of the work is about the noise level of tools
used for measurements: the additional power consumed by a
malware is often too small to be detectable with the resolution
of many measurement software.

Among the techniques using application-based methods, the
most notable work has been proposed by Kim et al. [21],
where the power consumption is monitored to detect malware
in Windows Mobile devices. Their proof-of-concept solution
is based on the energy footprints of the applications running
on the smartphone, which are compared against “clean”
consumption templates.

Concerning methods explicitly considering the behavior of
the user, Dixon et al. [22], [24] and Dixon and Mishra [23]
showed that there is a strong correlation between the battery
drain of a mobile device and the user’s location. This can
be exploited to determine the average power consumption for
different locations and make the detection of abnormalities
more efficient. In fact, instead of considering the required
power only as a function of time, location-specific energy
profiles are used as additional indicators.

Regarding attack-based approaches, Buennemeyer et al. [26]
investigated the energy signatures of some network threats



CAVIGLIONE et al.: REVEALING MOBILE MALWARE HIDDEN COMMUNICATIONS 801

against mobile devices. In more details, the power consump-
tion of a device is correlated with IEEE 802.11 activities.
If an irregularity is discovered, it is compared with existing
signatures to perform the detection of the attack. Then, each
mobile device exchanges alerts with peers, thus implement-
ing a distributed network IDS. This work has been further
extended by modifying the rates at which the battery status
is polled, and by considering the activity of the Bluetooth
air interface to increase the performance in terms of correct
detections [27]. Moreover, Caviglione and Merlo [9] focused
on how antivirus and network attacks such as port scan and
ping floods impact over the battery depletion of different
smartphones. They state the need for “green security” mech-
anisms to effectively develop consumption-based malware
detection systems [28]. Curti et al. [25] studied the energy
footprints for benign applications like Skype or YouTube and
also for network attacks like Denial of Service. They also pro-
vided a power consumption model for the hardware involved
in IEEE 802.11 communications allowing to distinguish a
normal traffic pattern from a network threat. This work has
been further extended by Merlo et al. [10] by analyzing
the feasibility of porting the two aforementioned approaches
on Android devices with the aim of developing a malware
detection framework. Unfortunately, the proposed solutions
turned out to be unsuitable, mainly due to implementation
issues, which can be overcome by introducing the direct
observation of power consumption from the battery hardware
without the need to dwell deeply into the drivers.

Literature also indicates that future research directions
should consider hybrid approaches, i.e., the power consump-
tion should be enriched with additional information such as
the memory usage. Even if hybrid approaches are possible,
they are typically implemented in a standalone fashion [19]
or as a part of a larger network-based IDS (see, e.g., [26]).
Furthermore, the technology evolves very dynamically, thus
studies performed even few years ago could quickly become
obsolete as functionality and capabilities of modern devices
significantly outrun the old ones.

III. COVERT CHANNELS

In this section, we describe how a prototypical malware
exploiting a local covert channel to secretly leak sensitive
data has been developed, and how we have studied its main
characteristics.

A. Reference Scenario

We consider the typical scenario depicted in Figure 1, where
a malware composed of two colluding applications exchanges
data through a local covert channel built within the device in
order to exfiltrate sensitive information [3], [4], [11]. In more
details, the process CCSender has access to the data but has
not the permission to use the network. Instead, the colluding
application CCReceiver has access to the network, hence it
is able to exfiltrate the received data to an external server
or a Command & Control (C&C) facility. Obviously, the
communications of the CCReceiver towards the C&C could
be detected, for instance, by inspecting the traffic produced

Fig. 1. Typical communication scenario of two colluding parts of a malware:
CCSender and CCReceiver exchange data through a local covert channel.

by the device. Thus, it is common to use other information-
hiding methods to build a network covert channel within
the produced flow. For instance, some malware uses a TOR
client to reach the server anonymously, making classic traffic
analysis ineffective [29]. Consequently, analyzing an encrypted
flow of information produced by the CCReceiver does not
help to reveal the presence of a malware, and this is why
this paper focuses on the detection of the local covert channel
itself.

Moreover, we assume that the malware monitors the oper-
ations performed by the user in order to transmit data when
he/she is not active [30]. Indeed, waking up the covert channel
during user’s activity could degrade the performances of the
device and reveal the presence of the threat. To this aim, many
modern malware delay their activation in order to be invisible
or not rise attention. Thus, even if the triggering of the malware
may occur at any time, it is more likely to happen when
the user is not active. For example, the families of malware
DroidKungFu 1 and 2 include a time bomb mechanism that
triggers the malicious behavior after a predefined period of
time [31]. With such a protection, a malware would be running
statistically when the smartphone is idle. Therefore, we focus
on such low attention-raising hazards operating when the
device is idle since they are the preferred choice to perform
attacks and to avoid an easy detection [3].

B. Implemented Covert Channels

For experimental purposes we implemented on the Android
platform seven local covert channels between the processes
CCSender and CCReceiver. Five of them have been
already proposed in the literature and they are listed as follows.

1) Type of Intent [11]: the secret receiver registers
256 types of intent listeners and the secret sender
encodes data by choosing and sending intents of the
proper type.

2) File Lock [32]: the secret sender communicates by
locking a file. The secret receiver also tries to lock the
same file and, if it succeeds, a 0 is inferred. Otherwise,
an exception is raised, meaning that the secret sender has
locked the file before the secret receiver. In this case, a
1 is received.

3) System Load [11]: the secret sender sends a 1 by
burdening the CPU of the device. The secret receiver
checks how many clock ticks the sender has got since the
previous iteration. If the value is greater than a certain
threshold, a 1 is inferred, a 0 otherwise.

4) Volume Settings [32]: the secret data is encoded into the
ringtone volume level of the device. If the sender can
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TABLE I

MEASURED BANDWIDTHS (IN BITS PER SECOND) FOR THE CONSIDERED
COVERT CHANNELS COMPARED TO THE THEORETICAL VALUES

use eight levels of volume, it can send up to three bits
per iteration.

5) Unix Socket Discovery [11]: the secret data is sent by
encoding the information within the state of a socket.
Specifically, a closed socket is equal to 1, while an
opened one is equal to 0.

Additionally, we propose the following two new covert
channels that were only tested in a theoretical fashion.

6) File Size: the secret sender sets the size of a shared file
and the secret receiver interprets it as a byte.

7) Memory Load: the secret receiver acquires the initial
memory load of the secret sender. Then, the secret
sender inflates the allocated data to send a 1 or releases
memory to send a 0.

Before investigating the related energy footprints,
we conducted a performance evaluation to assess the
correctness of the implementation, also in the perspective
of removing possible power-hungry bugs that can void
measurements. The literature provides theoretical limits
and/or performance evaluations in a very mixed set of
testbeds and with early implementations of the Android
operating system and outdated smartphones. Thus, we
investigated the data throughput to understand whether the
available reference values are still valid. For this round of
tests, we used a Samsung Galaxy SIII smartphone. Table I
reports the mean bitrate achieved by each covert channel
averaged over 100 repeated trials together with the estimated
capacities as provided in the related references. In more
details, the measured values highly differ from those provided
in the literature. This is mainly due to changes in the Android
platform and in the device drivers, hence confirming the
high variability of performances as the result of a tight
coupling between covert channels and the hardware/software
architecture. Besides, the best obtained throughput is equal to
74.62 bit/s for the case of the Type of Intent covert channel,
while the lowest is 6.43 bit/s for the System Load method.
At least four methods have similar maximum bandwidths,
which suggests that we have reached some limits within the
Android platform.

IV. MEASUREMENT METHODOLOGY

In this section we present the methodology used to measure
the power consumption of the malware based on colluding
applications exchanging data through covert channels. To have
reliable data, we first investigated the literature to find the

Fig. 2. Box diagram of the energy measurement architecture.

most suitable ways to gather information on the power used
by applications running on Android devices. As pointed out
in [10], the energy can be measured at high level using the
Android APIs or at low level by probing the battery driver.
Performing measures at low level is a difficult task, as it
requires to patch the battery driver to get access to fine-
grained data. Unfortunately, using high-level APIs may lead
to values with a poor degree of reliability. For example,
Merlo et al. [10], [12] report that high-level data is not accurate
enough to detect some form of network attacks, and also
proposes an alternative mechanism defined as “middle-level”
exploiting information stored in the /sys portion of the file
system such as the instantaneous voltage of the battery.

Based on these results, we decided not to collect low-
level energy values for two main reasons: this technique
requires deep changes in the operating system, thus lacking
of portability, and has a non-negligible consumption that can
mask the one of the covert channel used by the colluding
applications. Instead, to quantify the power depletion we relied
upon: (i) high-level energy consumption measures of each
process running on the system, for which we used a modified
version of PowerTutor [8], i.e., we developed a patch to enable
the tool to send the consumption of processes to a proper
data collector via an Android intent; (ii) middle-level energy
consumption information acquired by gathering current and
voltage values stored in /sys. We point out that since our
objective is the detection of a threat without recurring to data
related to the power consumed by the network subsystem, our
effort of using a mixed high- and middle-level methodology
is novel [33].

We developed a measurement framework both for collecting
data and automatize the experiments. Figure 2 depicts the
box diagram and the major interactions among the different
subsystems. In particular, the EnergyCollector is the controller
of the experiments and is in charge of running repeated trials
and collecting data measured by PowerTutor from APIs and
/sys. The latter receives gathered data each second through
an intent. Obviously, the communication flow between the
EnergyCollector and the CCsender/CCreceiver would
not exist on a real device, and is only used to repeat the
experiments. Nevertheless, after measuring the overhead, we
can assume the impact of intents in terms of additional power
as negligible.

For each covert channel, we conducted repeated trials
according to the following flow:

1) the EnergyCollector waits a random time;
2) the EnergyCollector sends an intent to the CCsender

to start a covert transmission;
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3) CCsender and CCreceiver exchange a message;
4) CCreceiver sends an intent to notify the EnergyCol-

lector that the transmission is finished;
5) the experiment is repeated.
The random time inserted in the step 1) ensures that the

beginning of the covert channel transmission is not known
a priori and that two different exchanges are not triggered
within a given timeframe. This enables to have an unpre-
dictable behavior, which is more coherent with real-world
use cases (a discussion on malware randomly activating is
provided in [34] and [35]). The duration of the transmission
depends on the type of the covert channel since each one has
a different bandwidth, as discussed in Section III.

V. ENERGY CONSUMPTION AND BLACK-BOX MODELING

The basic idea of our approach is to detect covert commu-
nications among colluding applications by using the energy
requirements of the processes running on a device as a
marker. The main benefit is the decoupling of the detection
of the covert channel from its implementation. In fact, hidden
communications are tightly coupled with the adopted carrier
and are characterized by a very low bitrate, thus making their
spotting very difficult and poorly generalizable.

To detect covert channels, two general problems have to
be addressed: (i) developing an approximate model for the
power consumption of a process, and (ii) using the obtained
information to recognize whether a covert channel is present.
Achieving such goals is challenging, especially due to the
different sources of power drains, e.g., transmissions over air
interfaces, memory operations, CPU- or I/O-bound behaviors,
and user to kernel space switches [36]. Thus, we propose
two general methods based on the black-box modeling
approach.

The first technique, denoted as regression-based detec-
tion (RBD), uses a regression fed with past values of the
consumption in a “clean” system to predict its future behavior.
Then, if the expected energy footprint deviates too much
from the real one, hidden communication is assumed present.
The second approach, denoted as classification-based detec-
tion (CBD), exploits a reduced set of features describing the
energetic behavior of the device. More specifically, a classi-
fication problem is solved to detect covert communications
between colluding applications.

To this aim, well-known artificial intelligence tools, such
as one-hidden-layer feedforward neural networks and binary
decision trees, are used to model the power consumption. The
RBD and CBD approaches are composed by two steps, as
shown in Figure 3. First, a model of the power consumption
is constructed based on a set of past collected measurements.
This requires the solution of an optimization problem to
find the best values of the parameters the model depends
upon. Such a step is called “training”, and the collected mea-
sures constitute the training set. This may be computationally
demanding, but it is usually performed offline and not on the
mobile device. Second, the optimized model is used to detect
covert communications based on the new, actual measurements
of power consumption. This step can be performed online, i.e.,
at runtime on the device.

Fig. 3. Two-step procedure for the detection of covert channels.

A. Neural Networks and Decision Trees

In this section, we introduce the tools used to construct
the approximate models of power consumption. Both are
employed in the literature to approximate unknown relation-
ships between input and output variables without any a-priori
knowledge on the underlying dynamics. They can be used to
solve either regression or classification problems [37]. Regres-
sion models map the input space into a real-valued domain.
Instead, classifiers map the input space into predefined classes.
The relationships between inputs and outputs are learned from
the collected data and then used to associate an output to
new, unseen inputs. Neural networks belong to the family
of “parametric” approximators, as their output significantly
depends on the parameters that define the structure of the
model, whereas decision trees are usually referred to as “non-
parametric” approximators, i.e., they strongly depend from the
available data and, less significantly, from a reduced set of
parameters.

As said, the goal is to approximate an input/output mapping
xi �→ y

i , where xi ∈ R
n is the input and y

i ∈ R
m is the

corresponding output. The unknown functional relationship
between inputs and outputs is approximated by a function γ
belonging to a family � of parametrized functions, i.e.,

ỹi = γ (xi , α) (1)

where α ∈ R
p is a vector of parameters and ỹi ∈ R

m is the
estimated value of y

i .
In recent years, the literature of learning from data has

mainly concentrated on the use of nonlinear models for the
approximation of complex systems. In fact, it has been proved
from both theoretical and numerical viewpoints, that classical
linear models may be computationally intractable for the
approximation of complex functions, especially in the case of
high dimensionality of the input variables (see, e.g., [38]–[40]
and the references therein). On the contrary, it has been
shown that nonlinear structures have a greater flexibility and
guarantee good approximations with a smaller number of
parameters.

One-hidden-layer feedforward neural networks are a very
popular nonlinear architecture already used to model a variety
of systems (see, e.g., [41], [42] and references therein). In this
paper we focus on neural networks with sigmoidal activation
functions. They enjoy the universal approximation property,
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i.e., the ability to approximate any well-behaved function with
arbitrary precision [43], [44]. The function γ is given by a
linear combination of parametrized basis functions, with a
certain number of free parameters to be optimized inside. For
scalar outputs, we have

γ (x, α) =
ν∑

k=1

ckσ

( q∑

j=1

akj x j + bk

)
+ c0

where σ(·) is the activation function, ν is the number of basis
functions (i.e., the neurons) and α � col

(
akj , bk, ck, c0

) ∈ R
p

is the vector of free parameters.
Concerning binary decision trees, they are widely-used

models for learning (see, e.g., [14], [37], [45], [46] and the
references therein). The output of the model is computed via a
binary partition of the input space into smaller subsets called
“leaves”, with sides parallel to the coordinate axes, in which
the values of the output are constant. Each split pursues certain
performance goals and is repeated until a stopping criterion is
met. The partition is called a “tree” since the leaves are added
recursively with binary splits to form a tree structure. Two
different types of trees exist depending on whether they are
used to solve regression or classifications problems. In the
case of regression trees, a constant output value is assigned
to each leaf, corresponding to the average of the observed
output values therein. By contrast, a certain label is assigned
to the terminal leaves in classification trees. In both cases,
to avoid overfitting, the obtained tree is usually “pruned”
according to some regularization costs [37]. In this paper,
we focus on binary trees, in which each step of a prediction
involves checking the value of only one variable at a time. The
functional relation γ in (1) is then approximated by means of
a piecewise-constant function over the various partitions.

After choosing the family of functions �, we need to find
an element γ ∗ ∈ � capable of reproducing at best the system
behavior. This corresponds to a training procedure to optimize
the parameters on the basis of the available data. To this
purpose, a suitable index is used to measure the difference
between the estimated model output ỹi for a certain value of
the parameters and the real measured output values y

i . The
most used metric is a mean squared error (MSE) criterion:
the optimal parameter vector α∗ is the one that minimizes the
quadratic difference between the real output variables and the
estimated ones, i.e.,

α∗ � min
α∈R

p

{
1

N

N∑

i=1

(y
i − γ (xi , α))2

}

where N is the number of samples used for the training.
In general, the training phase may be computationally

demanding, especially for large values of N . However, many
ad-hoc-developed procedures are available in the literature
(see, e.g., [47], [48]). Usually, they are implemented in effi-
cient software packages, allowing to solve the training problem
in a reduced amount of time.

B. Regression-Based Detection

The RBD method is composed of two steps: the first
consists in modeling the power consumed in a “clean” system,

i.e., when no colluding applications performing hidden data
exchanges are present in the device. To this end, a collection
of past values of the consumption are used to predict the future
ones. The second step is based on a comparison between the
forecast consumption and the actual one. Hidden communi-
cation is spotted if the expected energy footprint deviates too
much from the real one.

In more details, we define the following quantities at each
sampling time t = 0, 1, . . .. Let pt ∈ R+ be the power
consumed by a process at time t . Such a quantity is measured
and can be considered as an input. Let wt+1 ∈ R+ be the
prediction of the power needed by the process itself at the
next time instant t + 1, i.e., it is an output.

At least in principle, the consumption of a process at time
t + 1 may depend on the energy requirements at the previous
time instants, from 0 to t . However, to avoid dealing with
vectors of increasing dimension as the time grows, we consider
a “fading memory” assumption, which consists in assuming
that the output of the system (i.e., the power consumption of
a process at time t + 1) depends only on a finite number q of
past inputs [49]. In this perspective, we define a regression
vector (also called regressor) as the collection of the past
input variables from time t − q + 1 up to time t , i.e., p

t �
col

(
pt−q+1, pt−q+2, . . . , pt

) ∈ R
q , where q is a positive

constant value.
Thus, the training set for the creation of the model has the

form of a set of input/output pairs

�N �
{

p
t , wt+1

}N
t=1

where N is the total number of available measures. The goal
is to find a model that is able to capture, at each time t , the
functional relationship between past and future consumption,
i.e., the mapping p

t �→ wt+1. Thus, equation (1) becomes

w̃t+1 = γ (p
t , α)

where w̃t+1 is the estimated output at time t + 1 and
γ is a function belonging to a family � of one-hidden-
layer feedforward neural networks or binary decision trees.
Notice that, when the regressor is made up by long series of
past observations, the dimensionality of the problem rapidly
increases, hence the need of efficient approximators arises.

Once the best model within the class � has been found
by the offline training procedure, the second step of the RBD
method requires the definition of a detection rule. Specifically,
the detection is performed online by feeding at each time
step t the trained model with the past q measurements of
the consumption collected into the regressor p

t−1. Then, the
estimated consumption w̃t is compared with the real measured
value wt in a time window moving over time. The same
procedure is repeated at the next time steps, and a prediction
error et is defined as follows:

et � 1

τ

t∑

k=t−τ+1

|w̃k − wk | (2)

where τ is a given time horizon. We assume that a covert com-
munication among two colluding applications is present if the
prediction error is greater than a certain positive threshold ξ .
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Otherwise, it is considered absent. The rationale is that the
approximate model, if properly trained, is able to predict the
future behavior of the energy consumption of the “clean”
system with a good level of accuracy. Hence, severe deviations
reveals the presence of two processes covertly exchanging
data.

Clearly, the performance of the RBD depends on the quality
of the approximating model and on the parameters q , τ , and ξ ,
which have to be properly tuned. We will observe their impact
on the quality of detection in a real scenario in Section VI.
Notice that the same model γ can be used to detect covert
communications with all the covert channels described in
Section III since it has been obtained using measurements
obtained in a “clean” system.

C. Classification-Based Detection

The CBD method consists in solving a classification prob-
lem starting from a set of measurements both in the presence
and in the absence of colluding applications. It requires
the definition of a set of “features” representing the power
consumption of the device in a concise, effective manner.

More specifically, we focus on three different features
characterizing the energetic behavior of a process at each
time t , collected into the vector f

t
∈ R

3: (i) the average

power consumption from time t −λ+1 to time t , where λ is a
positive constant defining a window of past measurements, (ii)
the total variation of the power consumption from time t−λ+1
to time t , and (iii) the instantaneous consumption at time t .
Thus, we focus on the following vector of features at each
time t :

f
t
� col

(
t∑

l=t−λ+1

pl,

t∑

l=t−λ+1

|pl |, pt

)
∈ R

3 (3)

Each vector f
t

refers to a single measurement and is
associated to a certain class k among two possible ones,
corresponding to the cases in which covert channels are used
to exchanging data between colluding applications (k = 1)
and no covert channels are established (k = 0).

The training set for the creation of the model takes on the
form of a set of N input/output pairs

�N �
{

f
t
, gt

}N

t=1

where the scalar output gt is equal to k if the input vector f
t

belongs to the class k.
The goal is to find a model able to recognize the class

containing a given input vector that is not among the N used
for the training. As in the case of the RBD method, we rely
upon models belonging to a certain family � of one-hidden-
layer feedforward neural networks and binary decision trees,
i.e., equation (1) becomes:

g̃ j = γ ( f
j
, α)

where g̃ j is the class assigned to the input vector f
j

by the
model. The output g̃ j must be one of the two possible classes.

Clearly, the goal of the classification is to ensure that the
assignment of the model is correct, i.e., the difference between

TABLE II

PARAMETERS OF THE RBD AND CBD DETECTION METHODS

g̃ j and g j is as small as possible. To this end, as in the case
of the RBD, a suitable training phase is performed offline to
find the optimal values of the parameter vector α. Once the
best model within the family � has been found, at each time t
the detection whether a covert channel is present is performed
online by feeding the trained model with the vector f

t
of the

current features and analyzing the value of the output g̃t .
Differently from the RBD method, where the same approx-

imate model is used to detect covert communications with
all the seven techniques introduced in Section III, the CBD
approach requires the training of a different model for each
covert channel.

We point out that the accuracy of the CBD depends on
the quality of the approximating model and on the parame-
ter λ used to construct the vector of features. Section VI
will discuss its impact on the quality of detection in a real
scenario. Notice that the CBD requires the tuning of only
this parameter, whereas the RBD relies upon three parameters.
Table II summarizes the main parameters of the two considered
detection methods and their meaning.

VI. NUMERICAL RESULTS

To evaluate the effectiveness of the proposed approach, we
conducted experimental trials using two different smartphones,
i.e., a Samsung Galaxy SIII and a LG Optimus 4X HD P880.
We tested the RBD and CBD methods using Matlab with the
Neural Networks and Statistics Toolboxes. All the experiments
were done on a computer with a 2.5 GHz Intel i7 CPU and
4 GB of RAM.

A dataset containing the consumption of all the software
components running on the smartphones was generated using
the methodology presented in Section IV. In more details,
the consumption was measured with a per-process granu-
larity, both in a “clean” set-up and when a local covert
channel among two processes is created. Preliminary inves-
tigations showcased that the overall power consumption of
the smartphone is well represented by the energy required
by processes with OS-wide dynamics. More specifically, the
energy consumption of the process System gave us enough
condensed information to capture the general trend. Indeed,
the System process is the core of all mechanisms required
to access the low-level drivers of Android. It is used to handle
notifications, display, audio, alarms, and telephony, just for
naming a few. Therefore, for testing our methods, we relied
upon the information provided solely by the process System.

As said, we focused on a scenario in which information-
hiding-capable malware increases its stealthiness by acting
when the device is idle, i.e., there is no user activity involved.
As regards the exchanged messages, we set a fixed size
of 1000 bytes, which is large enough to represent the exfil-
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Fig. 4. Battery drain for each type of covert channel during 3 hours of
repeated experiments.

tration of sensitive information such as a bank account or a
collection of contacts stored in the address book. Each covert
channel was tested by performing 100 data transmissions
starting at random time instants. To have a proper statistical
relevance, each trial was repeated 10 times.

Figure 4 shows the trend of the battery drain for a period of
3 hours in the presence of colluding applications transmitting
data with the seven implemented covert channels. Results
indicate that the most consuming methods are the Volume
Settings, the Memory Load, and the System Load, whereas
the lowest one is the Type of Intent. Even if it is one of the
most consuming, the System Load covert channel is also the
one with the smallest bitrate.

The performances of the proposed detection methods were
quantified by means of the percentage of correct detection of
hidden communications, defined as follows:

d = 1

T

T −1∑

t=0

1 − |yt − ỹt | (4)

where T is the length of each trial (dependent on the type
of used covert channel) and yt and ỹt denote the actual and
spotted hidden communications at time t , respectively. In more
details, yt = 1 indicates that two colluding applications are
covertly exchanging data, whereas yt = 0 represents the
absence of hidden communication.

A. RBD Method
A training set composed of 5000 energy consumption

measurements was used to optimize the parameters of neural
networks and decision trees for the RBD method. Such sam-
ples were obtained in a clean system without hidden com-
munication between colluding applications. The training was
performed using the Levenberg-Marquardt algorithm [47] for
neural networks and by minimizing the MSE of the predictions
compared to the training data for decision trees, using the
Gini’s diversity index as split criterion [50]. As pointed out
in Section V-B, the same approximator was used to detect all
the seven implemented covert channels.

In order to determine the best values of the parameters q ,
ξ , τ , and ν, a thorough simulation campaign was performed.
Concerning neural networks, Figure 5(a) reports the percent-
age of correct detection d of each covert channel defined as
in equation (4), averaged over 10 different trials, when ν is
varied from 5 to 50 and the other parameters q , ξ , and τ are
fixed to 20, 30, and 20, respectively. Figures 5(b) and 5(c)

Fig. 5. Average percentage of correct detection for each covert channel using
the RBD when varying the parameters of neural networks (a, b, d, and f) and
decision trees (c, e, and g).

show the behavior of the average d obtained with neural
networks and decision trees, respectively, when varying the
length q of the regressor from 5 to 30 and with the other
parameters fixed. Figures 5(d) and 5(e) depict the average d
using neural networks and decision trees, respectively, as a
function of the threshold ξ used for the detection rule, whereas
the other parameters are fixed. Lastly, Figures 5(f) and 5(g)
showcase the average d obtained with neural networks and
decision trees, respectively, as a function of the length τ of
the time window used for the detection rule, with the other
parameters fixed.

From the obtained results, it turns out that the percentage
of correct detection for neural networks increases with ν up to
ν = 40, which is then the best number of activation functions.
For larger values, the phenomenon of overfitting is experi-
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Fig. 6. Boxplots of the percentages of correct detection for each covert
channel using the RBD with neural networks (a) and decision trees (b).

Fig. 7. Comparison of real and estimated power consumption of the System
process for the Volume Settings by using the RBD with neural networks (a)
and decision trees (b).

enced, i.e., the number of basis functions is too large for the
available data, and minor fluctuations in the energy measures
may be overemphasized, thus resulting into bad detection rates.
Concerning the length q of the regressor, the best value turns
out to be q = 20. The behavior of neural networks is more
affected by the chosen value if compared to decision trees,
for which all the values of q guarantee almost the same
results. Instead, neural networks and decision trees exhibit the
same behavior when varying the threshold ξ for the prediction
error (2), for which the best value appears to be ξ = 30. Lastly,
the percentage of correct detection grows if the time horizon τ
used in (2) increases up to τ = 20, and then remains almost
constant. Thus, in the perspective of saving computational
time, τ = 20 is the best choice.

Figure 6 shows the boxplots of the percentages of correct
detection for each information-hiding technique computed
over 10 different trials by using neural networks and decision
trees with the best values of their parameters, i.e., ν = 40,
q = 20, ξ = 30, and τ = 20. We conclude that the perfor-
mance of neural networks and decision trees are comparable,
i.e., on the average the accuracy of the detection is similar in
both cases. The most easily detectable method appears to be
the System Load covert channel, whereas the method that is
the least detectable is the File Size.

Figure 7 depicts the measured trend of the consumption of
the System process compared with its estimation provided
by neural networks and decision trees when using the Volume
Settings covert channel. The presence or absence of hidden
communication is denoted by high or low values of the binary
signal at the bottom of each figure. As it can be seen, the
prediction of the energy consumption is more accurate when

Fig. 8. Average percentage of correct detection for each covert channel
using the CBD when varying the parameters of neural networks (a and b)
and decision trees (c).

no covert communication is active, whereas the prediction
is not accurate in the presence of colluding applications.
The “bad” prediction when covert channels are present is
fundamental to spot hidden communications. More specifi-
cally, neural networks underestimate the power consumption,
whereas decision trees saturate to a certain value. This is not
surprising since the models have been built using a “clean”
system without colluding applications.

B. CBD Method

To test the effectiveness of the CBD method, we used again
a training set made up of 5000 energy samples. Differently
from the RBD, the training was performed both when the col-
luding applications are active and inactive. Moreover, different
approximators were trained for each of the seven implemented
covert channels.

Since we had to solve a classification problem, the real-
valued output of the neural networks was rounded either
to 1 or 0 depending on whether hidden communication is
spotted or not. Concerning decision trees, we adopted the
so-called classification trees, whose output is directly one
of the classes defined during the training. The training of
neural networks was performed again by using the
Levenberg-Marquardt algorithm, whereas classification trees
were trained by minimizing the MSE of the predictions
compared with the trained data and using the Gini’s diversity
index as the split criterion.

For the case of neural networks, we varied both the number
of neurons ν and the number of time instants λ for the
computation of the features as in (3), in order to investigate
their influence on the accuracy of the detection. Figure 8(a)
depicts the percentage of correct detection d of each covert
channel, averaged over 10 different trials, when ν is varied
from 5 to 30 and λ is fixed to 10. Figure 8(b) presents
the average d for each information-hiding method when λ
ranges from 5 to 30 and ν equals to 10. It turns out that
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Fig. 9. Boxplots of the percentages of correct detection for each covert
channel using the CBD with neural networks (a) and decision trees (b).

Fig. 10. Comparison of the true covert channel activity over time against the
estimated one for the Volume Settings by using the CBD with neural networks
(a) and decision trees (b).

the number of neurons affects the accuracy of the detection
only marginally. Therefore, to save memory and computational
time, one might choose ν = 5 or ν = 10. As regards the
effect of λ, the best choices are λ = 5 or λ = 10 since a
small decay of performance is experienced for large values.
Concerning decision trees, we investigated the effect of the
parameter λ on the accuracy of detection. The results are
reported in Figure 8(c) for the average d . Also in this case, λ
varies from 5 to 30, and the percentage of detection decreases
if λ increases. Hence, optimal values are again λ = 5 or
λ = 10.

Figure 9 depicts the boxplots of the percentages of correct
detection for each covert channel computed over 10 different
trials using the approximate models with the best values of
their parameters, i.e., ν = 10 and λ = 10 for neural networks
and λ = 10 for decision trees. In general, neural networks
guarantee better performances compared with decision trees,
i.e., on the average the accuracy of the detection is higher and
with a lower variance. In all cases, the most easily detectable
covert channels are the File Lock and the Volume Settings.
Instead, the Memory Load method is the most difficult to
detect despite its high consumption. Instead, the System Load
is characterized by the largest dispersion.

Figure 10 portraits the estimated covert channel activity
compared to the real one for the Volume Settings method.
As shown, neural networks and decision trees are able to
correctly spot the channel activity most of the time, thus
showcasing their effectiveness for runtime or static analysis
purposes within the security framework of the device.

C. Comparison Between RBD and CBD

To sum up, Table III reports the percentage of correct
detection averaged over 10 trials for all the implemented covert

TABLE III

AVERAGE PERCENTAGES OF CORRECT DETECTION FOR THE DIFFERENT
DETECTION METHODS AND COVERT CHANNELS

channels for the RBD and CBD methods. In both cases, the
System Load and the Volume Settings are the most easily
detectable covert channels. This may be ascribed to the fact
that such methods are also the most power-consuming, i.e.,
their energy footprint is more evident. In this case, the hidden
communication is correctly spotted 9 times over 10 on the
average. The most difficult methods to be detected are the File
Size and the Memory Load. However, even if lower than the
one of the best-performing methods, their average percentage
of correct detection is about 65% when using the RBD and
85% for the CBD, which is quite a satisfactory result. The
Memory Load covert channel seems the most difficult to be
spotted. This behavior is due to the absence of code in the
System process that allocates memory: this task is done at
high level by the Dalvik virtual machine and at low level by
the Linux kernel.

According to the obtained results, in general the CBD out-
performs the RBD in terms of percentage of correct detection.
Moreover, it is worth noting that the RBD has three parameters
to be tuned, i.e., q , τ , and ξ , instead of only one for the CBD,
i.e., λ. As a consequence, the implementation of the CBD in
a production-quality tool should be preferred, both in terms of
complexity and performance.

Concerning the computational effort, the average time for
the training was equal to 82.5 seconds for the RBD with
ν = 40 and q = 20 and to 15.6 seconds for the CBD with
ν = 10 and λ = 10 when using neural networks. The training
times of the two detection methods when using decision trees
with q = 20 and λ = 10 were equal to 1.92 and 0.27 seconds,
respectively. The higher times of the RBD are mainly due
to the greater dimension of the input vector compared to the
CBD. In fact, in the first case the dimension of the input is
equal to the length q = 20 of the regressor, whereas in the
second one it is equal to the number of features, i.e., 3. This
also requires a larger number of neurons to obtain satisfactory
approximations. In general, neural networks appears to be
more computationally demanding compared to decision trees.
Nevertheless, the RBD requires the training of only one model,
whereas an approximate model for each covert channel is
required by the CBD, thus resorting to seven different training
procedures.

The average time to spot the presence of a covert channel
for the RBD method with the best values of the parameters is
equal to 0.01 and 0.001 seconds, depending on whether neural
networks or decision trees are used, respectively. As regards
the CBD approach, such times when using the best values
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of the parameters are again equal to 0.01 and 0.001 seconds
for neural networks and decision trees, respectively. In all
cases, the online computational effort is very small. Thus,
the proposed methods appear to be well-suited to being
implemented in an online detection framework directly
running on a mobile device.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a framework based on
artificial intelligence tools, such as neural networks and
decision trees, to detect the presence of malware using
information-hiding techniques exploiting power measure-
ments. Specifically, we have focused on the colluding applica-
tion scenario, which is characterized by two processes trying to
communicate outside their sandboxes for malicious purposes,
for instance, for sensitive data exfiltration. Two detection meth-
ods have been developed, requiring the solution of regression
and classification problems. To verify their effectiveness, we
have implemented seven local covert channels on the Android
platform, and we have performed an experimental measure-
ment and detection campaign. The obtained results indicate
that both methods are characterized by a good detection
performance and can be used as an accurate IDS software
on a modern smartphone to reveal the presence of hazards
exploiting information hiding.

Future works aim at making our detection framework more
effective, for instance by developing proper metrics to recog-
nize at runtime the pair of colluding applications. Moreover,
part of our ongoing research is devoted to understand if
using additional information (e.g., activity correlation) could
increase the accuracy of the approach. At the same time, we
also work to extend the energy-based detection approach to
other threats exploiting information hiding. On the overall,
such improvements should lead to the development of an
application directly running on a mobile device to spot the
presence of covert communications in real time.
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